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A B S T R A C T

Airborne laser scanning (ALS) is a reliable source of accurate information for forest stand inventory attributes
including height, cover, basal area, and volume. The commonly applied area-based approach (ABA) allows the
derivation of wall-to-wall geospatial coverages representing each of the modeled attributes at a grid-cell level,
with spatial resolutions typically between 20 and 30m. The ABA predictive models are developed using stra-
tified inventory data from field plots, the requirement for which can increase the overall cost of the ALS-based
inventory. Parsimonious use of ground plots is a key means to control variable costs in the operational im-
plementation of the ABA. In this paper, we demonstrate how the prediction accuracy of Lorey's height (HL, m),
quadratic mean diameter (QMD, cm), and gross volume (V, m3) vary when existing ABA models are transferred
to different areas or are applied to point cloud data with different characteristics than those on which the
original model was developed. Specifically, we consider three scenarios of model transferability: (i) same point
cloud characteristics, different areas; (ii) different point cloud characteristics, same areas; and (iii) different
point cloud characteristics, different areas. We generated area-based models using three modeling approaches:
linear regression (OLS), random forests (RF), and k-nearest neighbour (kNN) imputation. Results indicated that
the prediction accuracy of area-based models varied by attribute and by modeling approach. We found that
when the models were transferred their prediction accuracy decreased, with an average increase in relative bias
up to 22.04%, and increase in relative RMSE up to 29.31%. Prediction accuracies for HL were higher than those
of QMD or V when models were transferred, and had the lowest average increase in relative bias and relative
RMSE of< 5% in the majority of cases. Likewise OLS models for HL had greater prediction accuracies when
models were transferred compared to RF and kNN models, especially when the point cloud characteristics were
similar. Conversely, we found that for QMD and V, RF models were found to be the most transferable in cases
when models were applied to different areas with similar and different point cloud characteristics. While there is
potential for cost savings by transferring models and reducing data acquisition costs, our results show the degree
of transferability depends more on the attribute being modelled or the modeling approach applied, and less on
the characteristics of the point cloud data.

1. Introduction

Globally the forest sector aims to satisfy an increasingly complex set
of rules, standards, business practices, and public expectations in-
cluding economic, environmental, and social policy goals. As a result,
sustainable forest management activities need to generate the max-
imum possible value from each tree harvested (Woods et al., 2011). In
order to maximize value, forest inventory information is required that
spatially quantifies timber and other forest-related ecosystem services
in a timely manner and with a high level of spatial detail (Kangas et al.,
2018). Moreover, these detailed inventory data must then be integrated

into new and existing models to support improved growth and yield
modeling and forest planning (Hyyppä et al., 2008; Tompalski et al.,
2016).

Forest inventories are undertaken at an array of spatial scales and
are designed to support information needs that range from strategic to
tactical to operational (Leckie and Gillis, 1995). Strategic inventories
are often designed to cover large areas (i.e. nations, provinces), and are
intended for long-term monitoring and planning for a variety of forest
ecosystem goods and services (White et al., 2016). In contrast, opera-
tional forest inventories are designed to support short-term, localized
decisions related to accessing and harvesting timber (Wulder et al.,
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2008). Conventionally, strategic and tactical inventories are developed
through the interpretation of aerial photography, which facilitates the
delineation of forest stands and the assignment of forest attributes de-
rived for these stands, including tree species composition, height,
stocking, site quality, health status, and stand age (Woods et al., 2011).
Supported by limited ground sampling and empirical yield table esti-
mates, stand site productivity and growth is then inferred.

Airborne laser scanning (ALS) data can be used to estimate forest
stand attributes at scales that are relevant for strategic and operational
forest information needs (Tompalski et al., 2016). Due to reliability and
ease of implementation, the area based approach (ABA) has been
widely applied to process ALS point clouds into meaningful and re-
levant forest attribute information. Reliable estimates of height, basal
area, stem volume, and aboveground biomass have all been demon-
strated over a wide range of forest environments (Næsset et al., 2004;
Hyyppä et al., 2008; Woods et al., 2011; Brosofske et al., 2014; Wulder
et al., 2013; Bouvier et al., 2015) and are now considered operational
(Wulder et al., 2013; Næsset, 2014).

Recently digital aerial photogrammetry (DAP) has emerged as an
alternative data source to ALS for forest stand characteristics and has
been successfully used to predict stand attributes with ABA (Bohlin
et al., 2012; Puliti et al., 2016; White et al., 2015). DAP point clouds
primarily represent the top portion of the forest canopy and therefore
require an ALS-based ground surface to normalize the point elevations.
The lower acquisition costs associated with DAP data have made these
data a potential source of information for inventory updates (Goodbody
et al., 2019).

Underpinning the ABA is the statistical relationship between pre-
dictor variables, derived from summaries of the vertical distribution of
laser returns in the ALS point cloud, and co-located ground plot mea-
surements of forest inventory attributes (Næsset, 2002). Area-based
models can be developed using parametric (Næsset et al., 2004; Woods
et al., 2011; Wulder et al., 2012) or non-parametric (Hudak et al., 2008;
Penner et al., 2013) approaches. Ground plot data play an essential role
in the ABA regardless of the approach (Næsset, 2002), serving to both
calibrate and validate area-based models. Detailed measurements from
accurately georeferenced ground plot data are compiled to provide the
forest inventory response variables for modeling. Critically, these
ground plot data must represent the full range of forest structural
variability present in the area of interest. While ALS-derived statistical
models are usually similar across forest types and locations, typically
each model is calibrated and validated against local field data (Strunk
et al., 2012; Sumnall et al., 2016). As with conventional forest in-
ventories, ground plot costs represent a significant proportion of the
total costs associated with an area-based approach (Eid et al., 2004),
particularly in areas with constraints to forest access or over complex
terrain.

To date, there have been few studies that have specifically in-
vestigated the spatial transferability of ABA models, with the aim of
developing a model in one forest area and applying it in another forest
area. Several studies have however explored the utility of universal
models. For example, in an effort to increase the efficiency of estimating
carbon density and reduce reliance on local ground-based calibration
data, Asner et al. (2012) applied a single universal ALS model for
carbon density across four tropical regions (R2= 0.80,
RMSE=27.6Mg C ha−1). Magnussen et al. (2012) proposed a generic
area-based model for attributes related to tree size (e.g. biomass, vo-
lume, basal area, quadratic mean diameter, Lorey's height), and their
proposed model included only two ALS predictors, the mean grid cell
height, and the variance of heights within the grid cell. Magnussen et al.
(2012) posited that the transferability of models is increased by ex-
cluding ALS density metrics as predictors, which are more sensitive to
variations in ALS acquisition parameters and to forest structural con-
ditions and species composition.

