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A B S T R A C T

Wetlands are recognized for their importance to a range of ecosystem goods and services; however, detailed
information on wetland presence, type, extent, and persistence is challenging to attain over large areas and/or
long time periods due to the spatial complexity and temporal dynamism of wetlands. In this study we explored
the potential for within-year time series of C-band Synthetic Aperture Radar (SAR) observations from the free
and open Sentinel-1 data archive to improve discrimination of treed and non-treed wetlands and non-wetlands in
a boreal forest environment. Through a set of 3843 classification experiments for the year 2017, we tested the
influence of three factors on classification accuracy: (i) input features (two backscatter coefficients in VV and VH
polarization ( VV and VH ) and four quantitative measures derived from the Stokes vector); (ii) the temporal form
of features (i.e. using all within-year observations versus generalized measures such as monthly/seasonal means
or annualized statistics); and (iii) missing observations in Sentinel-1 time series due to varying observation
availability across space. Among the tested features, we found the greatest utility in VV and VH . Directly using
all within-year observations yielded higher accuracy than using generalized temporal forms. Moreover, the
temporal form of the features had a greater impact on classification accuracy than the features themselves. The
highest overall accuracy (0.860 ± 0.002) was achieved using VV and VH from all within-year observations.
The majority of class confusion occurred between treed wetlands and non-wetlands. We found no significant
reduction in the overall accuracy by simulated missing observations in time series when using all within-year
observations. With the increasing availability of free and open data from the Sentinel-1 archive, new opportu-
nities are emerging to readily integrate within-year time series into large-area land cover mapping, particularly if
analysis-ready SAR data products further reduce preprocessing requirements for end users.

1. Introduction

Wetlands refer to areas that are inundated, whether naturally or
artificially, permanently or temporarily, with static or flowing water
that is fresh, brackish or salt, including marine water less than six
meters in depth at low tide (Ramsar Convention Secretariat, 2013). The
exact definition of wetlands varies between jurisdictions, organizations
or disciplines but in essence, wetlands are subject to permanent or
periodic inundation or prolonged soil saturation (Tiner, 2016). As the
nexus between unsaturated terrestrial upland and aquatic deep water in
the landscape mosaic (National Wetlands Working Group, 1997), wet-
lands are among the most productive environments and are of critical
importance to both biological diversity and human wellbeing
(Millennium Ecosystem Assessment, 2005; Ramsar Convention
Secretariat, 2013). Wetlands are now recognized for the provision of a
broad range of ecosystem services; however, the extent and viability of

wetlands are increasingly threatened by land use change, pollution, and
agricultural drainage, among others (Millennium Ecosystem
Assessment, 2005). In this context, the need for comprehensive wetland
inventories as well as monitoring capacity to identify status and trends
is compelling as it provides the basis for guiding appropriate assess-
ment, monitoring and furthermore management of wetlands (Dahl and
Watmough, 2007; Davidson and Finlayson, 2007).

Wetland inventories typically characterize wetland location and
extent, and also wetland classes according to the characteristics, en-
vironmental influences, functions, and/or uses (Davidson and
Finlayson, 2007; Finlayson and van der Valk, 1995; Tiner et al., 2015).
Various wetland classification schemes have been created, driven by
different information needs. For example, the Canadian National Wet-
land Working Group categorizes wetlands into five major wetland
classes including swamps, bogs, fens, marshes, and shallow water/
ponds (Environment and Climate Change Canada, 2016; National
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Wetlands Working Group, 1997). These five class definitions can be
further simplified as treed wetlands (swamps) and non-treed wetlands
(Canada’s National Forest Inventory, 2017; Wulder et al., 2008). Wet-
lands are often captured as an ecological feature within other in-
ventories, as is often the case for forest inventories. Canada’s National
Forest Inventory (NFI) reports the total area of forest and other wooded
land with 12 broad land cover classes (Canada’s National Forest
Inventory, 2017; Wulder et al., 2008). The capacity to distinguish be-
tween treed and non-treed wetlands is an important information need
for Canada’s NFI as the distinction between treed and non-treed wet-
land impacts the reporting of treed area. Furthermore, treed status of
wetlands is also helpful information to studying and modelling biolo-
gical diversity, biogeochemistry and hydrology of wetlands (Matthews
and Fung, 1987; Thogmartin et al., 2004; Toner and Keddy, 1997).

Although the need to inventory and monitor wetlands is well es-
tablished, the methods and data sources used vary according to the area
of interest and the level of detail required (Fournier et al., 2007). Field-
based monitoring of wetlands is highly informative, yet temporally and
spatially constrained, logistically challenging, and costly to oper-
ationalize over large or remote areas (Dahl and Watmough, 2007;
Gallant, 2015). Therefore, wetland inventory and monitoring fre-
quently avail upon remote sensing data and techniques due to com-
paratively lower costs and extensive spatial coverage (Davidson and
Finlayson, 2007; Klemas, 2013; Lang and McCarty, 2008; Tiner et al.,
2015). However, wetlands are a challenging target for classification
using remotely sensed data due to their inherent dynamism and natural
range of variability (Gallant, 2015; Tiner et al., 2015). The depth of
water and the duration of its presence vary considerably from wetland
to wetland and from year to year or even from season to season (Mitsch
and Gosselink, 2007), which necessitates remotely sensed data with a
higher temporal resolution than typically required to map other less
dynamic land cover types.

While a variety of remotely sensed data types have been explored to
determine their utility and address the aforementioned challenges in
mapping wetlands (Klemas, 2013; Lang and McCarty, 2008; Tiner et al.,
2015), two primary types of remotely sensed data for wetland mapping
are multispectral optical images (Adam et al., 2010) and synthetic
aperture radar (SAR) images (White et al., 2015) onboard satellite
platforms. As optical remote sensing relies on solar illumination,
weather conditions such as clouds and haze will obscure or contaminate
acquired data and thus reduce available observations of the Earth’s
surface. In contrast, SAR is an active remote sensing technique that
emits electromagnetic energy at microwave wavelengths and measures
backscattered energy returned by Earth’s surface (Henderson and
Lewis, 2008), enabling data acquisition regardless of solar illumination,
clouds, or haze (Lang and McCarty, 2008) and thereby increasing the
frequency of useable observations. The amount of backscatter energy is
primarily affected by the wavelength, polarization, and incidence angle
of the microwave energy in combination with several key character-
istics of the Earth’s surface including dielectric property, size/rough-
ness, and structure (Lang and McCarty, 2008). As such, SAR data relate
to information particularly on soil moisture, inundation and vegetation
structure owing to the sensitivity of microwave energy to water and its
ability to penetrate vegetative canopies to various degrees depending
on its wavelength (Tiner et al., 2015). Due to SAR’s ability to collect
data independent of prevailing illumination and cloud conditions (Lang
and McCarty, 2008), the temporal resolution of available observations
of Earth surface from SAR can be relatively higher than from optical
sensors, given the same revisit frequency and imaging parameters (e.g.,
swath width).

