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Population and Stand-Level Inference in Forest 
Inventory with Penalized Splines
Steen Magnussen , Anne-Sophie Stelzer,  and Gerald Kändler

Penalized splines have potential to decrease estimates of variance in forest inventories with a design-based population-level inference, and a model-based domain-level 
inference by decreasing the likelihood of a model misspecification. We provide examples with second-order (B2) B-splines and radial basis (RB) functions as extensions to a 
linear working model (WM). Bias was not prominent, yet greater with B2 and in particular with RB than with WM, and decreased with sample size. Important reductions in the 
variance of a population mean were achieved with both B2 and RB, but at the domain-level only with RB. The proposed regression estimator of variance generated estimates 
of variance being slightly smaller than the observed variance. A consistent and larger underestimation was seen with the popular difference estimator of variance.

Study Implications: Forest inventories supported by light detection and range (LiDAR) data require—in the estimation phase—a model for linking LiDAR metrics 
to attributes of interest. Formulating a parametric model can be a challenge and unsatisfactory if the goodness of fit varies across the range of the attribute of interest. 
A semiparametric model provides more flexibility and lessens the chance of a model misspecification, albeit with the potential of overfitting. A penalty directed at reducing 
overfitting is required. A flexible semiparametric model is potentially also better suited for applications to small areas like stands than a parametric model. We demonstrate 
that important reductions in variance are indeed possible, but also that they depend on the form of the nonparametric part of the chosen model and the level of inference (pop-
ulation versus domains). With regard to practical application, reliable estimates of forest attributes at stand-level are of special interest within the scope of forest-management 
planning, as silvicultural treatments are always stand-oriented, at least with small-scale forestry under Central European conditions, and stand-related volume (basal area, 
tree density) belongs to the set of relevant parameters for management decisions regarding harvest and regeneration measures.
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Forest enterprise inventories employing a probability sam-
pling design commonly have dual objectives of providing 
estimates of totals (means) for both a population and smaller 

domains such as forest stands (Lappi 2001, Tomppo 2006, Næsset 
et  al. 2011, Goerndt et  al. 2013). Design-based population-level 
inference with model-assisted (MA) estimators (Särndal et al. 1992) 
has greatly improved the efficiency of enterprise forest inventories 
(Næsset et  al. 2013, Massey and Mandallaz 2015, Kangas et  al. 
2016). In practice, however, the number of domains of interest 
may outstrip the sample size and leave the analyst with no other 
choice than a model-based (MB) inference for domains (Lehtonen 
et al. 2005, Lehtonen and Veijanen 2009). It is therefore important 
that an assisting model in a design-based population-level inference 
is as flexible as possible in order to capture the relation between 
the study variable and a set of auxiliary variables throughout the 

population. No assumption is made that a chosen model is the true 
model (Lehtonen et al. 2005).

Semi- and nonparametric models are flexible and have gained 
popularity in forestry applications (Kato et al. 2009, Kublin et al. 
2013, Nothdurft 2013, Goga and Ruiz‐Gazen 2014), in survey sta-
tistics (Montanari and Ranalli 2005, Opsomer and Miller 2007, 
Goga and Ruiz‐Gazen 2014), and in forest inventories (Johnson 
et al. 2008, Penner et al. 2013, Poggio and Gimona 2013, Massey 
and Mandallaz 2015, Kangas et  al. 2016). The popularity of 
these intrinsic nonlinear models (Gallant 1987, p. 146) is under-
standable, as they do not require an analyst to fully specify a pre-
ferred model, and they are readily available in popular statistical 
software programs. Because they are flexible, the risk of a model 
misspecification is reduced compared to a parametric model (Breidt 
and Opsomer 2009).
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Under design-based inference, the difference estimator (DIFF) 
of variance (Särndal et  al. 1992, 6.3.5) has been proposed 
for semi- and nonparametric models (Opsomer et  al. 2007, 
McConville and Breidt 2013, Breidt and Opsomer 2017). 
However, in simulations with residuals from nonlinear models 
fitted to sample data (i.e., the model is internal [Mandallaz et al. 
2013]), the difference estimator tends to underestimate the ac-
tual variance (Tipton et  al. 2013, Massey and Mandallaz 2015, 
Kangas et al. 2016). The problem of underestimating variance is 
also known in model-dependent inference (Carter and Eagleson 
1992, McRoberts et al. 2018).

In this study, we propose an alternative to the design-based dif-
ference estimator of variance in a population mean (or total) in 
settings where an internal semiparametric model is employed. The 
proposed estimator is the regression estimator (REG) (Särndal et al. 
1992, 6.6.4). We demonstrate the difference estimator and the 
proposed estimator in two case studies in which a linear assisting 
model is extended with either B-spline or radial (spline) basis 
functions (Fahrmeir et  al. 2013) designed to capture presumed, 
but difficult-to-define, nonlinear effects and interactions among 
predictors in a linear model. Both types of basis functions have 
gained popularity in natural-resource surveys (Kato et  al. 2009, 
Nothdurft 2013, Goga and Ruiz‐Gazen 2014).

The anticipated improvement from using a regression esti-
mator of variance instead of a difference estimator hinges on (1) 
calibrating the sample means of the auxiliary variables to the known 
population means and (2) an effective linearization of the model 
(Särndal et al. 1992, ch. 5.5). Models that include spline functions 
automatically satisfy the second criterion, as they can be expressed 
in the scope of a linear model with a set of explanatory variables 
plus a sum of contributions from “knots” strategically placed in the 
space of a second set of variables (akin to random effects in a mixed 
linear model) (Opsomer et al. 2008).

We emphasize that a design-based inference with internal 
semiparametric models also demands a design-consistent cross-
validation for the choice of a smoothing bandwidth, and a con-
straint in the form of a penalty to control bias (Opsomer and Miller 
2007, Breidt and Opsomer 2017, McConville et al. 2017).

The two case studies use data representing forests with a stand 
structure. Although our primary objective relates to the estimation 
of a population mean of stem volume density and its variance, a sec-
ondary objective is a model-dependent prediction of stand means 
of this attribute. Here, we explore whether the anticipated effi-
ciency of a semiparametric model at the population level extends to 
small-area estimation problems (Corona et al. 2014, Ranalli et al. 
2016, Wagner et al. 2017).

Material and Methods
For a fixed population—surveyed with a probability sampling 

design—and composed of N equal area units and M domains, we 
compare population- and domain-level estimates derived from three 
unit-level (internal) models for linking a suite of auxiliary variables 
(X) to a study variable of interest (Y). The auxiliary variables are 
known for all N units in the population, but Y is known only for the 
units in a realized sample of size n. For each unit in the population, 
its sample inclusion probability πij, i = 1, ..., M, j = 1, ..., Ni 
is determined according to a probability sampling design that does 
not recognize domains.