There have likewise been a number of studies that have investigated
pooling the available ALS and inventory data to develop predictive

models of forest attributes. Næsset and Gobakken (2008) developed
above- and below-ground biomass models based on 1395 plots located
in ten different areas in Norway. They reported that the differences
between the areas were up to 32% for above-ground biomass, and up to
38% for below-ground biomass. In a study located in Sweden, Nilsson
et al. (2016) combined 11,500 NFI sample plots and ALS data from 13
different acquisitions to predict stem volume and basal area. The re-
lative RMSE of the linear regression models ranged between
17.2–22.0% and 13.9–18.2% for the two model stand attributes, re-
spectively. Nilsson et al. (2016) concluded that the prediction accuracy
was at least as good as the accuracy of the data typically used in forest
management planning. In a similar study in Finland, Kotivuori et al.
(2016) combined nine inventory projects to develop nationwide ALS-
based regression models for dominant height, volume and biomass,
demonstrating that both forest structure and ALS device had a con-
siderable effect on the predictions, and that the local calibration helped
to increase the accuracy of volume and biomass models. Sumnall et al.
(2016) examined the transferability of a leaf area index model across
two different ALS instruments, concluding that models incorporating
absolute counts of ALS returns or intensity values were not transferable
between different instruments. Deo et al. (2017) compared the accuracy
of generic or pooled models versus site-specific models for estimating
biomass using ALS and an ABA at four sites in Minnesota, Maine,
Pennsylvania-New Jersey, and South Carolina. In their study, the au-
thors tested both linear regression and random forests, concluding that
the pooled model had accuracies that were comparable to the site-
specific models, and that estimates made using linear regression were
more accurate.

Fekety et al. (2015) demonstrated the temporal transferability of
ALS-based imputation of forest inventory attributes by combining
ground plot observations from 2003 and 2009. The authors reported R2

values for the pooled models that were 0.87, 0.90, 0.89, and 0.87 for
aboveground carbon, basal area, stand density, and total stem volume,
respectively. Fekety et al. (2015) concluded that pooling of the ground
reference data not only increased the number of reference observations,
but also the accuracy of the estimations. Building upon this work,
Fekety et al. (2018) analyzed the spatial transferability of basal area
and stem density models by combining ALS and field measurements
from ecologically similar forest stands. The authors used six separate
forest units and developed random forest regression models using in-
ventory and ALS-metrics from 5 units. The withheld forest unit was then
used to assess model performance. The results showed that the trans-
ferred basal area models were more accurate than transferred stem
density models, with relative RMSE between 32.3–50.1%, and
40.7–67.3%, respectively. Fekety et al. (2018) conclude that for new
ALS acquisitions over forested areas without inventory plots, foresters
may use predictive models developed in forest stands with similar
ecological conditions. Worth mentioning is also the recent study by
Karjalainen et al. (2018) who focused on transferability of tree-level
models. Using kNN imputation authors predicted tree diameter at
breast height, height, crown based height, stem volume, and sawlog
volume. When transferred, the relative RMSE increased between 3.2%
for height and 54.4% for sawlog volume.

In practical contexts, the appeal of a universal model cannot be
understated. At stake are significant cost savings, which largely man-
ifest from reduced ground sampling (Magnussen et al., 2012), as well as
processing efficiencies for operational monitoring programs (Asner
et al., 2012). While a universal model may be more challenging to
define or adopt than a regionally-specific pooled or global model, the
re-use of existing models in different areas or when new ALS data (or
other sources of point cloud data) are acquired over the same area, is a
current operational reality in many jurisdictions. Streamlining the area-
based approach must therefore involve trade-offs between cost, effi-
ciency, and the development of robust models that are relevant to local
conditions. What is required therefore is an improved understanding of
the factors that influence model transferability.
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Specifically, we consider three scenarios of model transferability: (i)
models are applied using data with the same point cloud characteristics,
but in a different area than where the models were originally devel-
oped; (ii) models are applied to data with different point cloud char-
acteristics, but in a similar area in which the model was originally
developed; and (iii) models are applied using data with different point
cloud characteristics and in different areas, relative to the data and
location used to develop the original model. Three different modeling
approaches are used to develop the area-based models according to
these three aforementioned scenarios: linear regression, random forests,
and k-nearest neighbour imputation. Our objective is therefore to assess
the transferability of area-based models according to attribute, location,
point cloud characteristics, modeling approach, and combinations
thereof.

2. Methods

2.1. Study areas

Data used in our analyses were acquired over three different areas.
The bulk of the analysis was performed on northern Vancouver Island
(NVI), British Columbia, Canada, and represents an area of approxi-
mately 52,000 ha, spanning three geographically separate areas
(Fig. 1). Area-based models were developed primarily at this study site
and then transferred to the other two study areas, which included the
Malcolm Knapp Research Forest (MKRF) near Maple Ridge, British
Columbia, Canada, and the Sunshine Coast Community Forest (SCCF)
near Sechelt, British Columbia, Canada (Fig. 1). MKRF and SCCF were
approximately 5100 ha and 20,900 ha in size, respectively. All three
areas represent typical topography and stand conditions for a highly
productive, managed coastal temperate rainforest, with western hem-
lock (Tsuga heterophylla (Raf.) Sarg.), and western red cedar (Thuja
plicata Donn ex D. Don) as the most common tree species.

All three study areas are located within the Coastal Western
Hemlock biogeoclimatic zone (CWH), which can be characterized by
high annual precipitation (3000–5000mm), mild winters (average
temperature 0 °C to 2 °C), and cool summers (average temperature 18 °C

to 20 °C) (Meidinger and Pojar, 1991).
The majority of the NVI study area is located within the CWH Very

Wet Maritime subzone, Submontane Variant (CWH vm1), which has a
wet, humid climate, and elevation range from sea level to approxi-
mately 600m. Forests in this subzone are dominated by Western
hemlock, Amabilis fir, and Western red cedar. A portion of NVI is also
located within the CWH Very Wet Maritime subzone, Montane Variant
(CWH vm2), which occurs on higher elevations than CWH vm1, and
may contain stands with Yellow cedar (Chamaecyparis nootkatensis), and
Mountain hemlock (Tsuga mertensiana) that do not occur in the adjacent
CWH vm1. The climate in CWH vm2 is cooler with short summers and
cool winters featuring substantial snowfall. The average age of stands,
compiled according to standard provincial procedures (Ministry of
Forest Lands and Natural Resource Operations, 2014), was 144 years
(standard deviation= 127 years). Overall, the elevations ranged from 0
to 1398m a.s.l. in the NVI, with an average slope of 43.7%.

