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Abstract
Data are increasingly spatio‐temporal—they are collected 
some‐where and at some‐time. The role of proximity in spa‐
tial process is well understood, but its value is much more 
uncertain for many temporal processes. Using the domain 
of land cover/land use (LCLU), this article asserts that anal‐
yses of big data should be grounded in understandings of 
underlying process. Processes exhibit behaviors over both 
space and time. Observations and measurements may or 
may not coincide with the process of interest. Identifying 
the presence or absence of a given process, for instance dis‐
entangling vegetation phenology from stress, requires data 
analysis to be informed by knowledge of the process char‐
acteristics and, critically, how these manifest themselves 
over the spatio‐temporal unit of analysis. Drawing from 
LCLU, we emphasize the need to identify process and con‐
sider process phase to quantify important signals associated 
with that process. The aim should be to link the seriality of 
the spatio‐temporal data to the phase of the process being 
considered. We elucidate on these points and opportunities 
for insights and leadership from the geographic community.

1  | INTRODUC TION

The term “big data” has been widely used to describe the many new forms of data that are generated in our in‐
creasingly digital, connected, and GPS‐enabled lives (Kitchin & McArdle, 2016). It refers to large, often noisy, and 
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growing collections of observations (Laney, 2001) that are increasingly spatially and temporally referenced (Kitchin, 
2013) and are changing the nature of data analysis (Brunsdon, 2016). We are moving from a time when all data 
are spatial to one when they are spatio‐temporal (Kitchin, 2013)—collected at some‐time as well as some‐where.

Space–time relationships are at the core of GIS research (Yuan, 2017). While the role of proximity in spatial pro‐
cess is well known (Tobler, 1970, 2004), its value is much more uncertain for temporal processes. It works well in car‐
bon dating, glottochronology (the study of language change over time; Lees, 1953), seriation in archaeology (Doran 
& Hodson, 1975), and many other disciplines. However, many processes exhibit specific periodicities which require 
synchronicity between the phase of process being observed and the timing of observations, and not just a measure 
of temporal proximity. Identifying temporal patterns (such as serial autocorrelation) requires temporal data to be 
treated in an informed way to ensure that the phase of observation (data) matches the periodicity of the process.

This article considers how the remote‐sensing community have addressed the challenges and opportunities 
associated with big data (e.g., Ma et al., 2015) through the lens of land cover/land use (LCLU) mapping and land 
cover/land use change (LCLUC) analysis and monitoring. It highlights key developments in data and data infra‐
structure to accommodate big spatio‐temporal remote‐sensing data, that have in turn driven changes in oper‐
ations and analysis. These have shifted the focus of analysis from recording LCLU states to quantifying LCLU 
processes and dynamics, such as change. They require algorithms and analysis procedures that explicitly seek to 
match the phase of observation with process periodicity. This article unpacks key developments in LCLU analysis 
of big spatio‐temporal remote‐sensing data and identifies a number of future directions for the wider geography 
and GIS communities in their analysis of big data.

2  | LCLU DATA AND CONTE X T

The concepts of land cover and land use are frequently rolled together in land inventories. Land cover describes 
terrestrial ecosystems, natural resources, habitats, and is an important input to climate models (see reviews 
by Cihlar, 2000; Comber, Fisher, & Wadsworth, 2005a; Franklin & Wulder, 2002). It can be determined by di‐
rect observation. Land use describes social, economic, and cultural utility (Turner, 1997) and ecosystem func‐
tion (DeFries, Foley, & Asner, 2004). It requires the socioeconomic activities taking place on that surface to be 
interpreted.

While static maps of LCLU are common and have been historically important to establish baseline measure‐
ments, it is information about LCLU processes and dynamics that is of increasing interest (DeFries et al., 2002; 
Small & Sousa, 2016). That is, how have land cover and land use changed, with an interest in dynamics not solely 
status. This interest extends scientific understanding and informs policy development (NRC, 2014), whether 
through quantifying landscape ecological processes (Kennedy et al., 2014) or LCLU modeling to inform on carbon 
changes, for example (Sleeter et al., 2018).