The estimators we consider are for means, variances, and 95 
percent confidence intervals for the true mean under simple 
random sampling without replacement (SI). Domains are 
forest stands.

Models
The first assisting model in Equation 1 is a parsimonious linear 

working model (WM) with a structure derived from subject knowl-
edge (Särndal et al. 1992, p. 227):

yij = x ijβ
′
WM + di + eij, i = 1, ...,M, j = 1, ..., mi� (1)

where yij is the value of Y in the jth unit of the ith domain, 
x ij  is a row vector of pWM auxiliary variables, βWM is a row vector 
of pWM regression coefficients to be estimated from sample data 
(i.e., the fitted model is internal), di  is a random effect for the ith 
domain, and eij is a model residual error for the jth unit in the 
ith domain. A  transpose of a vector or matrix θ is set as θ′. In 
our design-based population-level inference under SI, the terms 
di and eij in Equation 1 are pooled to a single residual error inas-
much as an SI design does not afford a design-consistent estimation 
of domain effects. When we shift to inference for domains, both 
di and eij are considered, with di  regarded as a Gaussian random 
domain effect with an expectation of zero and a variance σ2

d , and 
the residual errors eij are assumed Gaussian in distribution with an 
expectation of zero and a variance σ2

e .
The second (second-order [B2]) and third (radial basis [RB]) 

models are assisting models that can capture nonlinear effects 
and nonlinear interactions in auxiliary variables. In the interest of 
comparing performance, all three models use the same basic set of 
pWM auxiliary variables. On account of brevity, the nonlinear effects 
and interactions are limited to two of the auxiliary variables in the 
WM in Equation 1, say x1 and x2. Model B2 can capture separate 
nonlinear effects in x1 and x2, whereas model RB also captures their 
interactions.

We obtain B2 after first dropping x1 and x2 from the WM and 
then adding a sum over K weighted B2 spline basis functions of x1 
and x2 (Fahrmeir et al. 2013, p. 426). To wit:

yij = x ijβ
′
B2 +

2∑
q=1

∑KB2

k=1
γB2
qkB2k

Ä
xqij
ä
+di + eij,

i = 1, ..., M, j = 1, ..., mi

� (2)

where x ij is a row vector of pB2 = pWM – 2 auxiliary variables, βB2

is a row vector of pB2 regression coefficients, and γB2
qk  is the weight 

assigned to the kth B2 basis function evaluated atxqij  and at a set 
of ΓB2 equally spaced “knots” within the range of xq, q = 1, 2; re-
maining symbols are as in Equation 1 with the caveat that both di 
and eij are conditional on the model specification(s). The auxiliary 
variables used in the B-spline extensions of the WM in Equation 1 
are identified prior to observing the sample. The number of basis 
functions KB2 is equal to ΓB2 + r − 1 for each of the two auxiliary 
variables, where r is the order of the splines (here r = 2). As written, 
B2 is linear in the basis functions.

The evaluation of a B2 basis function at a value z of a single 
explanatory variable is obtained from lower-order B-spline basis 
functions as in the following recursive scheme (Fahrmeir et  al. 
2013, pp. 427–429):
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B2k (z) =
z − κk−2

κk − κk−2
B1k−1 (z) +

κk+2 − z
κk+1 − κk+1−2

B1k (z) ;

B1k (z) =
z − κk−1

κk − κk−1
B0k−1 (z) +

κk+1 − z
κk+1 − κk

B0k (z) ;

B0k (z) = δκk≤z<κk+1 ; B0k−1 (z) = δκk−1≤z<κk

� (3)

where δA is a binary indicator variable taking the value 1 when 
event A is true, and 0 otherwise. Hence, in applications with 
second-order B-splines, an addition of 2× 2 = 4 knots outside the 
range of xqij  is needed (q = 1, 2). They are placed symmetrically to 
the left (right) of the minimum (maximum) of xq, q = 1, 2. In 
words, the kth B2 spline basis function between knots κk−1 and 
κk+1 is a “bell-curve” with a maximum value of 0.75 at κk  and zero 
for all values less than κk−1 and greater than or equal to κk+1. The 
sum over the full set of B-spline basis functions evaluated at a point 
z is always 1.0.

The RB model is designed to capture not only nonlinear effects 
in x1 and x2, but also potential nonlinear interactions. As for the B2 
model, this is achieved by again dropping x1 and x2 from the WM 
in Equation 1, but now adding a sum over a set of KRB weighted RB 
functions of x1 and x2. We get

yij = x ijβ
′
RB +

∑KRB

k=1
γRB
k RBk

Ä
x1ij, x2ij

ä
+di + eij, i = 1, ...,

M, j = 1, ..., mi

� (4)
where x ij is a row vector of pRB = pWM – 2 auxiliary variables, 

βRB
 is a row vector of pRB regression coefficients, and γRB

k  is the 
weight assigned to the kth RB function evaluated at 

Ä
x1ij, x2ij

ä
 

and a set ΓRB of KRB bivariate “knots” (κ1, κ2) with maximum 
separation within the space spanned by 

Ä
x1ij, x2ij

ä
 (Lister and 

Scott 2009, Bia and Van Kerm 2014); remaining symbols are as 
in Equation 1.

The RB functions used here are those recommended by Ruppert 
et  al. (2003), as they provide for a low rank smoothing akin to 
kriging, and a first-order approximation to thin plate spline 
smoothing (Boer et al. 2001). Briefly,

RBk
(
x1ij, x2ij

)
=

∥∥(x1ij, x2ij
)
− (κ1k , κ2k)

∥∥2 log (∥∥(x1ij, x2ij
)
− (κ1k , κ2k)

∥∥)

Ω−0.5
κ1k , κ2k

� (5)
with

Ω =

Ü
RB1 (κ11, κ21) · · · RB1 (κ11, κ2KRB)
...

. . .
...

RB1 (κ1KRB , κ21) · · · RB1 (κ1KRB , κ2KRB)

ê

� (6)

where ‖s‖ denotes the Euclidean length (norm) of a vector s, and 
Ω−0.5

κ1k , κ2k
 is the element in row κ1k  and column κ2k  in the inverse 

of the matrix square root of the KRB × KRB symmetric matrix Ω 
(Johnson et al. 2001). By definition, for a distance of zero, an RB 
function takes the value of 1 (Ruppert et al. 2003, p. 244). For a 
given input 

(
x1ij, x2ij

)
, the output is a set of KRB weights to the 

“knots” in the space of the input variables.