The MKRF study area is located within three different subzones of
CWH. Dry Maritime Coastal Western Hemlock Subzone occurs at low
elevations and can be characterized with warm, relatively dry summers
and moist, mild winters. Forests in this subzone are dominated by
Western hemlock, Western red cedar, and Douglas-fir (Pseudotsuga
menziesii (Mirb.) Franco). The higher elevations of MKRF are located
with CWH vm1 and CHM vm2 subzones. On average stands in the
MKRF were younger, with the average age of 65 years (standard de-
viation=69 years). Elevations in MKRF ranged from 98 to
1025m a.s.l., with an average slope of 40.5%.

SCCF is located within the CWH dm subzone, with higher elevations
located with the CWH vm1 subzone (both subzones described above).
The average age of stands in this study area was 119 years (standard
deviation= 125 years). Elevations in SCCF ranged from sea level to
1493m a.s.l., with an average slope of 35.5%.

2.2. Ground plot data

In each of the study areas, the same methods were used to acquire
ground plot measurements. Plots were circular with a radius of 14m
(615m2) in NVI and 11.2m (400m2) in MKRF and SCCF. Plots were

Fig. 1. Outline of the study areas used in the presented research. NVI – North Vancouver Island and sub-areas A1, A2, and A3; MKRF – Malcolm Knapp Research
Forest; SCCF – Sunshine Coast Community Forest. The distance between NVI and SCCF was approximately 270 km, and between NVI and MKRF approximately
350 km.
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distributed following stratified random sampling with centers measured
with differentially corrected GNSS measurements with sub-meter pla-
nimetric precision. Within each plot, all live standing trees with dia-
meter at breast height (DBH) ≥12.0 cm were measured. Individual tree
measurements included DBH (cm), tree height (m), and species.
Individual tree-based estimates of stem height and diameter were used
to compute estimates of Lorey's mean height (HL), quadratic mean
diameter (QMD), and gross volume per hectare (V). The total number of
plots was 144, 63, and 32, for NVI, MKRF, and SCCF, respectively. The
A1, A2, and A3 sub-areas of NVI consisted of 84, 38, and 22 plots,
respectively. A summary of ground plot characteristics for each of the
sub-areas of NVI, as well as for MKRF and SCCF is presented in Figs. 2
and 3.

2.3. Point-cloud data

2.3.1. ALS point clouds
ALS point clouds for NVI were acquired in September of 2012 using

an Optech ALTM3100EA scanning system operated at an altitude of
approximately 700m above ground level (Table 1). The average pulse
density was 11.6 pulses/m2 (Tompalski et al., 2015). ALS data for
MKRF and SCCF were acquired using a Riegl LMS-Q1560 system. These
datasets had a higher pulse density of 17.2 and 15.4 pulses/m2, re-
spectively and were acquired with a higher scan angle than for the NVI
(58° vs 25°). The minimum flightline overlap for all three acquisitions
was 60%.

2.3.2. NVI DAP
Digital imagery was acquired for the NVI study area using a Vexcel

UltraCamX (Vexcel Imaging, 2018) camera in September 2012. The
imagery was 4-band (RGB and NIR) with a 0.30m ground sampling

Fig. 2. Comparison of forest stand characteristics for different sub areas of NVI (A1, A2, and A3), and the additional areas used in the study (MKRF and SCCF).

Fig. 3. Comparison of the species composition in for different sub areas of NVI and the additional area used in the study (MKRF and SCCF). Species codes: Ba –
amabilis fir, Cw – western red cedar, Dr – red alder, Fd – Douglas-fir, Hm – mountain hemlock, Hw – western hemlock, Ss – sitka spruce, Yc – yellow cedar.
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distance (GSD) and was acquired along 6 flight lines, with a minimum
60% along-track and 20% across-track overlap. We used the semi-
global matching (SGM) algorithm (Hirschmüller, 2008), as im-
plemented in the Remote Sensing Software Package Graz (Joanneum
Research Digital, 2018; RSG version 7.46.11) to generate dense image
point clouds. Only along-track stereo pairs (n=49) were used for
image matching. The resulting point density of the image-based point
cloud was 12.27 points/m2 (White et al., 2015).

2.3.3. Point cloud data processing
ALS point clouds were processed following standard processing

routines, which included tiling, ground classification, and height nor-
malization. Processing was performed using a combination of point
cloud processing tools: LAStools (Isenburg, 2017, version 180322), and
the lidR library for R (R Core Team, 2013; Roussel and Auty, 2018, lidR
v1.5.1). A tile size of 1000×1000m with a 20m buffer was used.
Ground classification was based on adaptive TIN models implemented
in LAStools (Axelsson, 2000). Points classified as ground were then used
to normalize the ALS point cloud elevations relative to the ground
surface. DAP point clouds were processed using similar routines. Data
were tiled using a similar tile size and tile overlap. However, because
the DAP data primarily characterize the top of the canopy, height
normalization for each tile was performed by incorporating the ALS-
based points classified as ground (White et al., 2015). Point clouds were
then clipped to match the plots and metrics were then calculated for
both the ALS and DAP point clouds. Metrics included measures of
central tendency (mean, median, mode), measures of dispersion (var-
iance, standard deviation, interquartile range), percentiles, proportions,
and densities of point heights above ground. Metrics were calculated
using all returns above 2m.

2.4. Experimental design

To examine the transferability of ALS-derived models, we designed
an experimental framework that included different modeling ap-
proaches and combinations of plot data to train and test the models.
The modeling approaches included ordinary least squares regression
(OLS), random forest (RF, implemented in randomForest package for R,
version 4.6–14), and k-nearest neighbour imputation (kNN, im-
plemented in yaimpute package for R, version 1.0–30). We used k= 5
and a random forest-based distance metric during kNN modeling and
imputed the three response variables as part of the same model
(Crookston and Finley, 2008). The experimental design included three
scenarios. In the first scenario, we tested how prediction accuracies for
HL, QMD, and V varied when area-based models were developed and
applied on the different sub-areas of NVI (Fig. 1). Under this scenario,
the point cloud characteristics were the same (the data are from the
same ALS acquisition), but the areas were different. In this scenario we
used different combinations of plot data available for subsets of NVI
study area (i.e. A1, A2, and A3), to first develop a model and then apply
it to each of the other three sub-areas. For example, in this scenario an

OLS model predicting HL was developed using 84 reference plots in A1,
and then was applied to areas A1, A2, and A3. This process was re-
peated for all sub-areas, resulting in nine training-testing combinations.
By replicating the procedure for all modeling approaches and all stand
attributes, there were in total 81 models developed and tested for this
first scenario.