Previous studies have noted the benefits to wetland mapping by
using multi-temporal observations from multispectral optical sensors
(Lunetta and Balogh, 1999; Zhang et al., 2017), SAR sensors (Banks
et al., 2019; Brisco et al., 2011; Mahdavi et al., 2017; Martinez and Le
Toan, 2007), or a combination of both (Bourgeau-Chavez et al., 2016;
Corcoran et al., 2013; Töyrä et al., 2001). Earlier studies utilizing

remotely sensed time series data over wetlands were often limited to
relatively smaller spatial extents due to lack of data and burdensome
data preprocessing needs, including co-registration, cross calibration,
and quality screening. The recent advances in wetland mapping and
change detection through time series observations at much larger scales
(national, continental or global) (Pekel et al., 2016; Wulder et al., 2018;
Yamazaki et al., 2015) are made possible not only by the recent sub-
stantial increases in the availability of multiple sources of medium-re-
solution satellite data over time but also by access to Analysis Ready
Data (ARD) (Comber and Wulder, 2019). Landsat time series (LTS) data
have been used and found valuable in the land cover mapping of Ca-
nada’s vast forested ecosystems (Hermosilla et al., 2018, 2016). As a
common land cover category in this ecosystem, the extent, distribution,
and changing trends of wetlands over Canada’s forested ecosystems
have been specifically mapped using this harmonized time series of
land cover maps (Wulder et al., 2018). On the other hand, limited ac-
cess to SAR data and heretofore a lack of analysis-ready data products
precluded the systematic use of time series of SAR data for wetland
mapping at national, continental or global scales. However, the Eur-
opean Space Agency (ESA) now provides free and open access to the C-
band SAR data from the Sentinel-1 satellites that observe the Earth in a
systematic and operational fashion with short revisit time (Torres et al.,
2012). This open access to the Sentinel-1 data archive with global
coverage provides opportunities to leverage the temporal information
from time series SAR data to map wetlands over larger spatial extents.
Efforts towards Sentinel-1 ARD are on-going and will help to facilitate
the use of SAR data in operational and large area applications
(Truckenbrodt et al., 2019).

Whereas LTS data have demonstrated capacity for national wetland
mapping and monitoring (Wulder et al., 2018), distinguishing between
treed and non-treed wetlands over large areas is an important in-
formation need for forest ecosystem monitoring that remains challen-
ging to address with LTS data alone. Hence, the objective of this study
was to explore the potential of Sentinel-1 SAR within-year time series
data to distinguish between treed and non-treed wetlands. Specifically,
we seek to answer the following questions: (1) Which Sentinel-1 fea-
tures provide the greatest utility for discriminating among the following
three classes in boreal forest environments: treed wetlands, non-treed
wetlands, and non-wetlands? (2) Which temporal form of these features
provides the greatest accuracy (i.e. using all within-year observations or
generalized measures such as monthly/seasonal means or annualized
statistics)? (3) What impact do missing observations in within-year time
series have on the accuracy with which these three classes can be dis-
criminated? (4) What are the potential issues and opportunities asso-
ciated with using within-year time series of Sentinel-1 data for spatially
extending the methods applied herein to the national level?

2. Study area

The study area is a wetland-dominated region of the Hudson Plains
ecozone in Canada (Fig.1). The Hudson Plains is strongly influenced by
the cold and moisture laden Hudson-Bay-low and Polar-high air masses.
With short cool summers and long cold winters, this lowland plain
contains the largest extensive area of wetlands in the world that include
extensive peatlands and shallow open water less than 2m deep
(Ecological Stratification Working Group, 1995). Forest are dominated
by coniferous tree species, with spruce as the leading genus in 88% of
all forest stands (Abraham and McKinnon, 2011). Dominant tree species
include white spruce (Picea glauca) on dry sites, with willow (Salix),
black spruce (Picea mariana), and tamarack (Larix laricina) more
common on wetter sites. Forests in this ecozone are typically open and
intermixed with wetlands, and canopy cover generally increases from
north to south. Site productivity is low, with low wood volume per ha
(42m3/ha) (Canadaös National Forest Inventory, 2010) and slow
growth rates.

The area for this study is located in the eastern Hudson Plains and
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corresponds to four sub-frames of two sub-swaths in the Sentinel-IW
acquisition mode (Interferometric Wide mode, the main acquisition
mode of Sentinel-1 over land (ESA, 2019a)). Each sub-frame covers
90 km (cross-track) ×170 km (along-track) and the total coverage of
the four sub-frames is approximately 58,000 km2. The landscape in this
region has large areas of both treed and non-treed wetlands. A wetland
area is considered treed if at least 10% of its area, by crown cover,
consists of tree species of any size. Conversely, a wetland area is con-
sidered non-treed if less than 10% of its area, by crown cover, consists
of trees species of any size (Canada’s National Forest Inventory, 2017).

Treed wetlands are located primarily in the north of this study area with
non-treed found mostly in the south (see Fig. 2 and Section 3.2 for
details). The occurrence of both treed and non-treed wetlands in this
study area allows us to explore the discriminatory power of Sentinel-1
data from the operational IW acquisition mode for distinguishing be-
tween these two wetland classes.

3. Materials and methods

We examined the utility of Sentinel-1 features and their within-year

Fig. 1. Overview of the study area (the four Sentinel-1 sub-frames from two sub-swaths) in true-color image of annual gap-free best-available-pixel composites of
Landsat surface reflectance for the year 2017.

Z. Li, et al. Int J Appl  Earth Obs Geoinformation 85 (2020) 102007

3



temporal information through a range of classification experiments
using a Random Forest (RF) classifier (Breiman, 2001). We used two
auxiliary datasets to facilitate the selection of pixels to train and test
these classifiers, including 33 years of annual land cover maps and
airborne-laser-scanning (ALS) based estimates of canopy structure.
Lastly, we examined the impacts to classification by missing observa-
tions in Sentinel-1 time series through synthetic data with simulated
missing observations.