Long runs of time series of satellite imagery allow dynamic LCLU processes to be characterized (Gómez, White, 
& Wulder, 2011; Hermosilla, Wulder, White, Coops, & Hobart, 2015; Huang et al., 2010). Short‐ and long‐term 
trends can be identified, allowing cyclical functions and feedbacks to be investigated, enhancing understanding 
of drivers from climate change to economic pressures (Kennedy et al., 2014; Turner, 1997). Understanding trends 
from such data allows future status or processes to be modeled and extrapolated (e.g., Dietze et al., 2018) and 
supports large‐scale scenario simulations over long periods (e.g., Li et al., 2017), with attendant considerations of 
spatial structure in prediction (Li & Yeh, 2002).

Remote‐sensing data are big (Guo, Wang, Chen, & Liang, 2014), with great variety as well as volume: from what 
is collected at sensors through to how data are provided to users, with differences in pixel size, spectral regions 
sampled, revisit rate, and so on. New analytical approaches for big remote‐sensing data have been recommended 
(e.g., Ball, Anderson, & Chan, 2018; Liu, Di, Du, & Wang, 2018), particularly to support the ubiquitous challenge of 
and demand for real‐time processing (Ma et al., 2015). One such development is the provision of analysis‐ready 
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data (ARD) suitable for analysis in large purpose‐developed data cubes (e.g., Gorelick et al., 2017; Lewis et al., 
2017). ARD are “data that have been processed to allow analysis with a minimum of additional user effort” (Dwyer 
et al., 2018, p. 1365). They contain long, wide, and deep archives of time‐series data (e.g., Landsat; Wulder et al., 
2008, 2016) collected under repeated spatial and temporal sampling frameworks. ARD are thus “stackable” and 
ensure that a given pixel represents the same physical ground location through time, allowing changes in condition 
to be captured (Wulder et al., 2018). Changes at the pixel level can be related to temporal phase to quantify within‐ 
and between‐year processes (e.g., fire, harvest, urban expansion, and other disturbances), or seasonal processes 
(e.g., snow, leaf‐off). Longer‐term processes (e.g., climate, soil degradation, chemical deposition) can also be man‐
ifest as a changing trend of a given property over time (Kennedy et al., 2014).

Large spatio‐temporal cubes of ARD have changed the way that LCLU monitoring activities are undertaken. 
In the past, LCLU monitoring was concerned with state (LCLU class) and state changes (LCLUC) rather than pro‐
cess. Now, there is much greater emphasis on process. LCLU inventories are updated rather than being periodi‐
cally remapped through consideration of the spatial and temporal signals of change at a pixel level (spatial reach, 
temporal persistence, etc.). LCLU labels are only updated if the signal surpasses thresholds in both space and 
time (see Zhu & Woodcock, 2014). However, subtle signals, indicating changes in condition or quality but insuffi‐
cient to warrant a change in label, are of great interest (e.g., long‐term forest decline; Cohen et al., 2016). These 
may be indicative of some underlying process (Zhu, 2017) and can provide an early warning of potential future 
LCLU changes. Examples of an increasing focus on process in LCLU analyses are beginning to appear. In forest 
monitoring, Daniel, Frid, Sleeter, and Fortin (2016) proposed models based on discrete spatial and temporal 
units (i.e., state‐and‐transition models) as a means to forecast landscape change. Dolan et al. (2017) developed 
a vulnerability index to describe the capacity of forests to withstand accelerated disturbance dynamics arising 
from climate change.

3  | FROM LCLU PROCESS TO BIG SPATIO ‐TEMPOR AL DATA

The focus on process in LCLU analyses in response to the provision of big remote‐sensing data and spatio‐tem‐
poral ARD cubes offers potential insights for analyses of big spatio‐temporal data more generally. In LCLU, long 
runs of serial and spatial data provide the ability to examine change processes at individual locations over time, 
with the pixel providing a convenient and consistent (if not natural) spatial unit over which to do this. Time series 
of images allow trends to be captured (Kennedy et al., 2014), whether using all available images (Zhu & Woodcock, 
2014) or annual time steps (Hermosilla et al., 2016). In natural environments, for example, multiple measures at 
the same location at different points in time can detect within‐year variations in phenology (Melaas, Friedl, & 
Zhu, 2013) and longer‐term stresses between years (Cohen et al., 2016). Such change processes can be character‐
ized by a number of metrics (after Kennedy et al., 2014): (1) magintude; (2) duration; (3) intensity; (4) frequency;  
(5) periodicity; and (6) directionality.