In the second scenario, we tested how differences in point cloud
density influenced the prediction accuracies of HL, QMD, and V. In this
scenario we altered the ALS point cloud data available for NVI and
generated data with pulse densities ranging from 1 to 10 pulses m−2 (in
1 pulse m−2 increments). Point cloud thinning was performed by ran-
domly selecting a proportion of lidar pulses (all echoes corresponding
to a given pulse). For this scenario, we used only the A1 subset of NVI
study area. We developed predictive models using each point cloud
density variant, and applied it to every other density variant. This re-
sulted in a total of 100 (10×10) combinations for each of our three
modeling approaches for HL, QMD, and V (900 training-testing com-
binations in total).

In the third scenario we investigated how the prediction accuracy
for HL, QMD, and V changes if ALS-derived models are applied to dif-
ferent areas with different point cloud data properties. In this scenario
we included different types of point cloud data acquired over the same
area (DAP data for NVI), as well as similar types of point cloud data
acquired over different areas (ALS data MKRF and SCCF). The models
were developed using all plot data available for NVI (for A1, A2, A3;
n=144 plots). The developed models for HL, QMD, and V were then
applied to the DAP data for NVI, and the ALS data for MKRF and SCCF.
This scenario resulted in a total of 27 model outcomes for evaluation
(three modeling approaches used to predict three stand attributes, over
three areas).

To facilitate the aforementioned transferability scenarios, we first
developed global models for HL, QMD, and V using all available NVI
ground plot data (n=144). The accuracy of these global models was
then used as a benchmark for assessing variation in prediction accuracy
for each of the aforementioned modeling scenarios. OLS models were
developed to be parsimonious, and for these models we carefully se-
lected independent variables that resulted in the highest adjusted R2

value, while keeping a single independent variable for the HL model,
and a maximum of four variables for QMD and V, following the ap-
proach of Bouvier et al. (2015). We tested different combinations of
variables as well as different variable transformations. We evaluated
correlations between potential predictor variables and kept only pre-
dictors that had a correlation coefficient< 0.8. A log-log transforma-
tion was required to achieve linearity for models predicting QMD and
V. To simplify the analysis, the same OLS global model forms were used
within each scenario. In scenario 1, model parameters for each of the
sub-areas were derived using subsets of plots located in A1, A2, or A3.
In scenario 2, model parameters were derived for each point cloud
density variant. In scenario 3 global models were used to derive pre-
dictions for the additional datasets (NVI DAP, MKRF, SCCF). Global
models were similarly developed using RF and kNN, although model
development was simplified for these non-parametric approaches, as
the independent variables were selected automatically by each of the
applied algorithms. As per the OLS models, we evaluated potential
predictors for the RF and kNN approaches by examining the correla-
tions between potential predictors and chose those predictors that had a
correlation coefficient lower than 0.8.

2.5. Assessing model performance

Prediction accuracy was assessed by calculating the R2 coefficient,
bias (absolute and relative), and RMSE (absolute and relative). We also
used a paired Wilcoxon signed rank test to evaluate the null hypothesis
that the median difference between the observed and predicted values
was zero at α=0.05. In cases where the same data were used to train
and test the models (i.e., global models), leave-one-out cross validation

Table 1
Airborne laser scanning (ALS) data acquisition parameters.

NVI MKRF SCCF

Acquisition date September 2012
(leaf off)

June 2016
(leaf on)

November 2015
(leaf off)

Sensor Optech
ALTM3100EA

Riegl LMS-
Q1560

Riegl LMS-
Q1560

Flying height 700m AGL 1200m AGL 1100m AGL
Flight speed 240 km/h 210 km/h 260 km/h
Pulse repetition rate 70 kHz 533 kHz 533 kHz
Scan angle 25° (± 12.5°) 58° (± 29°) 58° (± 29°)
Beam divergence 0.3 mrad 0.25 mrad 0.25 mrad
Average pulse density

[pulses/m2]
11.6 17.2 15.4
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was used for model assessment. In cases where models required data
transformation (i.e. OLS), model statistics were calculated using the
back-transformed variables with bias correction factors applied, as per
Sprugel (1983).

The R2 was calculated using the following formula:

= − = −
∑ −

∑ −
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y y
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where SSE is sum of square error, SST is total sum of squares, y is the
observed value, y is the predicted value, and y is the mean of observed
values. This formula was also used to calculate the R2 value for models
developed with RF and kNN.

Relative and absolute bias and RMSE were calculated as follows:
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where: N is the number of plots, yi is the observed value at plot i, ŷi is
the predicted value at plot i, and ȳ is the mean of the observed variable
over all plots.

The average difference in RMSE% and bias% between models ap-
plied locally and models transferred to different areas was calculated
for each attribute, modeling approach, and scenario. For scenario 1 the
change in accuracy (i.e. ΔRMSE%, Δbias%) was calculated as the mean
difference between RMSE% or absolute bias% for models trained and
tested on the same sub-area, and RMSE% or absolute bias% for models
tested on different sub-areas. For scenario 2 the change in accuracy was
calculated as the mean difference between RMSE% or absolute bias%
for models trained and tested using the same point cloud density, and
RMSE% or absolute bias% for models tested point clouds with different
point cloud density. Finally, for scenario 3 the change in accuracy was
calculated as the mean difference between RMSE% and absolute bias%
for models tested using different point cloud datasets, and RMSE% and
absolute bias% calculated for global models.

In addition, to provide more insights into the resulting accuracies of
the transferred models, we compared relationships between the mod-
eled variables and the metrics used as predictors. The successful ap-
plication of an already existing predictive model developed in a dif-
ferent area, depends not only on the similarity of forest conditions, or
the similarity of point cloud data. Rather, the success of model trans-
ferability is also influenced by the relationship of the dependent vari-
able with the predictors that influence the accuracy of the model
transfer. As a decrease in prediction accuracy of a transferred model
may originate from a number of factors (i.e. ALS acquisition para-
meters, variation in ground plot size, forest conditions, etcetera), we
performed a simple comparison of the relationship between five se-
lected percentiles (10th, 50th, 75th, 90th, and 99th percentile of nor-
malized point heights) and the first three principal components derived
from all available metrics.

3. Results

3.1. Global area-based models: generation of baseline data

The evaluation of the global predictive models using leave-one-out-
cross-validation is presented in Fig. 4, with model forms for the OLS
modeling approach showed in Table 2. A power regression approach

was used for modeling QMD and V. The proportion of explained var-
iance was highest for models predicting HL, and was similar across
modeling approaches; however, OLS based predictions of HL also had
the lowest RMSE values (both absolute and relative). Predictions of
QMD and V had R2 values ranging from 0.13 to 0.59, with the lowest
value reported for QMD modelled using kNN, and the highest achieved
for V modelled using OLS. Models derived using the non-parametric
approaches had a small bias%, which was largest for V modelled using
kNN (−2.38%). The RMSE% was similar for each of the modelled stand
attributes across modeling approaches. The largest RMSE% was for V
modelled with RF and kNN, which were 37.88 and 48.95%, respec-
tively. The results of the paired Wilcoxon signed-rank test indicated
that we could not reject the null hypothesis that the median difference
between the observed and predicted values was 0 for any of the mod-
elled attributes and modeling approaches.