RB functions may be extended to three and higher dimensions 
(Buhmann 2003), but in dimensions higher than two, the co-
variance matrix Ω may not be non-negative definite (Chilès and 
Delfiner 1999, p. 187).

Parameter Estimation
Estimates of the WM regression coefficient vector βWM in 

Equation 1 were obtained via the method of weighted least squares 
(Draper and Smith 1998, p. 108) using the inverse of the sample 
inclusion probability of unit ij 

(
πij

)
 as weight (Särndal et  al. 

1992, 6.4.2).
Estimates of the B2 and RB regression coefficients β and γ  in 

models 2 and 4 were obtained via weighted penalized least squares 
(PLS, Fahrmeir et al. 2013, ch. 8.1.3). Let z ij denote a concatena-
tion of the vectors of the unit-level predictors in models B2 and RB, 
respectively; let Z note the matrix with n rows of the concatenated 
vectors z ij, and let θ denote the concatenation of the regression 
coefficients to z ij. The PLS estimate of θ, with a design-based cross-
validation choice of smoothing (λ), was obtained by minimizing a 
model assisted estimator of variance (Opsomer and Miller 2007, 
Equation 9) with respect to λ

V cv (λ) =
∑

ij�s

πij − πiπj

πij

(
yij − z ijθ′λ

)
πi

(
yij − z ijθ′λ

)
πj

� (7)

where θ′λ is a penalized least-squares estimate of θ that 
depends on λ and the choice of penalty. Specifically, the estimate 
θ′λ satisfies Zθ′λ = S(−)

λ y  where y is a length n row vector of 
observations of Y, and S(−)

λ  is a design-based version of a penalized 
least-squares smoothing matrix obtained after a modification of 
a conventional PLS smoothing matrix S (Fahrmeir et  al. 2013, 
p. 469). We have

S(−)
λ =

S −Diag (S)
Jn×n − Jn×nDiag (S)

, with S = Z(Z′Z + λD + υ I)−1Z′

� (8)
where Jn×n is an n × n matrix of ones, and D is a second-order 

difference penalty matrix (Fahrmeir et al. 2013, p. 437) with the first 
pB2 = pRB rows and columns equal to 0, as no penalty is leveraged 
against the pWM – 2 regression coefficients in βB2 and βRB, and υ 
is a small term to ensure the existence of the inverse (Opsomer and 
Miller 2007, Equation 5). Here we take υ as 1/N. The remaining 
submatrix of D is five-banded (Golub and Van Loan 2012, ch. 4.3) 
with elements {1, 5, 6, 6, …, 6, 6, 5, 1} along the main diagonal 
(band 0), {–2, –4, –4, … –4, –4, –2} along bands (subdiagonals) 
±1, and {1, 1, …, 1, 1} along bands ±2. For the λ that minimizes 
Equation 7, the sample-based and design-consistent PLS solution 
becomes (Fahrmeir et al. 2013, 8.3)

θ̂ =
Ä
Z′Π−1Z + λD + υ I

ä−1
Z′Π−1y� (9)

where Z  is the matrix of sample values of the predictors, y 
is the vector of sample values of Y, and П is an n × n diagonal 
matrix of sample inclusion probabilities. The penalty term was 
estimated via a grid search of candidate values for λ followed by a 
second-order interpolation to find the value of λ that minimizes 
Equation 7, and subsequently we used this value to obtain θ̂ as 
per Equation 9.
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For the domain-level inference, the above parameters were 
re-estimated after ignoring the sample inclusion probabilities (the de-
sign) (Mandallaz 2008, p. 49). For our equal probability (SI) design, this 
is without consequence. To compute the variance of a domain mean (cf. 
below), we also need to decompose the residual variance to an among-
domain variance σ2

d  and a within-domain variance σ2
e . Estimates of 

these variance components were obtained using Henderson’s method III 
(Searle et al. 1992, ch. 5.5) for unbalanced data, which uses moment 
estimators. Preliminary analyses had shown that this method was more 
robust than the more popular empirical best linear unbiased prediction 
estimator (Pinheiro and Bates 2000, ch. 4).

Estimators for Population-Level Inference
In accordance with our objective of assessing the regression es-

timator of variance as an alternative to the difference estimator of 
variance when a semiparametric model is internal, i.e., fitted to 
sample data, we next present both estimators.

The model assisted regression estimator of a population mean of 
Y can be written as a weighted (“g-weights”) linear function of the 
π-expanded sample values of Y: (Särndal et al. 1992, 6.5.9)

ˆ̄yREGMOD = N−1
∑
ij∈s

ĝMOD
ij y ijπ−1

ij , MOD = WM, B2, RB

with ĝMOD
ij = 1+ (tz − t̂z)′T̂−1z′ij

� (10)

where g MOD
ij  is a design-based weight given to yij, tz is the true 

population total of the vector of predictors, ̂tz is the design-based 
estimate of this total, and T̂ is the matrix of sample sums of cross-
products z′ijz ijπ

−1
ij  (Särndal et al. 1992, 6.4.11). The notation ij ∈ s 

indicates that unit ij is in the observed sample.
Under an SI design, the difference estimator—with the 

(
z ij,θ

)
 

notation used in Equation 7 and for a population mean of Y—can 
be written as (Särndal et al. 1992, 6.3.4)

ˆ̄yDIF
MOD = θ̂′

MODz̄ + N−1
∑
ij∈s

π−1
ij

(
yij − ŷ ij

)
,

MOD = WM, B2, RB
� (11)

where θ̂′
MOD, in the case of the WM model, is the weighted 

least-squares estimate of βWM, z̄  is the (known) population mean 
of the auxiliary variables, and ŷ ij is the marginal prediction of yij 
conditional on the estimated regression coefficients. Note that for 
WM, the estimators in Equations 10 and 11 are equal.

With the RB model, we occasionally encountered negative g-weights. 
In those cases with negative projections of T in Equation 10 onto the real 
line, T was subject to a single value decomposition (SVD, Searle 1982, 
pp. 209 and 316) with the eigenvalues less than 10–8 times the largest 
eigenvalue of T set to zero. If the reconstructed T matrix with these 
new eigenvalues continued to produce negative g-weights, the SVD was 
iterated until all g-weights became positive. Between one and six iterations 
sufficed in most cases.

The variance estimator of ˆ̄yREGMOD (Särndal et al. 1992, 6.6.4) is

V̂
Ä
ˆ̄yREGMOD

ä
= N−2

∑
ij�s

∑
uv�s

�

∆ij,uv

(
ĝMOD
ij

�e ij
)(

ĝMOD
uv

�e uv
)
,

MOD = WM,B2, RB
� (12)

where �e ij is the π-expanded regression residual 
(
yij − ŷ ij

)
π−1
ij , and 

�

∆ij,uv is the π-expanded joint sample inclusion probability of units 

ij and uv 
Å

�

∆ij, uv = 1− πijπuvπ
−1
ij,uv for ij �= uv ,

�

∆ij,ij = 1− πij

ã
.