3.1. Data

3.1.1. Sentinel-1 Synthetic Aperture Radar imagery time series
The Sentinel-1 satellites (A and B) carry C-band SAR instruments

that routinely observe the Earth day-and-night under all weather con-
ditions (Torres et al., 2012). The repeat cycle of observations for each
Sentinel-1 satellite is 12 days and the two-satellite constellation could
offer a 6-day repeat cycle if acquisitions were available from both sa-
tellites. This routine data acquisition, along with its free and open data

Fig. 2. Training and testing candidate pixels of wetland classes (treed and non-treed wetlands, and non-wetlands) that are delineated using the 33 annual land cover
maps of Canada’s forested ecosystems (Hermosilla et al., 2018; Wulder et al., 2018). Excluded pixels are those not persistently identified as treed wetlands, non-treed
wetlands or non-wetlands by the 33 years of land cover maps. The airborne laser scanning (ALS) transects indicate treed status according canopy height and cover.
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access, underpins the potential to extend our prototype investigation
over the current study area to the entire Canada operationally. The
main IW acquisition mode of the Sentinel-1 mission supports operations
in dual polarization VV and VH (Torres et al., 2012), i.e. transmitting
microwave energy in linear vertical (V) polarization and detecting re-
turns in both linear vertical (V) and horizontal (H) polarization. The IW
mode acquires observations from three sub-swaths (dubbed as IW1,
IW2 and IW3). Observations from the three sub-swaths are acquired at
different incidence angles that increase gradually from IW1, IW2 to
IW3. The resultant SLC images therefore have slightly different spatial
resolutions in both slant range (rg) and azimuth (az) dimensions. Owing
to the limited coverage of one ancillary dataset (airborne lidar data)
that we used to select training and testing pixels (see Section 3.1.2 for
details), only sub-swaths IW1 and IW2 of the Sentinel-1 IW SLC pro-
ducts were used as our current study area. We obtained the Sentinel-1
IW Level-1 SLC products (IW acquisition mode, Single Look Complex)
from the Copernicus Open Access Hub (European Union Copernicus,
2019). We chose to use the Level-1 SLC products because they contain
both backscatter intensity and phase information, allowing the use of
Stokes vector approaches to explore potential Stokes vector features
that may help differentiate treed and non-treed wetland classes. In total
for the year of 2017, Sentinel-1B satellite provided the IW SLC products
on 23 dates representing all the seasons for all pixels over our study
area; however, no data was available from Sentinel-1A.

3.1.2. Annual land cover maps and airborne-laser-scanning based estimates
of canopy structure

We used two datasets to facilitate the selection of pixel samples to
train and test wetland classifiers, including annual land cover maps of
33 years (1984 to 2016) and ALS based estimates of canopy structure.
The annual land cover maps were generated using the Virtual Land
Cover Engine (VLCE) from a time series of annual gap-free best-avail-
able-pixel composites of Landsat surface reflectance and auxiliary to-
pographic data (Hermosilla et al., 2018). After generating preliminary
annual land cover classifications using a RF classifier, the VLCE ap-
proach further reduced spurious land cover transitions per pixel
through time via a Hidden Markov Model (Abercrombie and Friedl,
2016) that utilized forest change information and expert-based class
transition probabilities. This process produced the change-informed
and temporally integrated annual land cover maps that we used in this
study. The 25-m raster products of canopy height and cover estimates
were generated from ALS acquisitions in the summer of 2010. The ALS
data had a pulse density of approximately 3 points/m2 from which
point cloud metrics were generated at a grid cell resolution of 25m, as
detailed in Wulder et al. (2012). The 99th percentile of heights of first
returns above 2m was used to represent canopy height, and the per-
centage of returns above 2m was used to estimate canopy cover for
each grid cell. The ALS point cloud metrics were resampled into the 30-
m grid of the annual land cover maps using bilinear interpolation.

3.2. Selection of training and testing pixels

The annual VLCE land cover maps and the ALS-based canopy

structure estimates provided a priori information on the location and
extent of wetlands and their treed status and were used as strata to
select a set of training and testing pixels for RF classifier training and
testing. We selected treed wetland candidate pixels as those that were
identified as treed wetland by all the 33 years of land cover maps and
also as treed by the ALS data according to the FAO’s definition of forests
(treed areas are those with canopy height greater than 5m and canopy
cover greater than 10% (FAO, 2012)). Similarly, we selected non-treed
wetland candidate pixels for training and testing as those identified as
non-treed wetlands by all the 33 years of land cover maps and also as
non-treed by the ALS data. Non-wetland candidate pixels for training
and testing were those pixels that were not identified as wetlands by
any of the 33 years of annual land cover maps, independently of being
determined as treed or non-treed by the ALS data. The selection ex-
cluded pixels that were not persistently identified as treed wetlands,
non-treed wetlands, or non-wetlands within the 33 years of VLCE land
cover maps. This selection practice accumulated evidence about land
cover over time and also restricted training and testing samples to areas
that have not changed, according to the Landsat time series. Hence it
minimized the impact of applying the ALS data acquired in 2010 to the
Sentinel-1 data acquired in 2017. In total for training and testing,
0.04% of the study area was identified as candidate areas for treed
wetlands, 0.03% for non-treed wetlands, and 0.14% for non-wetlands.
We randomly selected two thirds of all candidate pixels in each class to
train the RF classifier and the remaining one third as testing data to
evaluate the accuracy of wetland classifications and hence the utility of
Sentinel-1 features and their temporal information.

3.3. Preprocessing of Sentinel-1 SAR data

We used the ESA Sentinel Toolboxes (SNAP) (ESA, 2019b) and
processed each Sentinel-1 SLC product into six Sentinel-1 features
(Table 1) including, VV and VH backscatter coefficients ( VV and VH),
the first two elements of the Stokes vector (S1 and S2), the Degree of
Polarization (m), and the Linear Polarization Ratio (µL) (Raney, 2006).
The processing to generate the radar backscatter coefficients ( VV and

VH) included the following seven steps: (1) “TOPSAR-Split” (split sub-
swath IW1 and IW2); (2) “Apply-Orbit-File” (obtain precise orbital in-
formation); (3) “Calibration” (calculate backscatter coefficients VV and

VH); (4) “TOPSAR-Deburst” (remove demarcation zone between two
bursts); (5) “Multilook” (generate one square pixel from 4 rg × 1 az
looks); (6) “Speckle-Filter” (reduce speckle noise using Lee Sigma Filter
(Lee et al., 2009)) and (7) Terrain Correction using SRTM 1 arc-second
Digital Elevation Model (∼30m) (NASA JPL, 2019) before resampling
the raster data into the projection of UTM-17S zone at 30-m pixel re-
solution using bilinear interpolation.