Predictors used in OLS models included 90th percentile of ALS
heights (HL), 99th percentile, percent returns above 2m, and kurtosis
(QMD), and 75th percentile and percent returns above 2m (V).
Predictors with highest variable importance that were most frequently
used in non-parametric approaches included standard deviation of
point heights, 20th percentile of point heights, and proportion of re-
turns in three height strata: 5–10m, 20–30m, and above 30m.

3.2. Scenario 1: same point cloud characteristics; different areas

The R2, RMSE%, bias%, and p-values, derived for different combi-
nations of data used during model development and data used during
model application in scenario 1 are shown in Fig. 5. Similar to the
global models, for the three modeled stand attributes, the highest R2,
lowest RMSE% and lowest bias%, were achieved for HL, for all of the
modeling approaches. For QMD and V, results were consistent with the
results reported for the global models, with several exceptions. Typi-
cally, when the developed models were applied to different sub-areas of
NVI, lower R2 and higher RMSE% values were observed, with increased
bias. For HL, the smallest differences between combinations using the
same and different sub-area for model training and testing (e.g. A1
model applied to area A2, A3 model applied to area A1) were observed
when an OLS approach was used. For example, the largest difference
between RMSE% values calculated for different combinations of HL
OLS model was only 2.0% (10.14–8.14). For QMD and V, the smallest
differences for training-testing combinations were observed for OLS and
RF approaches, with the differences in RMSE% and R2 sometimes ex-
ceeding 30% and 0.4, respectively. Application of the kNN models over
different areas resulted in greater differences in R2, RMSE%, and bias%.
In general for QMD and V, both RF and kNN models trained and tested
at the same sub-area often yielded more accurate results than OLS,
however the RF models were markedly more accurate than kNN when
transferred to different sub-areas. For example, when A1 model for
QMD was applied to sub-area A2, the RMSE% value increased from
26.45 to 31.06% for OLS, from 27.63 to 29.97% for RF, and from 30.92
to 60.17 for kNN.

For scenario 1, the results of the paired Wilcoxon signed rank test
showed that when models were trained and tested in the same area,
there was no significant difference between median observed and pre-
dicted values. However, in many cases when models were transferred
and applied to a different area from where they were trained, there
were significant differences between observed and predicted variables
for the transferred models. Note that while there was no significant
difference for estimates of HL derived from an OLS approach, there
were significant differences for both RF and KNN.

While the same training-testing combinations (i.e. A1 to A1) re-
sulted in the lowest bias values, the combinations when a different sub-
area was used for model training and model testing (i.e. A1 to A2, or A1
to A3) resulted in a marked increase in bias for every modeling ap-
proach (Fig. 4). Contrary to the R2 and RMSE% values, which were
consistent when the OLS modeling approach was used, for bias there
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was no clear advantage of OLS over the RF or kNN approaches. For
example, the highest bias% values for V reported for OLS, RF, and kNN
were similar (26.87, 15.4, 29.78%, respectively), and derived from the
same training-testing combinations. In most cases, the large values of
bias corresponded to training-testing combinations for which the p-
values were lower than alpha (0.05).

3.3. Scenario 2: different point cloud characteristics; same area

The results for scenario 2, where the effect of different point cloud

densities was analyzed, showed consistent performance statistics when
the OLS modeling approach was used (Fig. 6) with a very minor change
in R2, RMSE%, and bias, when point clouds densities differed between
training and testing datasets. When the non-parametric approaches
were used, the differences in model outcomes were markedly greater,
especially for QMD and V, although for HL, the values of R2, RMSE%,
and bias were more similar. For example, the distinct values of per-
formance statistics on the diagonal of R2 values for V modeled with
kNN (Fig. 6) informs that the proportion of explained variance was
markedly lower when the developed model was applied to a dataset

Fig. 4. Assessment of the global predictive models for HL, QMD, and V, developed using OLS, RF, and kNN modeling approaches and leave-one-out cross validation.
Performance statistics derived using leave-one-out cross-validation.

Table 2
Global predictive models developed with OLS. Predictors included 90th percentile of ALS heights (HL), 99th percentile,
percent returns above 2m, and kurtosis (QMD), and 75th percentile and percent returns above 2m (V).

Dependent variable Predictive model

Lorey's height (HL; m) 2.34+0.92 ∗ P90
Quadratic mean diameter (QMD; cm) exp(5.53+ 0.97 ∗ P99− 1.29 ∗ perc_return_above_2+ 0.25 ∗ kurt)
Gross total volume (V; m3) exp(5.47+ 1.58 ∗ P75− 0.89 ∗ perc_return_above_2)
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with different point density. In addition, it can also be observed that the
difference in R2 was greatest when the difference in point densities was
largest, with the same effect for RMSE% but not for bias%. The results
of the paired Wilcoxon signed-rank test indicated that the null hy-
pothesis that the median difference between the compared values was 0
could not be rejected for any of the training-testing combinations.

3.4. Scenario 3: different point cloud characteristics; different areas

The results of the third scenario are shown in Fig. 7 and Table 3.
Results indicate that when the global models derived for NVI based on
ALS were applied using NVI DAP metrics as predictor variables, the
predictions of HL contained only a small bias with RMSE% between
14.39 and 22.45% for each of the modeling approaches. Predictions of
QMD and V were not as similar across the modeling approaches and

were more biased and had higher RMSE than HL models. The most
accurate predictions of QMD were derived using the RF model, with
RMSE% of 35.50%, lowest among the modeling approaches. Predic-
tions of V using OLS and RF were more accurate than predictions de-
rived with kNN and had similar RMSE% (43.05 and 40.25%, respec-
tively) and R2 values (0.43 and 0.49, respectively). In addition, the
application of the kNN approach can result in this phenomenon where
values are replicated from the nearest neighbour, visible as vertical
stripes on scatterplot. The only case for which we could reject the null
hypothesis that the median difference between the compared values
was 0 was the prediction of QMD using OLS.

When the models were applied to the MKRF and SCCF datasets,
prediction accuracies were similar for both of these areas. Results were
consistent for HL, with similar accuracies reported for all modeling
approaches and for both MKRF and SCCF datasets. The R2 values were

Fig. 5. Performance statistics calculated for models developed and applied on different sub-areas (A1, A2, and A3). P-values calculated with paired Wilcoxon test.
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higher than 0.8 for all but one case (HL modeled with kNN in SCCF;
R2=0.68). The relative RMSE ranged between 10.47 and 14.99%, with
lowest values of HL predicted for MKRF using RF. We observed a po-
sitive bias between 4.49% and 4.99% for HL predictions at MKRF, and a
negative bias between −1.56% and −2.41% for SCCF. In both cases,
the smallest bias was reported for predictions derived with kNN models.