It became clear that the g-weights for RB computed following 
an SVD decomposition generated a lower variance estimate than 
without the SVD decomposition. To counter this unintended side-
effect, we multiplied V̂

(
ˆ̄yREGMOD

)
 by a correction factor C 2

RB with 
CRB =

∑
ij∈s

∣∣∣g̃RBij
∣∣∣/∑ij∈s

∣∣∣ĝRBij
∣∣∣ where 

∣∣∣g̃RBij
∣∣∣ is the absolute of the 

g-weight estimated prior to the SVD decomposition.
The difference estimator of variance (Särndal et  al. 1992, 

6.3.6) is

V̂
Ä
ˆ̄yDIF
MOD

ä
= N−2

∑
ij�s

∑
uv�s

�

∆ij,uv
�e ij

�e uv , MOD = WM,B2,RB

� (13)
Nominal 95 percent normal confidence intervals 

for the population mean ȳ  were computed as 
ˆ̄yESTMOD ± 1.96

»
V̂

(
ˆ̄yESTMOD

)
, MOD = WM, B2, RB, EST = REG, DIFF.  

In the simulated case study with ȳ  known, we computed the pro-
portion of 1,000 intervals (viz. coverage) that contained the ac-
tual population mean ȳ  (Särndal et  al. 1992, p.  534, Rao and 
Hidiroglou 2003).

Estimators for Domain-Level Inference
For domain i with i = 1, …, M, the MB estimator of the mean 

of Yi is (Chambers and Clark 2012, 7.2 p. 72)

ˆ̄yMB
MOD, i = ȳ si + (Ni − ni)

−1∑
j/∈si

zMOD
ij θ̂′

MOD,

MOD = WM, B2, RB
� (14)

where ȳ si is the mean of yij of the sample units located in the ith 
domain (if any), ni is the number of units from the ith domain in the 
sample (si), and Ni is the size in units of the ith domain. When ni is 
zero, the estimator in Equation 12 becomes regression-synthetic, i.e., 
purely derived from information external to the ith area, we now rely 
on the assumption that the population-level model holds in every small 
area (stand) of interest, which leads to a synthetic method of inference 
(Chambers and Clark 2012, ch. 15.1). In Equation 14, the use of ȳ si 
ensures the most efficient estimator. Dropping ȳ siand using a facultative 
summation of model predictions for all units in a small area instead (for 
example, McRoberts et al. 2013) provides a less efficient estimator, since 
unbiased information is ignored.

The MB variance estimator for the mean in the ith domain is 
(Chambers and Clark 2012, 7.4, p. 73)

V̂
(
ˆ̄yMB
MOD, i

)
= Ni

−2
(
tzMOD

i \siΣ̂
(
θ̂
MOD)

t′zMOD
i \si + σ̂2

d + (Ni − ni) σ̂2
e

)
,

MOD = WM, B2, RB
� (15)

where tzi\si  is the (known) vector of totals for the explan-
atory variables in the Ni − ni units of the ith domain not in 
the sample (si) from the ith domain. As before, σ̂2

d  and σ̂2
e  are 

model-specific and conditional on θ̂
MOD. We obtained nominal 

95 percent normal confidence intervals for an estimated domain 
mean and, in one case, also the coverage of an estimated interval 
(cf. above).

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article-abstract/doi/10.1093/forsci/fxaa008/5861107 by guest on 25 June 2020



Forest Science  •  XXXX 2020  5

Case Studies

HUC Forest.
The population is artificial and composed of 21,025 fixed equal 

area sampling units divided into 112 forest stands (domains) of 
different size (see Appendix A for details). The study variable is 
stem volume (VOL; unit: m3 ha−1), and it is desired to obtain a 
sample-based estimate of the population mean of VOL and the 
mean of VOL for each stand. An estimate of uncertainty and 
a nominal 95 percent confidence interval for the true but un-
known mean of VOL is also required. Five unit-level auxiliary 
variables assumed useful as predictors of VOL are available for 
every unit in the population: elevation (ELEV; unit: m), mean 
canopy height (CH; unit: m), standard deviation of canopy 
height (sCH; unit: m), longitude (LON ˚W; unit: degree), and 
latitude (LAT ˚N; unit: degree). CH and sCH are metrics de-
rived from data captured during a virtual airborne laser scanning 
of the forest (Wulder et al. 2013). Simulation details are provided 
in Appendix A.

An equal probability sampling design without replacement (SI) with 
a sample size n of 200, 300, and 400 units is simulated. Predictors in 
the WM in Equation 1 are LAT, LON, ELEV, CH, and sCH. The B2 
model is linear in the variables ELEV, CH, and sCH, and has a non-
linear second-order B-spline extension in the variables LAT and LON 
in the form of KB2 = 9 second-order B-spline basis functions evaluated 
at LATij and LONij plus a set of eight equally spaced values (“knots”) 
within the ranges, and four “knots” placed symmetrically outside the 
ranges of LAT and LON, respectively.

The RB model is also linear in ELEV, CH, and sCH, and it 
has a nonlinear extension with KRB = 63 RB functions evaluated at 
locations (LATij, LONij) and 63 “knot” locations uniformly placed 
with a maximum of separation within the spatial domain of hy-
drological unit codes (HUC). The RB functions capture not only 
nonlinear effects in LAT and LON, but also nonlinear interactions 
in these variables. The STATA® software algorithm fillin by Bia and 
Van Kerm (2014) was used to place the “knots.”

Note, for both B2 and RB, the degrees of freedom (df ) 
expended on the nonparametric part is lower than the number 
of basis functions (Fahrmeir et al. 2013, p. 474). Specifically, 
we used df  =  Trace(2S-SS′) (Fahrmeir et  al. 2013, p.  475) 
with S defined in Equation 8, instead of the more common 
df  =  Trace(S) because S was rarely symmetric. In our HUC 
simulations, with n = 200, an average of 18.6 (±1.9) dfs were 
used in B2, and 10.9 (±0.3) were used in RB. These numbers 
increased slightly with sample size, and they were 19.8 (±0.6), 
and 11.1 (±0.3), respectively with n = 400.

We replicated the simulated sampling with the three 
sample sizes 1,000 times and obtained the above estimators 
for both the HUC forest and its 112 stands.