The processing to generate Stokes vector features from the SLC data
firstly followed the aforementioned steps (1) to (5) for backscatter
coefficients, except that step (3) of “Calibration” outputted complex
numbers instead of backscatter coefficients to keep the phase in-
formation. Subsequently three additional steps were applied: (6) form a
2-pixel × 2-pixel average wave covariance matrix of the backscattered
field (Cloude et al., 2012) before applying a polarimetric speckle filter,
the Refined Lee Filter (Yommy et al., 2015), to the matrix; (7) per pixel,
calculate a four-element real Stokes vector S S S S[ ]T

1 2 3 4 (we adopted
S1 and S2 in this study) and two Stokes-vector-based parameters, Degree
of Polarization (m) and Linear Polarization Ratio (µL) (Raney, 2006);
(8) terrain correct the two elements of the Stokes vector and the derived
parameters using the same procedures as above for backscatter coeffi-
cients.

All the derived Sentinel-1 features were stacked and then aligned
with the 30-m raster grid of the annual land cover maps in the pro-
jection of UTM-17S zone. We assured the fidelity of georegistration
among the time series images of Sentinel-1 and also between them and
the Landsat-based land cover maps after visually examining the align-
ment of artificial targets, such as roads and airport.

Table 1
List of Sentinel-1 features.

Feature Description

VV Backscatter coefficient in VV polarization
VH Backscatter coefficient in VH polarization

S1 First element of Stokes vector, approximately total power of the VV and
VH channels

S2 Second element of Stokes vector, approximately power difference
between the VV and VH channels

m Degree of polarization
µL Linear polarization ratio
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Although SAR signals from the two sub-swaths are potentially in-
fluenced by their different incidence angles (Tsyganskaya et al., 2018),
we did not observe clear artifacts caused by incidence angles in the
images of the six Sentinel-1 features between the two sub-swaths used
in our analysis, likely because the differences in incidence angles be-
tween the two adjacent sub-swaths are relatively small (the nominal
incidence angle for the Sentinel-1 IW products is 32.9° for IW1 and
38.3° for IW2 (ESA, 2019c)). Meanwhile, considering the limited
training and testing pixels available over the two sub-swaths, we used
all the training pixels across the two sub-swaths (IW1 and IW2) together
to train one RF classifier and apply the trained classifier to both sub-
swaths in each experiment of RF classification as described in the next
section.

3.4. Experimental design of wetland classification using Random Forests
classifier

For the classification of wetlands using the derived Sentinel-1 SAR
data, we used the RF classifier, which draws random subsets of training
samples and predictor variables to produce multiple decision trees to
form an ensemble classification (Breiman, 2001). The RF classifier is a
robust, non-parametric classifier that has been applied extensively for
land cover mapping applications (Belgiu and Drăgu, 2016). In this
study, we used an implementation of RF classifier in the Python Scikit-
learn package (Pedregosa et al., 2011).

To examine the utility of the six Sentinel-1 features ( VV , S,VH 1, S2,
m, µL) (Table 1) and their temporal information, we designed multiple
experiments in which RF classifiers used different predictor sets com-
prising different combinations of the Sentinel-1 features and different
forms of their temporal information. We had 63 combinations of Sen-
tinel-1 features, that is, + + + + +( ) ( )( ) ( ) ( ) ( )6

1
6
2

6
3

6
4

6
5

6
6 , corre-

sponding to the use of one to six selected features from the total six
features (Table 2). For the forms of the temporal information in Sen-
tinel-1 features, we tested the following five types of temporal metrics:
(1) one observation from a random observation cycle in each of selected
seasons, (2) observations from available repeat observation cycles in
each of selected seasons, (3) monthly means of available observations in
each of selected seasons, (4) seasonal means of available observations
in each of selected seasons, and (5) annualized statistics of available
observations in the entire year (similar to those used in Hansen et al.
(2016;, 2013)) including, minimum, maximum, and selected percen-
tiles (10, 25, 50, 75, 90 percentiles) of within-year observations, and
mean values of observations between selected percentiles (minimum-
10%, 10–25%, 25–50%, 50–75%, 75–90%, 90%-maximum, minimum-
maximum, 10–90%, and 25–75%). The definition of seasons was ca-
lendar based for simplicity and applicability over large areas, i.e.,
March-April-May (MAM) as spring, June-July-August (JJA) as summer,
September-October-November (SON) as autumn, and December-Jan-
uary-February (DJF) as winter. There are 15 combinations of the four
seasons, that is, + + +( )( ) ( )( )4

1
4
2

4
3

4
4 . Each of the first four types of

temporal metrics has 15 temporal forms from choosing different com-
binations of the four seasons while the last type of temporal metrics,
annualized statistics, has one temporal form from using all the four
seasons. In total, we considered Sentinel-1 features in 61 different
temporal forms as candidate predictors in the classification experiments
(Table 2).

With the feature combinations (63) and temporal forms (61) for
each combination, we created × =63 61 3843 different sets of pre-
dictors to test in the classification experiments. In each experiment with
a given set of predictors, that is, selected Sentinel-1 features of one
combination in one temporal form, we optimized the number of deci-
sion trees in a RF classifier (ntree) and the number of predictor variables
to be selected to build each tree (mtry) (Belgiu and Drăgu, 2016). We
then selected the ntree and mtry values that yielded the best 3-fold cross-
validation result over the training pixels to build the final RF classifier
in each experiment. Meanwhile, to balance training pixel counts among
classes, we used the same number of training pixels per class as the
smallest training pixel counts of the three classes, that is, 15,740 pixels
in our case. We then randomly selected 15,740 pixels without re-
placement from all available training pixels in each of the other two
classes to use in the RF training. For each of the 3843 experiments, we
applied the trained RF classifier to the withheld testing pixels and es-
timated the overall, user’s and producer’s accuracy to evaluate the
performance of each RF classifier and hence each predictor set (selected
features in a selected temporal form).

3.5. Analysis and comparison of outcomes of classification experiments

To examine the utility of Sentinel-1 features in wetland classifica-
tions, we grouped and compared the accuracy measures of RF classifi-
cation results from all the experiments by the combinations of Sentinel-
1 features. Each feature combination includes all of the examined
temporal forms for each feature. For each accuracy measure (overall
accuracy, and user’s and producer’s accuracies per class), we sorted the
feature combinations according to the highest achieved accuracy given
each feature combination, where we checked which Sentinel-1 features
appeared more often in classifications of higher accuracies. To better
demonstrate the importance of Sentinel-1 features to our classification,
we identified the pairs of classifications that only differed by whether a
given Sentinel-1 feature was included in or excluded from an experi-
ment. We calculated the accuracy difference per each pair as an in-
dicator of Sentinel-1 feature importance.