Predictions of QMD and V were less consistent, with larger dis-
crepancies between the performance statistics. For example, the RMSE
% values reported for QMD predicted for MKRF were very high when
the OLS approach was used (109.65%), while the values for RF and
kNN were much lower (23.14% and 28.25%, respectively). For QMD
the highest prediction accuracy was achieved with RF models for both
MKRF and SCCF, with R2 values of 0.58 and 0.36 respectively.
Predictions of V were inaccurate for MKRF, with very low R2 values
(maximum of 0.18), extreme bias and RMSE. These predictions were
unique as the least accurate across all variables, modeling approaches
and datasets. For SCCF predictions of V were on par with what we

observed for HL and QMD, with highest accuracy achieved using RF.
The RF-based predictions resulted in R2 of 0.82, bias% of 2.34%, and
relative RMSE of 20.09%.

For the majority of our study areas, the relationship between the
five selected height percentiles and the stand attributes (HL, QMD, and
V) was similar (Fig. 8). Likewise, there was a similar relationship be-
tween the first three principal components of the ALS metrics and the
stand attributes (HL, QMD, and V; Fig. 9). For example, the relationship
of HL with the 90th percentile of normalized point heights (Elev.P90)
was very similar for every dataset used. Also the relationship between
the principal components derived from all point cloud metrics (espe-
cially PCA1) and HL was similar for all study area datasets, with a large
overlap of data points among the four study areas. On the other hand,
there was a clear difference in the relationship of height percentiles and
V in MKRF and the other three datasets. For example, based on the
linear trend summarizing the relationship between the 75th percentile
(Elev.P75) and V, the value of 40m (Elev.P75) corresponds to

Fig. 6. Model performance statistics derived for models derived and applied on datasets with different point cloud density. Statistics calculated for A1 subset area
only.
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approximately 1500m3/ha for the ALS and DAP datasets in NVI, and
the SCCF dataset. However, the same value of 40m (Elev.P75) corre-
sponds to much lower V in MKRF – approximately 1000m3/ha. This
dissimilarity in relationship of stand attributes and point cloud metrics
for MKRF is also somewhat reflected in the comparison of principal
components and stand attributes. The overlap between data points
originating from different datasets indicates discrepancies in the re-
lationship that stand attributes and metrics have in MKRF and SCCF.

3.5. Overall summary of average change in accuracy for transferred models

The average differences in bias% and RMSE% for all three scenarios
are summarized in Table 4. The summary confirms that when the
models were transferred, bias% and RMSE% increased for almost all
variables and modeling approaches; however, the decrease in accuracy
varied by attribute, modeling approach, and scenario. Across all sce-
narios, the smallest changes in bias% and RMSE% were observed for HL
modeled with OLS. For example, the average difference in bias% for HL

modeled with OLS under Scenario 1 was only 0.67%. While the dif-
ferences for non-parametric model estimates of HL were higher, they
exceeded 5% in only one case (scenario 1, HL modeled using RF). For
QMD and V, the differences were much higher and in some cases ex-
ceeded 20%. For example, under Scenario 3 the average increase in bias
% and RMSE% for V modeled with OLS was 22.04% and 23.54%, re-
spectively, while the average increase in bias% and RMSE% for QMD
modeled with OLS was 20.20% and 29.31%, respectively. For these two
cases the decrease in accuracy was highest across all scenarios and
modeling approaches. Contrary to HL modeled with OLS, the lowest
differences in bias% and RMSE% were observed for QMD and V models
developed with RF, which in many cases were markedly lower than
differences in bias% and RMSE% for OLS and kNN models. For ex-
ample, in scenario 1 the average increase in bias% for QMD modeled
with RF was 4.49%, while for QMD modeled with OLS and kNN the
average increase was 9.69% and 12.80%, respectively. Overall, the
smallest changes in accuracies were observed in Scenario 2, where the
average change in bias% was never larger than 0.5% and the difference

Fig. 7. Scatterplots of the three stand attributes (HL, QMD, and V) predicted using DAP data for NVI, ALS data for MKRF, and ALS data for SCCF, using transferred
models originally developed using ALS data for NVI.
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in RMSE% exceeded 5% in only two cases.

4. Discussion

In this research, we demonstrated the effects of transferring existing
predictive models of three selected forest stand attributes to areas with
similar or different point cloud data characteristics, and similar or
different forest stand structures. We used three different modeling

techniques that included parametric (OLS) and non-parametric ap-
proaches (RF, kNN) and used them to estimate HL, QMD, and V. We
partitioned the analysis into three scenarios that allowed for the ex-
amination of different questions related to model transferability. Our
results indicate that the accuracy of existing predictive models applied
to areas of new point cloud data acquisitions depends on the modeled
attribute, modeling approach, similarity of forest conditions, and si-
milarity in the relationship between predicted forest stand attribute and

Table 3
Prediction accuracy of the three stand attributes (HL, QMD, and V) predicted using DAP data for NVI, ALS data for MKRF, and ALS data for SCCF, using transferred
models originally developed using ALS data for NVI.

Stand attribute Modeling approach Area and data type R2 bias bias% RMSE RMSE% p-Value

HL OLS NVI (DAP) 0.79 0.55 1.74 4.69 14.90 0.1773
MKRF (ALS) 0.87 1.36 4.60 3.32 11.23 0.0003
SCCF (ALS) 0.84 −0.54 −2.24 2.59 10.65 0.3896

RF NVI (DAP) 0.80 −0.26 −0.81 4.53 14.39 0.6329
MKRF (ALS) 0.90 1.48 4.99 3.10 10.47 0.0000
SCCF (ALS) 0.80 −0.59 −2.41 2.91 11.95 0.3694

kNN NVI (DAP) 0.51 −0.63 −2.00 7.07 22.45 0.8434
MKRF (ALS) 0.85 1.33 4.49 3.57 12.07 0.0036
SCCF (ALS) 0.68 −0.38 −1.56 3.64 14.99 0.4319

QMD OLS NVI (DAP) 0.20 −5.70 −16.56 13.92 40.46 0.0000
MKRF (ALS) 0.05 9.19 27.30 36.92 109.65 0.0259
SCCF (ALS) 0.40 −5.18 −18.09 8.58 30.00 0.0001

RF NVI (DAP) 0.29 −2.37 −6.88 12.21 35.50 0.1548
MKRF (ALS) 0.58 1.53 4.54 7.79 23.14 0.0112
SCCF (ALS) 0.36 −2.07 −7.24 7.34 25.65 0.1386

kNN NVI (DAP) 0.15 −1.81 −5.26 15.43 44.87 0.3721
MKRF (ALS) 0.35 −0.13 −0.38 9.51 28.25 0.9209
SCCF (ALS) 0.23 −3.44 −12.04 10.21 35.70 0.0253