Betriebsinventur (BI) Data from Baden-Württemberg.
In this case study (see Appendix B for details), we focused 

on forest stands in the state forest of the district “Breisgau-
Hochschwarzwald” in Baden-Württemberg, Germany, for which 
data from an image flight were available for the year 2015. We 
used digital aerial stereo images from the regular aerial surveys 
of the Baden-Württemberg land-surveying authority (LGL)1 to 
generate a digital surface model (DSM). LGL also provided us 
with a high-quality digital terrain model (DTM) with 1-m reso-
lution. Based on data from the DSM and the DTM, we deduced 

the normalized DSM (nDSM) which describes the height of off-
terrain objects at every position of the survey area. Standardized 
processes as detailed in Appendix B were applied to acquire the 
auxiliary information from the stereo image point clouds and 
from the DTM. The area unit (pixel) for the auxiliary variables 
was a 20 × 20 m square.

For illustration purposes, we used a subarea with a higher 
density of forest stands (see Figure 1). This area covers 862 forest 
stands, representing 4,731 hectares in total, where single stands 
have a size of 0.2–45.9 hectares with a median size of 3.59 
hectares. The auxiliary data were generated for those 118,266 
pixels overlapping by at least 50 percent with the selected forest 
stands. The data from plots of the enterprise inventory BI in 
2015 in the state forest served as terrestrial data. A  total of 
436 forest stands in our study area contained at least one BI 
plot that was surveyed in 2015, representing an area of 3,080 
hectares in total. Overall, 770 BI plots were distributed over 
these forest stands, whereas at most, seven BI plots were located 
in one single forest stand. For all of these 436 forest stands, both 
terrestrial and auxiliary data were available. The remaining 426 
forest stands in our study area did not contain any BI plot that 
was surveyed in 2015. As a result, only auxiliary data were avail-
able for these forest stands.

As in the HUC study, the study variable is VOL (unit: m3 ha−1), 
and we want to obtain a sample-based estimate of the population 
mean of VOL and the mean of VOL in each stand (details on this 
variable can be found in Appendix B). Further, we want to estimate 
the uncertainty and a 95 percent confidence interval for the mean 
of VOL. Based on the data from the BI plots, the empirical mean 
volume for all stands is 432.41 m3 ha−1 with a standard deviation of 
231.83 m3 ha−1 and a standard error of 8.35 m3 ha−1, respectively. 
The volume ranges between 7.16 m3 ha−1 and 1,620.43 m3 ha−1, 
depending on the measurements at the BI plots.

We used the following five unit-level auxiliary variables: total 
crown coverage (CC; unit: percent), mean CH (unit: m), standard 
deviation of canopy height (sCH; unit: m), total volume under-
neath the normalized digital surface model (VolnDSM; unit: m3 
ha−1), and elevation (ELEV; unit: m). ELEV is directly obtained 
from the DTM, whereas all other metrics are derived from the in-
formation deduced from the digital aerial stereo images, partly in 
combination with the DTM.

We used the same five predictors x ij  in all three models: for the 
WM in Equation 1, we included CC, CH, sCH, VolnDSM, and 
ELEV. The linear part of the B2 model in Equation 2 included 
CC, CH, and sCH, plus a weighted sum of KB2 = 9 second-order 
B-spline basis functions evaluated at VolnDSMij, and a weighted 
sum of KB2 = 9 second-order B-spline basis functions evaluated 
at ELEVij. Therefore, we considered a set of eight equally spaced 
VolnDSM (ELEV) values (“knots”) within the range of VolnDSM 
(ELEV) and four “knots” placed symmetrically outside this range. 
For the RB model in Equation 4, we also used CC, CH, and 
sCH as linear explanatory variables (xij), plus a weighted sum 
of KRB  =  146 RB functions evaluated at locations (VolnDSMij, 
ELEVij). The corresponding 146  “knot” locations are placed by 
uniformly expanding a grid over a prespecified number of 15 
values each for VolnDSM and ELEV, and subsequently clipping 
according to a convex hull around the data points using R version 
3.4.0. Our choice of knots was guided by recommendations in 
Ruppert et al. (2003, ch. 5.5).
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Results

HUC Forest.
Estimates of the mean stem volume density (VOL m3 ha−1) are 

listed in Table 1. With the linear WM model, the apparent bias in 
the REG and DIFF estimators was approximately equal and varied 
from –0.04 percent (n = 200) to 0.06 percent (n = 400). With the 
B2 model, the apparent bias in the REG estimator was –0.13 percent 
(n = 200), which declined to just 0.01 with n = 400. The apparent 
bias in the DIFF estimator was less (–0.07 percent) with n = 200, but 

slightly larger (0.02 percent) with n = 400. The RB model generated 
consistently the largest bias with the REG estimator (from –0.55 per-
cent with n = 300 to –0.35 percent with n = 400) and only slightly 
less biased results with the DIFF estimator (from –0.31 percent with 
n = 300, to –0.20 percent with n = 400 percent). We failed to reject 
the null hypothesis of a zero bias in REG and DIFF estimates of VOL 
m3 ha−1 (5 percent level) for WM and B2, but rejected, for all sample 
sizes, the null hypothesis in case of RB. The apparent decrease in bias 
in B2 and RB with increasing sample size suggests nearly unbiasedness 
with sample sizes larger than used here.

Table 1. Estimates of VOL in the HUC forest and associated estimates of relative bias (BIAS percent = BIAS / VOL × 100), eSE, oSE, and 
COV95 of nominal 95 percent confidence intervals.

Sample size 200 200 200 300 300 300 400 400 400
Statistic Estimator WM B2 RB WM B2 RB WM B2 RB
Mean REG 404.7 404.4 402.7 405.0 404.9 403.2 405.1 404.9 403.5
 DIFF 404.7 404.6 403.6 405.0 404.9 403.8 405.1 405.0 404.1
BIAS percent REG –0.04 –0.13 –0.55 0.02 0.00 –0.43 0.06 0.01 –0.35
 DIFF –0.04 –0.07 –0.31 0.02 0.01 –0.26 0.06 0.02 –0.20
eSE REG 15.1 13.0 13.3 12.2 10.5 9.0 10.6 9.1 7.7
 DIFF 14.8 12.2 9.4 12.1 10.1 8.0 10.5 8.8 7.1
oSE REG 15.5 13.6 13.3 12.6 10.9 10.5 10.9 9.1 7.7
 DIFF 15.5 13.6 13.6 12.6 10.9 10.5 10.9 9.5 8.8
COV95 REG 0.95 0.93 0.92 0.94 0.94 0.90 0.94 0.93 0.91
 DIFF 0.94 0.92 0.81 0.94 0.92 0.84 0.94 0.93 0.88

Note: Analytical standard errors are the square root of the variances in Equations (12) and (13), observed standard errors are the standard deviations across 1,000 
replications. Actual mean stem volume is 404.9 m3 ha−1. COV95, coverage of nominal 95 percent confidence intervals; DIFF, difference estimator; eSE, estimated (analyt-
ical) standard error; oSE, empirical standard error; HUC, hydrological unit codes; REG, regression estimator; VOL, mean stem volume density; WM, working model.