These single within‐ or between‐year descriptors can be viewed independently or combined in order to infer 
process. For forest environments, a high‐magnitude, short‐duration, negative change is likely to be a fire or har‐
vest; a low‐magnitude, long‐duration, negative change could be an indicator of drought stress; and a low‐mag‐
nitude, long‐duration, positive change may relate to growth of a mature forest. Such metrics have been used to 
infer the presence and rate of forest regeneration (White et al., 2018), as well as to classify disturbances to a type 
(Hermosilla et al., 2015). The ability to characterize condition change in this way is informed by when and where 
a disturbance has taken place, along with an understanding of different processes. Examples of typical processes 
considered by remote sensing are shown in Table 1.

There has been a step‐change in LCLUC operations. Historically, and up until recently, LCLU mapping and 
change analyses were devoid of any temporal process, with change analysis through map‐to‐map comparison, 
with each LCLU map providing a static snapshot of environments that are inherently dynamic. Change analysis 
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has shifted from a downstream by‐product of mapping at different times, to now being the main objective of 
many wide‐scale operational initiatives (Hermosilla, Wulder, White, Coops, & Hobart, 2018; Wulder, Coops, 
Roy, White, & Hermosilla, 2018). Baseline maps are updated only when the signal of change is sufficiently strong 
to indicate the presence of some recognizable spatio‐temporal process. Work flows now embed the identifica‐
tion and characterization of change (i.e., process) as the first step in analyses (Gómez, White, & Wulder, 2016) 
of satellite data (e.g., Jin, Yang, Zhu, & Homer, 2017; Pengra, Gallant, Zhu, & Dahal, 2016; Wulder et al., 2018), 
aerial photography (e.g., Gauld, Bell, Towers, & Miller, 1991), and updates of historical thematic LCLU data (e.g., 
Comber et al., 2016). The result has been greater opportunities to uncover additional processes related to driv‐
ers of change with linkages to spatio‐temporal context and the identification of more subtle, longer‐term, trends 
(Kennedy et al., 2014).

LCLUC analyses now explicitly consider temporal processes not just changes in state. This has arisen because 
of factors such as ARD and open data policies (Woodcock et al., 2008; Wulder & Coops, 2014), as well as a wider 
recognition of the difficulty in understanding temporal processes from static LCLU snapshots. Each LCLU map has 
a methodological and temporal vintage which is sometimes called an “ontology” (Comber, Fisher, & Wadsworth, 
2005b). Ontologies are explicit specifications of an abstract representation of the world (Gruber, 1993; Guarino, 
1995) like a map. In an LCLU mapping context they reflect choices over spatial, spectral, and radiometric data 
resolutions as well as the number and type of LCLU classes of the data. No vintage (or ontology) is ever the same 
because of the many embedded processes and assumptions (Comber et al., 2005b). Comparing LCLU maps in a 
post‐classification change analysis is difficult (Fuller, Smith, & Devereux, 2003; Tewkesbury, Comber, Tate, Lamb, 
& Fisher, 2015) because any differences between them will reflect artefactual differences in ontology (Comber, 
Fisher, & Wadsworth, 2004), errors, and actual differences on the ground.