Similarly, to examine the contribution of observations in different
temporal forms and different seasons to wetland classifications, we
grouped and compared the accuracy measures of RF classification re-
sults from all the experiments by temporal forms. For each temporal
form, we grouped all the examined feature combinations. For each
accuracy quantity (overall accuracy, and user’s and producer’s ac-
curacies per class), we sorted the temporal forms according to the
highest achieved accuracy under each temporal form, where we
checked which temporal forms appeared more often in classifications of

Table 2
List of feature combinations and temporal forms. One set of predictors comes from choosing one combination of Sentinel-1 features and one temporal form.

Feature Combinations Temporal forms
per each feature combination

• Using 1 feature: 6 combinations

• Using 2 features: 15 combinations

• Using 3 features: 20 combinations

• Using 4 features: 15 combinations

• Using 5 features: 6 combinations

• Using 6 features: 1 combination

• Using one random observation per each of selected seasons: 15 forms

• Using all available observations per each of selected seasons: 15 forms

• Using monthly means of observations per each of selected seasons: 15 forms

• Using seasonal means of observations per each of selected seasons: 15 forms

• Using annualized statistics below: 1 form
○ Minimum & Maximum
○ 10, 25, 50, 75, 90 percentiles
○ Mean of observations between (minimum-10%, 10-25%, 25-50%, 50-75%, 75-90%, 90%-maximum, minimum-maximum, 10-90%,

and 25-75%).
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higher accuracies. To better demonstrate the importance of seasons to
the wetland classification, we found the pairs of classifications that only
differ by whether a given season was included in or excluded from a
classification experiment. We calculated the accuracy difference per
each pair as an indicator of importance of seasons.

3.6. Examination of impacts to classifications by missing observations in
Sentinel-1B time series

Every pixel in the study area has observations from the same 12-day
repeat observation cycles of the Sentinel-1B satellite. However, if we
subsequently attempt to apply the optimal classification model identi-
fied herein to a much larger area (e.g. at the ecozone level or nation-
ally), multiple Sentinel-1 swaths will be required and not all pixels will
have available observations from the same repeat cycles. In other
words, temporal frequency of available observations may be irregular
in different pixels with some areas covered by more observations and
others by fewer. Although it matters less for the temporal forms of using
monthly means, seasonal means and annualized statistics to have ob-
servations from the same repeat cycles, missing observations in
Sentinel-1 times series alter values of temporal metrics in these

temporal forms and hence may still impact the classification perfor-
mances. Such missing observations in a within-year time series are
likely to be common when classifying large areas that have varying
observation availability across space. Therefore, to examine the impact
of missing observations in Sentinel-1 time series on classification out-
comes, we created a synthetic dataset by randomly removing observa-
tions of a few repeat cycles per pixel in both training and testing data.
The random selection of observations to be removed followed a
Bernoulli distribution with the probability of being selected as 0.24.
This random simulation of missing observations means the number of
missing observations per pixel was random and not necessarily the
same in different pixels across space. Rather, the expectation of num-
bers of missing observations over all pixels was set as 0.24 fraction of 23
observations (i.e., ∼6 observations). This missing probability of 0.24
was determined as the ratio between 23—the current actual number of
available observations from the Copernicus Open Access Hub—and
30.4, the expected number of total observations given the 12-day repeat
cycle of one Sentinel-1 satellite (Torres et al., 2012). Then we repeated
the classification experiments using the training and testing data with
simulated missing observations. When predictor values of some pixels
in an experiment were unavailable due to missing observations in the

Fig. 3. Distribution of values of six Sentinel-1 features per non wetland, non-treed wetland and treed wetland pixels.
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synthetic dataset, we filled predictor values of these pixels before in-
cluding them in RF classifiers. As the findings from this prototype study
were intended to inform wetland mapping over large areas such as the
entire Canada, some simple and fast algorithms of data filling were
preferred over sophisticated but slower ones. Therefore, for the tem-
poral forms of using individual observations, monthly means, and
seasonal means, we filled missing values in a set of predictors per pixel
by using a simple linear interpolation along time axis. For the temporal
form of using annualized statistics, we filled missing values in the sets
of predictors by simply using the mean of each statistical predictor. We
ran the simulation of missing observations for 50 times to create 50
synthetic datasets from which we obtained 50 classifications and then
reported the mean accuracy of these classifications. To quantify the
impact of missing observations in the Sentinel-1 time series for this
study, we checked the differences of classification accuracies for the
selected top-performing sets of predictors between using the original
dataset and using the synthetic dataset with simulated missing ob-
servations.

4. Results

In the following, we first present the distributions of Sentinel-1
feature values on each acquisition date throughout the year for the
classes of our interest, treed and non-treed wetlands and non-wetlands.
We then grouped and compared the accuracy measures of RF classifi-
cation results from all the experiments by feature combinations to il-
lustrate the importance of each Sentinel-1 feature to classification
outcomes. Then, we grouped and compared the accuracy measures of
RF classification results from all the experiments by their temporal
forms to illustrate which temporal form yielded the best classification
outcome. Lastly, we present and analyze the impact of simulated
missing observations from the Sentinel-1 time series on classification
outcomes before presenting a classification and its accuracy assessment
from using the best-performing Sentinel-1 feature combination and
temporal form.

4.1. Distribution of Sentinel-1 feature values throughout the year

Fig. 3 presents the value distributions of the six Sentinel-1 features
( VV , VH , S1, S2, m, µL) of treed wetland, non-treed wetland, and non-
wetland pixels per acquisition date throughout the year. The distribu-
tions were smoothed by kernel density estimation. These distributions
illustrated the potential capacity of each of these Sentinel-1 features to
discriminate our target classes. In the feature VH , we observed the
strongest separation between treed and non-treed wetlands compared
to the other features throughout the year in all the seasons. The VV also
separated treed and non-treed wetlands well but only during the time
from January to April and November to December, the wetter and
colder seasons of the year in this study area. Among the four Sentinel-1
features based on Stokes vectors, the S1 (the first element of Stokes
vector), that is approximately the total power of the VV and VH
channels (Raney, 2006), exhibited sufficient separation between the
wetland classes during the wetter seasons, similar to the VV . The m
(degree of polarization) also offered some separation between the
wetland classes throughout the year. The S2 (the second element of
Stokes vector, the power difference between the VV and VH channels)
and the µL (linear polarization ratio) seemed insufficient information to
separate treed- and non-treed wetlands. In general, the separation be-
tween wetlands and non-wetlands was weak and the distributions of all
the six Sentinel-1 features over non-wetlands and treed wetlands
overlapped each other throughout the year.