Figure 1. Map of Baden-Württemberg, Germany (right). The callout (left) displays the 862 forest stands in the state forest we focused on 
in our case study.
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Estimated (analytical) standard errors (eSE) are listed in Table 1. 
All the estimates follow the expected trend of a decline at the rate 
of 

√
n with increasing sample sizes. Across sample sizes, the lowest 

REG errors were obtained with RB (mean 10.2 m3 ha−1), followed 
by B2 (10.9 m3 ha−1). The largest error of 12.7 m3 ha−1 was with 
the WM. With WM, the difference between a REG and a DIFF 
estimate of eSE is less than 2 percent and unimportant. With B2, 
the REG estimates of errors are greater than the DIFF estimates, 
but the difference decreased with increasing sample size from 6 per-
cent with n = 200 to 3 percent with n = 400. The most important 
differences between REG and DIFF were located with RB, but here 
too, the differences also decreased with increasing sample size (from 
29 percent with n = 200 to 8 percent with n = 400).

The empirical (observed) standard errors (oSE) were, on average 
(across sample sizes), greatest for WM, approximately 12 percent 
smaller for B2, and 18 percent smaller for RB (Table 1). Observed 
REG errors were, as expected from the analyses of the means, very 
similar to the DIFF estimates.

With the WM model, the REG and DIFF analytical and empir-
ical estimates of standard errors were within a few percentage points 
(1–4) of each other. With B2, both REG and DIFF underestimated 
the empirical errors when sample sizes were 200 and 300. The un-
derestimation for these two sample sizes was 4 percent with the REG 
estimator and 10 percent for DIFF with n = 200. Corresponding 
results for n = 300 were 4 percent and 7 percent. With the largest 
sample size, the underestimation was trivial (less than 0.5 percent) 
with REG but remained high for DIFF (21 percent).

The achieved coverage of nominal 95 percent normal confidence 
intervals with the WM was, for both REG and DIFF estimators, be-
tween 0.94 and 0.95 (Table 1). With a Monte Carlo error (Koehler 
et al. 2009) of 0.008, we failed to reject the null hypothesis of a 
coverage equal to the nominal 0.95. With B2, the REG coverage 
was 0.93–0.94 and 0.92–0.93 for DIFF. With a coverage of 0.93 or 
less, we rejected the null hypothesis of a coverage of 0.95 at the 5 
percent level. Coverage obtained with the RB model and the REG 
estimator was deficient in all cases (0.90–0.92) and significantly 
worse with the DIFF estimator (0.81–0.88).

Stand-level MB estimates of relative bias in the WM, B2, and 
RB estimates of mean VOL were highly variable (Figure 2). When 
expressed as a percentage of the mean stand volume, the average 
bias with n = 300, was –4 percent for WM, –10 percent for B2, and 
0.4 percent for RB. These averages were practically the same with 
n = 200 and n = 400. RB achieved—with each sample size—an in-
terquartile range (IQR) of relative bias of 24 percent, much lower 
than the IQR of 52 percent with WM, and 66 percent with B2.

Given appreciable differences in bias of WM, B2, and RB 
estimates of stand mean stem volume density, we report on 
observed (oRMSE) and expected (eRMSE) root mean squared 
errors in estimates of stand means. With WM, the oRMSE was 
159 m3 ha−1 (39 percent of overall mean) with n = 300, 157 m3 ha−1 
with n = 300, and 155 m3 ha−1 with n = 400. The eRMSEs were 
consistently larger (14–21 percent) across all stands and strongly 
correlated with the oRMSEs (>0.9). Results with B2 were disap-
pointing with both oRMSEs and eRMSEs, being approximately 
20 percent greater than corresponding WM results. Only in ap-
proximately 50 stands out of 112 were the oRMSE and eRMSE 
slightly smaller with B2 than with WM. In contrast, with the RB 
model, the oRMSEs and eRMSEs were smaller in 91 out of 112 

stands than with WM. The differences (WM – B2) in oRMSEs 
ranged from 19 percent (n = 200) to 32 percent (n = 400), whereas 
the differences in eRMSEs varied from 28 percent (n  =  200) to 
34 percent (n  =  400). Again, the correlation between oRMSEs 
and eRMSEs was strong (>0.9). Kernel-based probability density 
distributions of WM, B2, and RB stand-specific averages (over 
1,000 replications) of oRMSEs and eRMSEs are shown exempla-
rily with n = 300 in Figure 3. Distributions for n = 200 and n = 400 
were similar (not shown). In the case of RB but not B2, the variance 

Figure 2. Stand-level distribution of relative bias (true minus 
predicted) as a percentage of the overall mean stem volume den-
sity. The shaded boxes cover the interquartile range, and the 
whiskers cover 95 percent, i.e., approx. 106 stands. The average 
relative bias for a model is indicated with a black line. Outliers are 
indicated by asterisks. 
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reduction seen at the population level was even greater at the stand-
level. With B2, we actually observed a net increase in variance.

With a sample size of 200, the relative frequency of 95 per-
cent confidence intervals for a stand mean that include the ac-
tual stand mean of VOL (i.e., coverage) was, on average, 0.70 
for the WM model, 0.59 for the B2 model, and 0.83 for the RB 
model (Figure 4). The fraction of stands with a coverage of 0.90 
(considered as poor) or less with n = 200 was 0.61 for WM, 0.48 
for B2, and 63 for RB. An increase in sample size to 300 or 400 
lowered coverage because of the combination of a more or less con-
stant bias and a smaller estimate of error. The lowering was most 
pronounced in WM (0.08 per increase of 100 in sample size) and 
B2 (0.05 per increase of 100 in sample size), and least in RB (0.02 
per increase of 100 in sample size).