TA B L E  1   Selection of types of forest changes to highlight variability in duration, spatial extent, rate, and 
magnitude of change

Process
Required observa-
tion phase Spatial extent Process rate Impact magnitude

Phenological development Days to months Local to 
regional

Medium Small

Regeneration Days to decades Local Slow Small

Wind throw Hours Individual to 
local

Fast Large

Flooding Hours to days Local to 
regional

Medium to fast Large

Fire Hours to days Regional Fast Large

Disease Months to years Individual to 
local

Slow Small

Insect defoliation Days to weeks Individual to 
regional

Fast to medium Small to medium

Insect mortality Weeks to years Individual to 
regional

Slow Large

Pollution Years Regional Slow Small

Thinning/pruning Days to weeks Local Fast Medium

Harvesting Days to weeks Local Fast Large

Note: Individual—tree or object; Local—stand or watershed extent; Regional—multiple stands, watersheds.

Source: After Gong and Xu (2003).
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So how does all of this relate to big data? We are in a world where ubiquitous spatially and temporally refer‐
enced digital data are generated, shared, and made available to anyone. Data volumes will continue to increase. 
IBM reported in 2016 that 90% of all data had been created over the last two years, at a rate of 2.5 quintillion 
bytes of data a day (Loechner, 2016). These increases have been complemented by the generation and availabil‐
ity of large volumes of citizen science data, including those related to LCLU (See et al., 2016). Big data describing 
socioeconomic activities are typically used to understand social dynamics and environments (Liu et al., 2015). 
But research describing the use of big data stretches across all domains—from instrumented farms in agriculture 
(Wolfert, Ge, Verdouw, & Bogaardt, 2017) to analyses of within‐ and between‐group health inequalities (Kandt, 
2013). See Gandomi and Haider (2015) for a review of data analytics techniques applied to different types of 
big data.

In contrast to LCLU data, big data are frequently not observed or collected for a specific analysis. Instead, they 
are repurposed to fit a particular need and they may have only weak relationships with the process being inves‐
tigated (Gandomi & Haider, 2015). Despite this, big data allow spatial, temporal, and spatio‐temporal processes 
to be identified, examined, and characterized across wide spatial scales and over increasingly long time periods 
(Harris et al., 2017). This is a step‐change. Up until very recently (with a nod to data‐sharing practices, cyberin‐
frastructures, and e‐science), much scientific investigation was undertaken in the context of data paucity: limited 
data‐availability, static single‐date products that were periodically updated, data held in domain silos with access 
negotiated through a gatekeeper (Comber, Fisher, & Wadsworth, 2007), little data or product sharing, and ad hoc 
analytical approaches (Wulder et al., 2018).

However, all this data access and the machine/deep‐learning approaches engendered comes with caveats over 
the absence of process understanding or theory (Brunsdon, 2016; Lyon, 2014; Marcus, 2018).1  In this context, the 
data trends in LCLU, and the consideration of process that they necessitate, offer lessons beyond the domain and 
across the spatial information sciences in how we approach our big data analyses.

3.1 | Lesson 1: Separating the signal of spatio‐temporal process from the noise (you 
need to understand the temporal characteristics of processes to find them)

Spatio‐temporal analyses of large datasets require an understanding of the processes being considered so 
that potentially meaningful signals related to these processes can be separated from the noise inherent in 
such data. LCLUC activities are concerned with the change target (is change present?) and change agent 
detection (what is the nature of the change, and does it matter?). Any suspected change has to surpass some 
condition (i.e., threshold, statistical boundary) for change to be recorded, as well as being subject to ad‐
ditional constraints such as a minimum mappable unit (e.g., White, Wulder, Hermosilla, Coops, & Hobart, 
2017). Changes rejected for not being sufficiently robust in time and space may still contain important signals, 
indicating some underlying change processes, resulting in, for example, changes in quality and/or condition 
(Kennedy et al., 2014).

Remotely sensed data, especially when prepared as ARD, provide multiple pieces of information about the 
same location over long periods of time. Current time‐series change monitoring (as reviewed in Zhu, 2017) uses 
long runs of satellite data (in particular, Landsat) that provide within‐ and between‐year information, integrate 
change detection and LCLU mapping, and support all‐available‐data approaches for prediction of expected con‐
ditions (e.g., Zhu & Woodcock, 2014). For LCLUC analysis, where the emphasis is on monitoring and detection of 
change, this has shifted focus to consideration of the synchronicity (temporal alignment) between the temporal 
process and the data observation phase (the periodicity of repeated observations at a given location). Hitherto, 
phase was not considered extensively, and process was not detectable from the single snapshot of LCLU pro‐
vided by remote‐sensing data. They are now, and LCLU and change analyses seek to link the temporal proper‐
ties of the data to the periodicity of the process via domain understanding. This enables consideration of the 
temporal persistence, spatial extent, and magnitude of process signals, for example related to changes in quality 
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or condition, and meaningful signals to be identified. Operationally, these approaches reflect the position articu‐
lated by Miller and Goodchild (2015) of the need for methods to discriminate between spurious and meaningful 
spatio‐temporal patterns.