V OLS NVI (DAP) 0.43 −48.15 −5.08 408.00 43.05 0.2350
MKRF (ALS) 0.03 343.03 52.51 718.89 110.04 0.0000
SCCF (ALS) 0.77 −86.37 −14.02 163.51 26.54 0.0014

RF NVI (DAP) 0.49 −15.83 −1.67 381.68 40.27 0.9610
MKRF (ALS) 0.03 315.59 48.31 479.23 73.35 0.0000
SCCF (ALS) 0.82 14.40 2.34 123.76 20.09 0.8320

kNN NVI (DAP) 0.19 1.75 0.18 481.85 50.84 0.7055
MKRF (ALS) 0.18 268.23 41.06 510.54 78.15 0.0000
SCCF (ALS) 0.06 4.24 0.69 279.51 45.36 0.2386

Fig. 8. Relationships between the three stand attributes (HL, QMD, V) and five selected point cloud metrics derived from the four available point cloud datasets
(colors). Elev.PXX – XXth percentile of normalized point heights, where XX= {10, 50, 75, 90, 99}.
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point cloud metrics. From the three selected forest stand attributes
considered, HL was the most robust to transferability. When the forest
conditions and ALS data acquisition parameters were similar (scenario
1), the application of transferred models resulted in greater prediction
accuracies compared to scenario 3, when the forest conditions and data
acquisition were different, however the accuracy in this context de-
pended strongly on modeling approach. Results showed that the dif-
ferences in accuracies between predictions of HL derived for training
and testing areas under scenario 1 were lowest for OLS models. For
predictions of QMD and V, differences between training and testing
areas were comparable between OLS and RF, although often a much
larger relative bias was introduced when OLS models were transferred.
When compared to the accuracy of global models, RF models of QMD
and V were most stable, with lowest decrease of accuracy.

We found that there was only a small decrease in prediction accu-
racy when point clouds of different pulse densities were used, with OLS

models being the most consistent and least sensitive to changes in
predictors. This result shows that in the same forest environment, ex-
isting models can be used to predict forest attributes of interest using
new data acquisitions, even if they differ in point density. This is in
keeping with the results reported in the literature, which indicate that
area-based prediction accuracy does not increase with increasing pulse
density (Jakubowski et al., 2013). We acknowledge the fact that data
density is not the only attribute that changes with different ALS data
acquisition parameters, and that to fully understand the effects of dif-
ferences in these parameters on model transferability, separate ALS
acquisitions covering the same area, but with different parameters are
required for robust benchmarking and disentangling of interactive ef-
fects of these parameters, particularly for scan angle effects (Montaghi,
2013; Roussel et al., 2018). However, in many cases the acquisition
parameters (e.g. sensor, acquisition height, speed, scan angle, number
of returns per pulse) are very similar for new data collections, especially

Fig. 9. Relationships between the three stand attributes (HL, QMD, V) and the first three principal components generated from all available point cloud metrics
(PCA1, PCA2, PCA3). Comparison presented for all four available point cloud datasets (colors).

Table 4
Average differences in bias% and RMSE% for the transferred models. Positive values (increase in bias% or RMSE%) indicate a decrease in prediction accuracy.

Attribute Method Scenario 1 Scenario 2 Scenario 3

Δbias% ΔRMSE% Δbias% ΔRMSE% Δbias% ΔRMSE%

HL OLS 0.67 −0.14 0.12 0.00 2.85 3.29
RF 6.32 1.51 0.10 1.25 3.55 3.75
kNN 1.17 2.94 0.10 1.25 2.87 3.20

QMD OLS 9.69 −1.33 −0.01 0.02 20.20 29.31
RF 4.49 0.75 0.20 3.85 8.78 −2.24
kNN 12.80 23.55 0.20 3.85 10.00 −4.27

V OLS 12.29 4.98 −0.01 0.00 22.04 23.54
RF 5.03 −2.69 0.17 6.43 19.58 9.52
kNN 8.88 0.23 0.17 6.43 16.92 7.01
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for datasets collected over large areas, or when the data is collected by
the same vendor. Under such assumptions, the non-parametric mod-
eling approaches were more sensitive than OLS for changes in point
cloud densities, and the differences in prediction accuracies were more
marked for QMD and V, compared to HL. The consistency in prediction
accuracy of the OLS models was especially reflected in bias, which had
similar values for the transferred models and the models trained and
tested using the same pulse density, and was much lower than the bias
introduced when the RF and kNN models were transferred. Interest-
ingly, for both QMD and V, the R2 values were higher and RMSE values
were lower for both non-parametric approaches when compared to
OLS, for all transferred models in scenario 2.

Although Roussel et al. (2017) demonstrated that pulse density af-
fects calculations of point cloud metrics using mean point height as an
example in a northern hardwood forest, our results showed that dif-
ferences in metrics calculated for point clouds with different pulse
densities have very little effect on the prediction accuracy of transferred
OLS models. Our findings are similar to those reported by Yoga et al.
(2017), who found no effect of density on the predictions using non-
linear generalized least squares regression. The influence of differences
in pulse density between point clouds used during model development
and model application were more pronounced for RF and kNN (Fig. 6).
We theorize that the larger decrease in accuracy of the non-parametric
models may be caused by the fact the non-parametric models cannot
extrapolate beyond the range of data used to train them, as well as the
different effects that pulse density has on different ALS metrics. Because
the OLS models were developed using a maximum of three independent
variables, the cumulative effect of changes in metric values on model
outcome was less noticeable than for RF or kNN, which incorporated
more predictors.

We found that models developed using ALS data can be applied
using DAP-based predictors over the same area, and that although the
results were less accurate than when ALS-based metrics were used, the
achieved accuracy could be considered acceptable. The fact that the
results were comparable for both parametric and non-parametric ap-
proaches, contrary to the results in Scenarios 1 and 2, demonstrated the
agreement between ALS- and DAP-based metrics. This agreement, using
the same data, was previously demonstrated by White et al. (2015) who
found that the correlation between ALS- and DAP-based metrics in-
creased with the increase of canopy cover, and was higher for upper
canopy metrics. Because the upper canopy metrics are typically the
most important predictor variables for both ALS and DAP-based models
(Penner et al., 2013; Stepper et al., 2017), the high correlation between
the metrics based on ALS and DAP data resulted in similar predictions.
The prediction accuracies of the ALS-derived models applied to DAP-
based metrics were lower than the accuracy of DAP-derived models
presented in White et al. (2015). The differences were however mark-
edly small for HL, with RMSE% of 14.0 reported by White et al. (2015)
for models developed with DAP data, compared to RMSE% between
14.39 and 22.45% for the transferred models. The differences were also
small for V – the bias% and RMSE% for the DAP-derived models re-
ported by White et al. (2015) were −1.21 and 37.68%, respectively,
while the most accurate predictions resulting from the model transfer
had bias% of −1.67% and RMSE% of 40.27%. The most accurate
predictions for the transferred models were derived with models de-
veloped using RF, which was also the modeling approach used by White
et al. (2015). However, the reported set of the most important pre-
dictors used in White et al. (2015) was different from the predictors
used in this study.