BI Data from Baden-Württemberg.
MA estimates for the population-level were underestimating the 

empirical mean VOL of 432.41 m3 ha−1 obtained from all 770 BI 
plots in the study area (Table 2). Analytical mean estimates were in 
the same order of magnitude for all three models (WM, B2, RB) 
and both types of estimators (REG and DIFF), ranging between 
413.5 m3 ha−1 and 420.3 m3 ha−1. For B2, the DIFF mean VOL 
(415.7 m3 ha−1) was slightly lower than the REG mean VOL (420.3 
m3 ha−1), whereas, in contrast, the DIFF mean VOL (416.7 m3 ha−1) 
was slightly increased compared to the REG mean VOL (413.5 m3 
ha−1) for RB. When comparing the respective analytical standard 
errors, it appeared that all of them were smaller than, or at most 
equal to, the direct estimate of the standard error of VOL, 8.35 m3 

ha−1. The largest REG error was for WM (8.3 m3 ha−1), followed 
by B2 (7.4 m3 ha−1) and RB (6.1 m3 ha−1). REG results indicated 
that there was information about VOL in VolnDSM and ELEV not 
captured with the linear WM. In contrast, the DIFF errors differed 
only marginally for the three different models (5.6–5.7 m3 ha−1), 
potentially underestimating the variance and also not indicating a 
potential improvement of the linear WM by using nonlinear terms 
for VolnDSM and ELEV. According to the 95 percent confidence 
intervals, only the REG estimates from WM and B2 included the 
empirical (field sample) mean of VOL. In particular, no DIFF-
based confidence interval contained the empirical mean VOL.

Stand-level MB estimates of volume density and variances in the 
862 forest stands (domains) are captured in Figure 5a–c. Figure 5a 
displays the kernel density distributions of stand-level estimates of 
VOL with WM, B2, and RB. A distinction is made between stands 
with and without BI plots, i.e., with and without information from 
terrestrial data for reasons given next. Forest stands without ter-
restrial information—for which the regression-synthetic estimator 
applies (Rao and Molina 2015, 3.2.2)—have a wider distribution 
of VOL and a lower median and mean value than stands with ter-
restrial information. The kernel density distributions in Figure 5b 
of MB stand-level variances of mean VOL also show a different 
pattern for stands with and without BI plots. The variances for 
stands without terrestrial information have a wider distribution 
than variances for stands with terrestrial information (BI plots). 
Furthermore, it becomes apparent that in general, RB variances of 
a stand mean tend to be smaller than counterparts obtained with 
WM or B2.

The B2 and RB models were expected to capture significant non-
linear departures from the linear WM and to provide improved stand-
level estimates by extension. We have no direct means of ascertaining 
this prospect with the BI data. Instead, we investigated the change in 
a stand-level estimate of the mean VOL density when switching the 
model from WM to either B2 or RB. Accordingly, we saw that RB 
estimates deviated slightly more from WM estimates than did the 
B2 estimates. Thus, B2 estimates were, on average, closer to the WM 

Figure 4. Achieved coverage of 95 percent confidence intervals of 
an hydrological unit codes forest stand mean of volume density by 
models WM, B2, and RB. The shaded boxes cover the interquar-
tile range, and the whiskers cover 95 percent, i.e., approx. 106 
stands. The average coverage is indicated for each model with a 
horizontal black line. The gray horizontal line indicates the target 
coverage of 0.95, and the dashed lines are at 0.91 and 0.99, re-
spectively. Outliers are marked with asterisks.

Figure 3. Kernel smoothed distributions of the observed (oRMSE) 
and expected (eRMSE) root mean squared error of a stand mean.
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Table 2. Estimates of mean stem volume density in the Betriebsinventur data, associated eSE, and CI95.

Statistic Estimator Working model Second-order model Radial basis model

Mean REG 416.4 420.3 413.5
 DIFF 416.4 415.7 416.7
eSE REG 8.3 7.4 6.1
 DIFF 5.7 5.6 5.6
CI95 REG [400.0; 432.7] [405.8; 434.9] [401.6; 425.4]
 DIFF [405.2; 427.5] [404.1; 426.2] [405.8; 427.7]

Note: The empirical mean of volume density based on all 770 Betriebsinventur plots is 432.4 m3 ha−1. CI95, 95 percent confidence intervals for the mean; DIFF, difference 
estimator; eSE, estimated (analytical) standard error; REG, regression estimator.

Figure 5. (a) Kernel density plots displaying the mean volume estimates per stand corresponding to all three methods; (b) kernel density 
plots for the variance of mean volume per stand; (c) kernel density plot of difference between VOL estimates of WM and B2 (dark gray), 
and RB (light gray), scaled by the VOL estimate of WM per stand. A signature distinction is made between stands with no or at least one 
BI plot, i.e., information from terrestrial data.
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estimates than estimates from RB. Both the B2 and RB distributions 
of deviations from the WM results resembled a (negligibly left-
skewed) normal distribution. As already indicated, the respective dis-
tribution for B2 was narrower, e.g., having a smaller variance, than 
for RB. The mean relative difference in mean VOL between WM and 
B2 was 1.5 percent, with 95 percent of the differences located be-
tween –19 and +22 percent (Figure 5c). The corresponding result for 
RB was –2 percent with 95 percent of the differences located between 
–23 and +19 percent. As expected, a separation of the deviations ac-
cording to whether terrestrial stand-specific inventory information 
on VOL was available or not showed that the distributions of the 
scaled differences were wider for stands without BI plots. This be-
havior was however not as distinct as in Figure 5a and b.

Discussion
At first glance, the extension of a linear WM by a set of basis 

functions to capture possible nonlinear effects and interactions in 
auxiliary variables may seem both straightforward and attractive 
for a design-based population-level inference and a model-based 
inference at the domain level (Breidt et al. 2007, Opsomer et al. 
2007, Cicchitelli and Montanari 2012, Breidt and Opsomer 2017, 
Wagner et al. 2017). However, when models are fitted to sample 
data (i.e., the model is “internal”)—a common scenario in forest 
inventories (for examples, see Corona et al. 2014, Mandallaz 2014, 
Ståhl et al. 2016)—our example with the artificial population indi-
cated that a small bias paired with an important reduction in var-
iance is limited to designs calling for a field sampling with more 
than (approximately) 5 plots per hectare. With these larger sample 
sizes, tangible reductions in variance are possible at both the popu-
lation and domain level with a careful choice of basis functions (cf. 
results for the RB functions, and for examples, see Opsomer et al. 
2008, Finley et al. 2017, Wagner et al. 2017). Yet, within a design-
based framework of inference, the model structure has to be defined 
before the sample is observed (Särndal et al. 1992, ch. 6.7). Hence, 
attempts to optimize the choice of basis functions, the number and 
placement of knots, and the auxiliary variables with purported non-
linear effects were not an option in our study.

An analyst, in pursuit of a potential variance reduction with 
semiparametric modeling within a design-based framework of in-
ference, is therefore faced with a suite of difficult decisions that 
cannot be resolved by trial and error or optimization. Past experi-
ence, subject knowledge, and statistical expertise become key to a 
successful implementation. For a subsequent model-based domain-
level inference, an optimization may be pursued—but this option 
was considered outside the scope of this study.