The main point is that process understanding is used to confirm LCLU change: it has to have sufficient spatial 
and state dynamics captured over appropriate timeframes to be recorded. It is also used to identify more nuanced 
aspects of change (Zhu, 2017). Previously, LCLU change identification focused on depletions, punctual removals, 
and so on. However, changes in within‐LCLU class condition now provide a deeper picture of the characteristics 
of dynamic processes. These include monitoring forest harvesting and wildfire (White et al., 2017), comparisons of 
regional rates of forest recovery (Frazier, Coops, Wulder, Hermosilla, & White, 2018), and capturing the changing 
states of forest dynamics (Gómez et al., 2011). Knowledge of process is increasingly used to inform land cover 
labeling (Wulder et al., 2018). For instance, knowledge of time since disturbance informs on successional stage 
following harvest or wildfire, distinguishing between classes and allowing for the application of rules to promote 
logical transitions (Gómez et al., 2016). Within‐year information can also be used to infer subclass processes, in‐
creasing the categorical depth of land cover mapping (Pasquarella, Holden, & Woodcock, 2018).

These approaches suggest how the dearth of transferable methods for predictive analyses of big spatial data—
simultaneously sensitive to both spatial and temporal processes (Miller & Goodchild, 2015)—can be addressed. In 
part, these are due to a lack of natural unit of analysis for describing spatio‐temporal phenomena. This suggests 
that any analysis of big data needs to identify a spatio‐temporal unit of analysis. Time‐series approaches to LCLU/
LCLUC have, by convenience and convention, utilized the pixel as the fundamental unit for considering processes. 
Domain knowledge is used to understand how change processes manifest themselves over pixels of a given size 
and over a given timeframe. If individual records in big data are brought together over some form of areal unit 
(e.g., census areas, 10‐km grid cells, etc.) to aggregate or link to other data, then some understanding of how the 
process under investigation manifests itself over that space is required.

3.2 | Lesson 2: Informed methods, tools, and techniques (if you don't know you need to 
find out)

Many commentators have identified the need for an expanded methods toolkit to handle spatio‐temporal big data 
(e.g., Fotheringham, Crespo, & Yao, 2015; Goodchild, 2013; Miller & Goodchild, 2015). Spatio‐temporal data can 
provide insights into the dynamics of underlying spatial process and can be used to generate predictive models. 
While many spatial processes are well understood, and a number of well‐known tools have been developed (e.g., 
Anselin, 2013; Brunsdon, Fotheringham, & Charlton, 1996; Crespo, Fotheringham, & Charlton, 2007; Cressie & 
Wikle, 2011; Di Giacinto, 2006; Gelfand, Ecker, Knight, & Sirmans, 2004; Pace, Barry, Gilley, & Sirmans, 2000), 
much less is understood about how spatial and temporal processes interact. Time‐geography (Hägerstrand, 1975), 
despite its name, is not appropriate. It examines spatial activities as space–time paths (Frank, 2003; Miller, 2004, 
2010; Nakaya & Yano, 2010; Peuquet, 2001) and is focused on defining space and time in terms of the entities that 
inhabit them (Raper & Livingstone, 1995) and of lived time (Massey, 1999).