4.2. Comparison of classifications using different combinations of Sentinel-1
features

Fig. 4 displays accuracy measures of all the classification

experiments using different feature combinations sorted by the highest
achieved accuracy given a feature combination for each accuracy
measure (overall accuracy, and user’s and producer’s accuracies per
class). Each feature combination includes all of the examined temporal
forms for each feature, and a wide distribution in accuracies was ob-
served for each feature combination (Fig. 4). Across all feature com-
binations, the inclusion of VH and VV were consistently associated
with the higher accuracies indicating the utility of these features in
discriminating among our target classes. The accuracy measures do not
change markedly among the different feature combinations on the left
of x-axis in Fig. 4, but do decrease markedly once both VH and VV are
excluded from the feature combinations.

Fig. 5 displays the distribution of changes in accuracy due to the
inclusion of a particular Sentinel-1 feature in the classification along
with several statistics of the accuracy changes (the mean, median, and
percentiles). The distributions of changes in all the accuracy quantities
are almost always positive, with long tails of large positive values (in-
dicating that accuracy is higher when the feature is included), sug-
gesting that all the Sentinel-1 features carry some information for dis-
criminating our target classes. However, the tails of positive changes
have much higher density of values for the VH , VV , S1 and S2 than for
the m and µL, suggesting different levels of the usefulness among the
Sentinel-1 features. The means and medians of accuracy changes in-
dicate the feature importance is highest for the VH and VV , followed by
the S1 while including S2, m, or µL does not make significant im-
provements in classification accuracies.

4.3. Comparison of classifications using different forms of temporal
information

Fig. 6 displays the accuracy measures of all the classification ex-
periments using different temporal forms sorted by the highest achieved
accuracy under a given temporal form for each accuracy quantity
(overall accuracy, and user’s and producer’s accuracies per class). No-
tably the distributions of accuracies associated with each temporal form
(Fig. 6) are much narrower than those associated with each feature
combination (Fig. 4). Among the four seasons, there is no single season
that consistently provides higher accuracies, supporting the usefulness
of temporal information over an entire year for Sentinel-1 features.
Indeed, we observed higher accuracies for temporal forms that in-
corporated observations from all four seasons, with decreasing accuracy
for temporal forms that included fewer seasons, especially for overall
accuracy, producer’s accuracy of non-wetlands, and user’s accuracy of
treed wetlands (Fig. 6).

Temporal forms that used all available within-year observations
resulted in higher accuracies than the other temporal forms (i.e. one
random observation per season, monthly means, seasonal means or
annualized statistics). Although in some instances the highest accuracy
of using a single random observation per season is acceptable, the
distribution of accuracy values is much wider than when other temporal
forms are used in the classification, suggesting that classification per-
formance is unreliable when using only one observation per season.
Likewise, monthly or seasonal averages result in lower accuracies than
if all available observations are used.

Fig. 7 displays the distribution of accuracy changes due to including
a season in the classifications along with several statistics of the accu-
racy changes (the mean, median, and percentiles). The distributions of
changes in all the accuracy quantities are almost all on the positive side
of y-axis with long tails of large positive values (accuracy increase when
including a season), suggesting all the seasons within a year carry some
information for wetland classification. The wetter seasons of our study
area, spring (MAM) and winter (DJF) demonstrate slightly higher im-
portance than the drier seasons, summer (JJA) and autumn (SON). The
JJA has the lowest importance, however, probably due to observation
missing in the entire month of June (Fig. 3).
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4.4. Changes in classification accuracies due to missing observations in
Sentinel-1 time series

We investigated the impact to wetland classifications due to missing
observations in Sentinel-1 time series for all the Sentinel-1 feature
combinations using the four temporal forms that use all available ob-
servations of all the seasons, monthly means of all the seasons, seasonal
means of all the seasons and the annualized statistics of observations in
the entire year (Fig. 8). Surprisingly, not all the accuracy quantities
decrease when missing observations occur in the within-year time

series. The overall accuracies for the four temporal forms often resulted
in no change in accuracy or a slight increase. The producer’s accuracy
of non-wetlands and the user’s accuracy of treed and non-treed wet-
lands increases when using a synthetic dataset with simulated missing
observations in the classification. In contrast, missing observations
cause expected decreases in the user’s accuracy of non-wetlands and the
producer’s accuracy of non-treed wetlands, and particularly large de-
creases in the producer’s accuracy of treed wetlands. Across the four
examined temporal forms, the patterns of changes in accuracy due to
missing observations are similar for most accuracy quantities. For the

Fig. 4. Classification accuracies versus different combinations of the six Sentinel-1 features. The combinations in each panel are sorted according to the highest
accuracy among using different temporal forms per feature combination.
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producer’s accuracy of treed wetlands and the user’s accuracy of non-
wetlands, using all available observations or monthly means resulted in
smaller accuracy decreases than using seasonal means or annualized
statistics. There was not much difference in the accuracy changes due to
missing observations across the different combinations of Sentinel-1
features.

4.5. Classification results using best-performing feature combination and
temporal form

According to the aforementioned comparison of Sentinel-1 feature
combinations and temporal forms, we identified the best-performing
classification by directly using VH and VV from all available observa-
tions over the entire year of 2017 in this study. The overall accuracy of
this classification (Fig. 9) is approximately 0.860 ± 0.002 (Table 3)
based on the assessments using test pixels and the class proportions in

the classification map.

5. Discussion

Acknowledging the challenges to systematically produce large-area
classifications of wetlands and different wetland classes, a target that is
spatially complex and temporally variant, we examined the utility of
free and open Sentinel-1 IW SLC products with operational global
coverage and their within-year temporal information to discriminate
treed and non-treed wetlands and non-wetlands. To this end, we ana-
lyzed the relative importance of six Sentinel-1 features and their tem-
poral forms for wetland classifications as well as the impact of missing
observations on classification outcomes.