Transferring models developed using NVI data to areas with similar
forest types (MKRF, SCCF) resulted in similar prediction accuracies in
both areas, especially for HL. However, contrary to Scenarios 1 and 2,
we could not identify a modeling approach that would consistently
provide the greatest accuracies for the three stand attributes when the
models were transferred to different areas or used with DAP data in-
stead of ALS point clouds. Overall, in a majority of cases, transferred RF

models provided slightly more accurate results, however, by compar-
ison, OLS models had only slightly lower accuracies.

Predictions of V in MKRF were markedly less accurate compared to
those in SCCF, even though the point cloud and stand attributes were
similar in these two areas. By analyzing the relationship between the
point cloud metrics and the modeled attribute, we found that the re-
lationship is different for MKRF compared to other study areas (Fig. 8).
Specifically, for similar values of height percentiles, volume had
markedly lower values. This different relationship is reflected in the
overestimated predictions of V in MKRF. We find it interesting that the
difference in attribute-metrics relationship occurred only for V, and
only in MKRF. The MKRF has similar dominant species and age dis-
tributions relative to the other areas.

ALS data for MKRF and SCCF were acquired with higher maximum
scan angle than in NVI. The influence of scan angle on height metrics
has shown to be minimal for acquisition with a maximum scan angle of
20° and that narrower scan angle (15 vs 30°) leads to slightly higher
accuracies of volume estimates (Holmgren et al., 2003; Keränen et al.,
2016). Although existing studies recommend that the maximum scan
angle does not exceed 20° (Gatziolis and Andersen, 2008; White et al.,
2013), the degree of overlap between the flight lines, which was ≥60%
for all acquisitions used herein, must also be considered. Keränen et al.
(2016) found that when the models were applied to datasets with dif-
ferent acquisition parameters, the bias increased by up to 10% for vo-
lume, although the RMSE% remained similar. They conclude that
models should only be used for datasets collected under similar con-
ditions. It is therefore possible that in our case the decrease of accuracy
for models transferred from NVI to MKRF and SCCF was caused by the
differences in the maximum scan angle used during ALS data acquisi-
tion. However, this effect is difficult to characterize because the same
maximum scan angle was used for MKRF and SCCF ALS datasets.
Therefore any marked effect of scan angle on the prediction accuracy of
the transferred model should exist in both of the datasets, which is not
the case. However, Keränen et al. (2016) found that height distributions
also influenced the accuracy of transferred models. On average, heights
in the MKRF are 5.29m higher than those at SCCF, and 1.90m lower
than those at NVI. Further research would be required to quantify the
effects of data acquisition parameters on the transferred models.

In addition, the accuracy of the models transferred from NVI to
MKRF or SCCF may be influenced by the different plot sizes used in the
study areas (625m2 in NVI vs 400 m2 in MKRF and SCCF). However,
given the relatively high point density of the ALS data (> 10 pulses/m2

for all datasets), the plots used in all three areas are large enough to
capture a sufficient number of returns that will result in a reliable
characterization of canopy height distributions (Hudak et al., 2012). As
demonstrated in this study (scenario 2), the effect of the number of
pulses on accuracy of transferred models and thus on the calculated
metrics is small. Hudak et al. (2016) demonstrated the consistency in
ALS height and density metrics despite an 8-fold difference in plot size,
while Packalen et al. (2019) quantified a maximum bias of 1.50% and a
maximum change in relative RMSE of 0.97% when there was a 4-fold
difference in plot size. We therefore likewise assumed that although
there is a small difference in plot size, this difference likely had only a
minimal influence on the model predictions.

Interest in applying existing models to predict forest inventory at-
tributes is of high value not only from the perspective of extending the
area of ALS data acquisitions, but also for updating forest inventories
when new point cloud data is acquired over the same area. As de-
monstrated by Fekety et al. (2015) such temporal transferability is not
only possible, but also allows for the development of “pooled models”
that are based on plot and point cloud data acquired at different times
(Kotivuori et al., 2016; Nilsson et al., 2016). Such models are therefore
developed using an increased number of samples, which could poten-
tially improve model results, particularly for non-parametric ap-
proaches to area-based modeling, which we have shown to be more
sensitive to the range of calibration data used for modeling (Jin et al.,
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2018). The potential of transferring already developed models tempo-
rally (Fekety et al., 2015) and spatially (Foody et al., 2003), as de-
monstrated in this study, enables investments in model development
(including ALS and ground plot data acquisition costs) to be further
leveraged, and provides opportunities to reduce costs for the opera-
tional implementation of area-based approaches through a reduction in
the need for ground plot data.

5. Conclusions

The degree to which area-based models can be transferred to new
areas or different point cloud data, and thereby reduce the requirement
for extensive ground data collection, is of operational relevance for
forest industry stakeholders, forest managers, and landowners. Our
results demonstrate that the transferability of area-based models de-
pends on the attribute, and the modeling approach applied, and to a
much lesser extent, the point cloud characteristics. First, the stand
conditions in the areas of new acquisitions should be similar to the
forest stands where the models were developed. All of our study areas
represent mature, coastal temperate forests dominated by western
hemlock; however, these are natural forests that represent more com-
plex stand conditions than the more uniform and intensively managed
boreal forests that have been the primary focus of the majority of
transferability investigations to date. Second, HL was the attribute that
was most robust to transferability and QMD the least, while results for
volume were often middling. Third, OLS regression was the most suc-
cessful approach for model transferability for HL, maintaining predic-
tion accuracies when models from one location were applied elsewhere.
RF provided better transferability performance for QMD and V when
models were transferred to different areas with either similar or dif-
ferent point cloud characteristics. The degree to which models can be
transferred successfully depends on trade-offs between tolerance for
decreases in estimation accuracy and the cost of acquiring additional
field calibration plots. Variability in model outcomes by attribute and
modeling approach, as demonstrated herein, highlight the challenges to
making universal recommendations that will ensure successful model
transferability. While specific details on the required number of plots
and calibration methodology remain to be determined, from an op-
erational perspective, it is reasonable to expect that a small subset of
local calibration plots would need to be installed to improve the pre-
diction accuracy of transferred models and optimize the value of new
ALS acquisitions for forest attribute modeling.
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