There are a number of frameworks that have been used to model space–time dynamics and interactions in an 
evolutionary way, including cellular automata (e.g., Balzter, Braun, & Köhler, 1998; Dietzel, Herold, Hemphill, & 
Clarke, 2005) and agent‐based models (e.g., O’Sullivan & Haklay, 2000; Torrens, Li, & Griffin, 2011). They develop 
emergent solutions but still require an understanding of how process spatio‐temporal dynamics interact in order 
to parameterize them and are sensitive to initial settings and tuning. Critically, they can struggle to link fine‐scale 
local spatio‐temporal interactions with coarse‐scale global dynamics (Chen, Han, Ye, & Li, 2011).

Some approaches explicitly seek to understand local spatial and temporal interactions, allowing for the possi‐
bility that space–time processes are heterogenous and not global or linear (Fotheringham et al., 2015; Kyriakidis 
& Journel, 1999). One of the key advantages of space–time models focusing on process heterogeneity rather than 
autocorrelation of inputs is that they are commonly better at handling spatio‐temporal big data (Fotheringham 
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et al., 2015; Goodchild, 2013). Existing statistical methods for analyzing space–time data can be grouped into 
five basic sets of approaches: autoregressive integrated moving average (ARIMA), space–time autoregressive 
(STARIMA), panel models, geostatistical approaches, and other models (Deng, Yang, & Liu, 2017; Griffith, 2010). 
The first four are all concerned with capturing autocorrelation effects into the space–time models and may not 
be suited to analyses of big spatio‐temporal data, because of the problem of statistical inference and significance 
testing (Brunsdon, 2017; Spicer & Gangloff, 2016). Others, such as geographically and temporally weighted re‐
gression (Fotheringham et al., 2015; Huang, Wu, & Barry, 2010; Liu, Lam, Wu, & Lam, 2018), focus on relationship 
heterogeneity where attribute relationships are viewed as nonstationary in both space and time.

In such cases, the nature of the temporal processes and how their phase is captured in the data need to be 
known. To discriminate between meaningful and spurious patterns it is critically important to understand the 
nature of the data (Miller & Goodchild, 2015) and the associated processes they describe (Brunsdon, 2017). What 
do you do if you don't have any process knowledge? In the absence of theory, temporal knowledge, and inference, 
machine learning and data mining are commonly employed in data science (Li, Ye, Lee, Gong, & Qin, 2017; Lv, Song, 
Basanta‐Val, Steed, & Jo, 2017; Witten, Frank, Hall, & Pal, 2016). Such data‐driven approaches can support both 
prediction and exploration. But they come with a health warning: they are context‐ and knowledge‐free (Kitchin, 
2013). They may detect patterns and provide answers to arbitrary questions (Harris et al., 2017), which although 
potentially able to generate novel insights, may lack an inferential dimension. This makes it difficult to link their 
results to process (and of limited or dubious utility) because of the uncertainty over which of the many patterns 
are linked to which of the many potential processes. However, they can support exploratory spatial data analysis, 
enabling discovery of unforeseen trends or to aid with hypothesis development (see Anselin, 1999). Here the 
aim is not to calibrate models or to test hypotheses but to use algorithms to detect patterns in data and thereby 
enhance and develop process understanding. However, this too needs to be done with care. Recent reflections on 
spatio‐temporal analyses of big data have suggested an iterative sequence of investigation, theory development, 
domain experts, analytical refinement, and then deeper focus (view, identify, refine, zoom; Harris et al., 2017).

A potentially rich area of related further work lies in linking approaches to identify relationship spatio‐tem‐
poral heterogeneity to deepen process understanding, especially over any given spatio‐temporal unit of analysis. 
This would go some way towards the need for new analytical toolkits for big data, as identified by many au‐
thors without specifying what they could be (e.g., Gandomi & Haider, 2015). Spatial models (e.g., Anselin, 1995; 
Brunsdon et al., 1996; Cliff & Ord, 1973; Ord & Getis, 1995) could be linked with temporal ones such as wavelet 
analysis (Torrence & Compo, 1998) and recurrent neural nets (Ermentrout, 1998). A further area is the extension 
of restricted maximum likelihood (REML) approaches (e.g., Welham, Cullis, Gogel, Gilmour, & Thompson, 2004) 
to include serial as well as spatial autocorrelation in the error term. To ensure an inferential dimension, such ap‐
proaches could be supported by likelihood models based on Bayesian inference rather than frequentist statistical 
approaches. Models developed in this way can be evaluated using information criteria rather than significance 
tests. The widely applicable information criterion (Vehtari, Gelman, & Gabry, 2017) and the deviance information 
criterion (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002), for example, are both suited to Bayesian modeling 
with posterior model distributions obtained by Markov chain Monte Carlo simulation. Such hybrid methods and 
approaches avoid the problems with classical statistics, including their assumptions about covariate homogeneity 
and independence, and the problems with significance measures with big data (Spicer & Gangloff, 2016). Hybrid 
models have the potential to identify spatio‐temporal structure and heterogeneity, revealing cycles hidden within 
the data and changes in spatio‐temporal phase and amplitude.