Among the six Sentinel-1 features we examined, we identified VH
and VV as the two most important Sentinel-1 features for differ-
entiating between treed and non-treed wetlands. This result from the

Fig. 5. Changes in classification accuracies between using and not using each Sentinel-1 feature.
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comprehensive set of 3843 classification experiments is in line with the
separability of our target classes that we observed from examining the
distributions of the Sentinel-1 feature values (Fig. 3). The benefits of
combining both co-polarized (such as the VV) and cross-polarized (such
as the VH) backscatter coefficients has been reported in classifying
wetlands before for C-band SAR data (Amani et al., 2019; Brisco et al.,
2013, 2011; Zhao et al., 2014). The ability of VH to separate treed and
non-treed wetlands is related to the sensitivity of VH to volume scat-
tering that depends largely on the vegetative canopy structures and

hence differs between treed and non-treed vegetation (Freeman and
Durden, 1998; Tsyganskaya et al., 2018). This difference in canopy
structures exists throughout the year between treed and non-treed
wetlands in our study area and thereby so does VH (Fig. 3). In contrast,
the difference in VV between treed and non-treed wetlands only exists
during wetter seasons of the year likely because the VV is sensitive to
the presence of surface water, wet snow, or ice surface underneath
vegetative canopies (Brisco et al., 2011; Tsyganskaya et al., 2018). The
relatively large increases in classification accuracies due to including

Fig. 6. Classification accuracies versus different temporal forms, i.e. different temporal metrics in different combinations of seasons. The temporal forms in each
panel are sorted according to the highest accuracy among using different feature combinations per temporal form.
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MAM and DJF (Fig. 7) also indicates the usefulness of Sentinel-1 data
acquired during the wetter and colder seasons of the year in this study
area, especially with regard to the producer’s and user’s accuracies of
treed and non-treed wetlands. Further studies are needed to investigate
mechanisms in detail behind the usefulness of Sentinel-1 features from
wet and cold seasons when the presence of snow and ice are most
probable, such as the differences in C-band SAR responses to different
interactions between snow/ice and different vegetation structures
(trees versus non-trees).

Herein we demonstrated the utility of the within-year temporal
information of the Sentinel-1 time series to differentiate treed and non-
treed wetlands. The top-performing classifications used all available
observations from the entire year, covering all the seasons. The direct
use of available observations in the RF classifier resulted in higher ac-
curacies than the generalized temporal forms considered (e.g. monthly
or seasonal means), suggesting that these generalized forms lack the

same level of information to accurately differentiate treed- and non-
treed wetlands. Even when missing observations occur, the direct use of
all available observations is still the top performing temporal form for
the RF classifier after filling predictor values due to missing observa-
tions via a simple linear interpolation along the time axis (Fig. 8). This
finding counters our intuition that the performance of classifications
using an increasingly denser time series may be more negatively im-
pacted by observation missing in various repeat observation cycles. The
occurrence of missing observations can vary across space resulting in
irregular observation dates and frequencies at the pixel-level, and can
also vary across time resulting in different observation frequencies in
different temporal periods of a year. Our random simulation of missing
observations currently addresses the impact of the former case when
different pixels across space have varying numbers of observations and
possibly different dates of these observations. However, the current
simulation does not address the latter case when missing observations

Fig. 7. Changes in classification accuracies between using and not using observations of each season.
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occur differently in different time of a year because it assumes an equal
missing probability of 0.24 in every repeat observation cycle. This as-
sumption of the probability of missing observations is a simplification
and other temporal patterns of missing data may result in different
classification outcomes. For example, for the study area under in-
vestigation here, there were no Sentinel-1B observations in ESA’s Co-
pernicus Open Access Hub for the entire month of June. Such data gaps
in the observation record could be due to satellite operation changes,
such as orbital correction, software update, sensor recalibration, high

priority tasking override, etcetera. If missing observations are tempo-
rally correlated or preferentially concentrated over some time of the
year in Sentinel-1 time series, the question of whether the direct use of
all available observations would continue to provide the best classifi-
cation outcomes requires further investigations over larger area.

Furthermore, the temporal form seems to matter more than the
feature combination for wetland classifications. The change in ac-
curacies associated with different temporal forms in Fig. 6 is more
pronounced than that associated with different feature combinations in

Fig. 8. Differences in classification accuracies between using synthetic data with simulated missing observations and using original data. The order of combinations
in each panel are the same as Fig. 4.
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Fig. 9. Wetland classification using VH and VV from all available observations over the entire year of 2017.

Table 3
Error matrix of classification using VH and VV from all available observations over the entire year of 2017. Values are in terms of area proportions.

Reference labels
Map labels Non-wetland Non-treed wetland Treed wetland User’s accuracy

Non-wetland 0.473 0.003 0.021 0.952 ± 0.002
Non-treed wetland 0.023 0.199 0.005 0.877 ± 0.004
Treed wetland 0.085 0.003 0.188 0.683 ± 0.006
Producer’s accuracy 0.814 ± 0.003 0.973 ± 0.002 0.879 ± 0.004
Overall accuracy 0.860 ± 0.002
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Fig. 4. The spread of accuracy measures due to different feature com-
binations given a temporal form (Fig. 6) is also much narrower than the
spread in accuracy measures that result from different temporal forms
for a given a feature combination (Fig. 4). Such phenomena suggest the
temporal information in the Sentinel-1 time series holds greater dis-
criminant power over treed- and non-treed wetlands and non-wetlands
than single observations of Sentinel-1 features. Therefore, while
choosing optimal Sentinel-1 features for classification is important,
choosing appropriate temporal forms of these features is at least
equally, if not more, important for the classification of treed- and non-
treed wetlands.

Although all the Sentinel-1 features carry some information for the
classifications of treed- and non-treed wetlands (Fig. 3), the four fea-
tures based on Stokes vector, S1, S2, m, and µL, resulted in only slight or
no increases of accuracies when they are included into classifications
(Fig. 5). These results support the use of VH and VV in large-scale
processing of Sentinel-1 IW SLC data for the differentiation of treed and
non-treed wetlands. As to the temporal forms of these two Sentinel-1
features, the results presented herein suggest the direct use of all
available observations in an entire year provide the best classification
outcomes. However, further investigations into classification perfor-
mance when facing missing observations that are temporally correlated
or preferentially concentrated in some period of the year are warranted.
Nonetheless, a temporal form that uses Sentinel-1 observations from all
the seasons of a year is recommended because it provides better per-
formance for the objective stated herein of differentiating treed- and
non-treed wetlands.