4  | CONCLUSIONS

In this article we use the current state of the science in land cover/land use monitoring to make a number of ar‐
guments about analysis of big spatio‐temporal data. The LCLU community have adopted their analysis protocols 
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because of big remote‐sensing data and have shifted from generating static snapshots of LCLU to explicit consid‐
eration of LCLU change and dynamics. These require domain understanding and knowledge of LCLU processes 
to be applied to be able to separate useful spatio‐temporal signals. This shift has been driven largely by develop‐
ments in data provision and access infrastructures rather than by design. The need for process understanding 
in analyses of big spatio‐temporal data may be self‐evident for some readers but not others. Our aim here is to 
inform wider practices related to geographic data analysis (supported by contextual and methodological lessons) 
and we argue that these need to establish the presence of synchronicity between the process being considered 
with the data observation phase. Process understanding is needed to do this and requires knowledge of how 
process characteristics manifest themselves over the spatio‐temporal unit of analysis being applied. Big data is 
frequently repurposed from its original intended use, and these are critical considerations.

In summary, we offer the following observations.

1. In the future, all data will be “big” and “spatio‐temporal” (forever), and as a consequence will simply be 
referred to as “data.”

2. Data‐driven analysis (data mining) without theory or an inferential dimension is insufficient because of uncer‐
tainty over which of the observed patterns are linked to which of the many potential processes.

3. Analysis of such data requires information and knowledge about spatio‐temoral processes to be applied, includ‐
ing an understanding of how process phases are captured in the spatio‐temporal data and over the spatio‐tem‐
poral unit of analysis.

4. Where process understanding and knowledge are missing, iterative and reflective data mining can help to dis‐
cover unforeseen trends in hypothesis development.

5. There are opportunities to link well‐known models for handling space with those for handling (unknown) tem‐
poral phase.

Taking these arguments together, we suggest that essential principles for any big and spatio‐temporal data analysis 
are to establish that the phase of the process of interest is embedded in the observations and its properties are un‐
derstood over the spatio‐temporal unit of analysis. We posit that geographical analyses of spatio‐temporal data should 
link the seriality (i.e., measurement interval, data density) of the spatio‐temporal data to the phase of the process being con‐
sidered. This requires an understanding of how processes exhibit behaviors over both the spatial and temporal dimen‐
sions, with process understanding informed by when and where a measure is made, and that the temporal properties 
of any given process must be embedded in the phase of observation and measurement. Such considerations underpin 
spatio‐temporal prediction, inference about process, trajectories and forecasting of potential future states. There are 
opportunities for insights and leadership from the geographic community to guide and inform the wider information 
sciences communities.

ORCID

Alexis Comber  https://orcid.org/0000‐0002‐3652‐7846 

Michael Wulder  https://orcid.org/0000‐0002‐6942‐1896 

ENDNOTE
1 Similar criticisms were made in the 1970s with the advent of PCs and digital data access. Mather and Openshaw (1974) 

were concerned about the ability to simply crunch data, the “let the data speak” (Cukier & Mayer‐Schoenberger, 2013) of 
the time, rather than hypothesis testing. Their description of it was a “mindless approach in which … variables characterized 
only by the fact that they are all easily culled from census volumes … are picked over like cans on a rubbish tip” (p. 290, em‐
phasis added). 
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