Our chosen best-performing classification (Fig. 9, Table 3) directly
used VH and VV from all available observations over the entire year. In
this classification, although the non-wetland class has the highest user’s
accuracy, it has the lowest producer’s accuracy and the majority of
omitted non-wetland pixels are mistaken as treed wetlands. Meanwhile,
the treed wetland class has the lowest user’s accuracy and its com-
mission errors mainly result from the confusion between treed wetlands
and non-wetlands. Non-treed wetlands are best identified among the
three classes. The above findings about the accuracies corroborate the
separability of wetland classes we observed from the value distributions
of VV and VH over the three classes (Fig. 3), that is, treed wetlands and
non-wetlands in our study area share similar values of VV and VH
while non-treed wetlands have distinctive distributions of the feature
values. In our study area, large parts of non-wetland areas are upland
forests. The difference between upland forests and treed wetlands
mainly lies in dry versus wet surfaces underneath vegetation cover (i.e.
tree canopies and understory vegetation). Penetration of the C-band
radar signal into vegetation cover is likely insufficient to aid in differ-
entiating upland forests and treed wetlands in our study area. More-
over, upland forests and treed wetlands in this area may have similar
within-year trajectories of canopy structure changes that were difficult
for the Sentinel-1 data to differentiate. As a result, canopies of upland
forests and treed wetlands induced similar time series of backscatter
coefficients that did not notably improve the differentiation between
the two in this area.

This study is intended to inform the characterization of wetlands,
particularly the treed status of wetlands, over large areas such as the
entire forest ecosystems of Canada. The current results demonstrated
that time series of free and open Sentinel-1 IW products of operational
global coverage are informative for the discrimination between treed
and non-treed wetlands but may be limited for the discrimination be-
tween treed wetlands and non-wetlands, particularly upland forests.
The separation between treed wetlands and non-wetlands over large
areas may be improved by using additional remote sensing datasets of
different types than C-band SAR, such as SAR data at longer wave-
lengths (e.g., L-band SAR data from Advanced Land Observing Satellite-
2 (ALOS-2) (Kankaku et al., 2013) or from NASA-ISRO SAR mission
(Rosen et al., 2015), and P-band SAR data from the BIOMASS mission
(Quegan et al., 2019)) that can penetrate tree canopies with higher

chances to reach underneath surfaces. Additionally, our current in-
vestigation does not address the effects of incidence angles on Sentinel-
1 features as we only used the two nearest sub-swaths and the ex-
amination of the classification results showed no sign of artifacts caused
by incidence angle. However, at national, continental or global scales,
all the three sub-swaths of the Sentinel-1 acquisitions would have to be
used altogether. The variation of incidence angles and its impact on
wetland classifications need to be addressed explicitly to avoid any
artifact. One solution could be to carry out classifications sub-swath by
sub-swath to reduce the impacts of incidence angles. Another one could
be to include local incidence angles as a predictor variable into classi-
fiers and allow classifiers to treat pixels of different incidence angles
differently, as demonstrated recently by Huang et al. (2018). The in-
cidence direction of transmitted C-band waves to the ground also de-
pends on whether observations are acquired during ascending or des-
cending overpasses of the satellites. Our study area has only been
covered by observations from ascending overpasses since 2016. When
expanding the classification to larger areas where both ascending and
descending observations are available, we anticipate value in in-
vestigating possible influences of differing incidence directions. Fur-
thermore, as more years of Sentinel-1 data accumulate, it will become
possible to investigate whether RF classifiers trained by observations
from one year are transferrable to another year for wetland classifica-
tion.

Furthermore, to systematically and routinely fulfill the potential of
discriminating treed and non-treed wetlands over large areas, we need
to expedite the critical preprocessing steps that are required to properly
stack time series images for an appropriate utilization of temporal in-
formation in the Sentinel-1 data. Over the relatively small study area of
this pilot study, the georegistration among Sentinel-1 images and also
between the Sentinel-1 images and Landsat data was found of high fi-
delity through visual checking of suitable targets on the ground and a
lack of artifacts emerging in the resultant classifications. Further, si-
milarly accurate geospatial alignment between images from Sentinel-1
and other sensors onboard different satellites, such as Landsat, Sentinel-
2, RADARSAT, ALOS-2, etc., can facilitate the synergetic use of multi-
source Earth observation data including both passive optical and active
radar, to further improve the characterization and monitoring of wet-
lands. Moreover, similar to cross-calibration efforts to ensure radio-
metric consistency of reflected signals in long-term optical observations
to reduce artifacts in time series data (Chander et al., 2013; Markham
and Helder, 2012; Roy et al., 2016), we need to maintain the radio-
metric consistency of backscatter signals through time to ensure the
fidelity of temporal information for long-term studies and applications
using Sentinel-1 data. All the aforementioned preprocessing efforts re-
quired for proper time series analysis have been recently encapsulated
in the production of Analysis Ready Data for long term optical data,
particularly data acquired by Landsat sensors (Dwyer et al., 2018;
Wulder et al., 2019). Facilitating large-scale applications of Sentinel-1
time series data calls for similar efforts to produce ARD for the Sentinel-
1 data archive as demonstrated recently by Truckenbrodt et al. (2019).

6. Conclusions

While SAR data deliver useful information on vegetation structure,
soil moisture, and surface flooding, all of which are necessary for the
study of wetlands, limited access to SAR datasets and complex pre-
processing requirements have hampered the use of SAR observations to
characterize wetlands over large areas and/or longtime periods. Free
and open access to the Sentinel-1 SAR datasets, which have operational
global coverage, provides improved temporal frequency of SAR data
over greater spatial extents, thereby opening numerous opportunities to
improve our understanding of wetlands. In this study, we found the
greatest utility in the backscatter coefficients of VV and VH polarization
( VV and VH) amongst the six examined Sentinel-1 features for the
classification of treed and non-treed wetlands and non-wetlands. The
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temporal information in the Sentinel-1 features is valuable to our
wetland classification. Choosing an appropriate temporal form of
Sentinel-1 features is equally, if not more important than choosing an
appropriate combination of features. Using observations from all the
seasons of the year often yielded higher accuracy than using fewer
seasons. Moreover, directly using all within-year observations often
yielded higher accuracy as a result of providing the classifier with ri-
cher and fuller temporal information on wetlands, compared to the use
of more generalized temporal forms such as monthly/seasonal means or
annualized statistics. By using VV and VH from all available observa-
tions in the year of 2017, we achieved an overall accuracy of
0.860 ± 0.002, with non-treed wetlands mapped with the highest ac-
curacy and the majority of class confusion between treed wetlands and
non-wetlands. Based on our simulation of missing observations that are
equally probable in each repeat observation cycle, missing observations
did not reduce the overall accuracy of the classifications that directly
used all within-year observations. Insights gained from the results
presented herein are useful for informing large-area utilization of
Sentinel-1 time series for improved discrimination of treed and non-
treed wetland classes.
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