In forest inventories, one can make an argument for capturing 
spatial effects in auxiliary variables (Lappi 2001, Finley et  al. 
2011). This can be done with a variety of methods, for example, 
spatial regression (Huque et  al. 2016), rule-based nonparametric 
imputations (Temesgen and Ver Hoef 2014), geo-statistical methods 
(Mandallaz 2000, Meng et al. 2009), and radial splines (Kato et al. 
2009, Rocha and Dias 2019). We saw that significant spatial effects 
and interactions between variables of spatial location (LAT, LON) 
could be captured by radial splines, but also that one would have to 
contend with a risk of underestimating variance, with the REG and 
in particular with the DIFF estimator. We consider it unlikely that 
any of the alternatives to the RB would fare better. This is an area in 
need of further investigation.

With internal nonlinear models, the choice of a design-based es-
timator of variance becomes important. The DIFF estimator has be-
come popular because the variance is (design-consistently) computed 
directly from the empirical residuals regardless of the model form 
(Breidt et al. 2007, Baffetta et al. 2009, Massey et al. 2014, Saarela 
et  al. 2015). Our simulations confirmed that the DIFF estimator 
of variance is prone to underestimate the actual (observed) variance 
and that the magnitude of underestimation depends on the intrinsic 
curvature of the basis functions (see also Massey and Mandallaz 
2015, Kangas et  al. 2016). The proposed REG estimator of vari-
ance employs weighted residuals that calibrate the sample estimates 
of the auxiliary means to the actual (known) means (Fuller 2011, 
p. 104). Our simulations suggest that the REG estimator of variance 
also underestimates the actual variance but to a lesser degree than 
the DIFF estimator of variance. Application to the BI data further 
supports the finding from the simulations that the DIFF estimator 
of variance is lower than the REG estimator of variance. Despite 
computational complexity, and the triggering of an SVD to fix 
problems of negative weights, we consider REG a better estimator 
of variance than DIFF for semiparametric internal models.

The practical consequence of underestimating variance is an 
increase in the probability that a computed confidence interval 
does not include (cover) the actual value of an estimated param-
eter (Rao and Hidiroglou 2003). If it is important to keep the 
population-level coverage to within 0.01–0.02 of the nominal 
target, a linear WM would be the choice. However, for a model-
based domain-level inference without access to design-consistent 
estimators of important domain effects—as predicated by our 
SI design (Magnussen 2018)—a good choice of basis functions 
can substantially improve otherwise-poor coverage with a linear 
WM. Notwithstanding, the coverage will, for many domains, 
still be poor until the sampling design is changed to accommo-
date a design-consistent estimator of domain effects (Magnussen 
and Breidenbach 2017).

Appendix A
HUC Forest. The HUC forest is a simulated population com-

posed of 21,025 equal area square units organized to 112 spatially 
compact managed forest stands (domains). The area of a unit is 
706.86 m2, i.e., equal to the area of a circular fixed area forest in-
ventory sample plot with a radius of 15 m. Thus, the total area of 
the HUC forest is 1,486.2 hectares. The spatial location, extent, 
and unit elevation above sea level of the 112 stands were adapted 
from 112 hydrological basin units in the northeastern United States 
(Stoddard et  al. 2005) and modified to emulate a forested land-
scape. In particular, the original within-basin variation in elevation 
was reduced by a factor of 15. HUC is an acronym for hydrological 
unit code. The same units were used by Opsomer et al. (2008) in a 
study on nonparametric small area estimation with penalized spline 
regression.

The size of a stand varies from 0.8 to 43.2 hectares (viz. 12–610 
units) with a mean of 13.3 hectares (188 units). One-fourth of the 
stands were smaller than 6.8 hectares, and one-fourth were greater 
than 18.2 hectares. Elevation varied from 9 to 657 m with a mean 
of 239 m. Elevation quartiles (25 percent and 75 percent) were 94 
and 369 m, respectively.

The study variable of interest is per unit area stem volume 
(VOL; unit: m3 ha−1). Unit-level auxiliary variables correlated with 
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VOL and available for modeling are: (1) elevation (ELEV; unit: 
m); (2) longitude (LON ˚W; unit: degree), and latitude (LAT ˚N; 
unit: degree) of a unit centroid; (3) the unit mean CH (unit: m) de-
rived from a simulated surface of presumed vegetation heights; and 
(4) the standard deviation of canopy heights within a unit (sCH; 
unit: m).

Simulation of unit-level values of VOL, CH, and sCH was with 
emphasis on generating realistic data. Only a brief outline of the 
simulations follows. Stand means of VOL were simulated in seven 
steps: (1) an SI (viz. the height of dominant trees at age 100 years) 
expressed as a function of ELEV plus a random deviation; (2) a 
stand age (A; unit: years) expressed as a random number between 0 
and 100 plus a random deviation determined by ELEV; (3) a mean 
dominant tree height (DHT; unit: m) expressed as a function of SI 
plus a random stand effect; (4) a within-stand standard deviation of 
dominant tree height (sDHT; unit: m) plus a random stand effect; 
(5) a stand stem density (N; unit: stems ha−1) plus a random stand 
effect; (6) a mean stem diameter at breast height (dbh) at a refer-
ence height of 1.3 m (unit: cm); and (7) a VOL value determined 
as a function of N, DHT, dbh, and SI plus a random stand effect. 
Stand effects were generated by draws from a multivariate Copula 
distribution (Fischer 2010) with both normal and uniform mar-
ginal distributions.

After simulating stand means of VOL, the stand means of CH 
and sCH were generated. CH was cast as a function of DHT, 

sDHT, dbh, SI plus a random stand effect, sCH as a function 
of sDHT, and CH plus a random stand effect. Random stand 
effects were random draws from a multivariate Copula distri-
bution with an anticipated correlation structure and scaled to 
a target value of the among-stand coefficient of variation of ap-
proximately 85 percent for VOL, 54 percent for CH, and 22 
percent for sCH. Within-stand unit-level values of VOL, CH, 
and sCH were drawn from a scaled version of the Copula dis-
tribution. The scaling was to a target within-stand coefficient of 
variation of approximately 8 percent for VOL, 7 percent for CH, 
and 12 percent for sCH.

The above simulations created a finite fixed area population with 
a mean unit-level VOL of 406 m3 ha−1 (min = 0 m3 ha−1, max = 
1,000 m3 ha−1) and a unit-level standard deviation of 369 m3 ha−1. 
Maps of the spatial distribution of VOL, CH, and sCH are shown 
in Figure 6 (top right, bottom left, and bottom right). A histogram 
of stand mean volume is shown in Figure 7.

With an elevation of less than 400 m, there was no clear rela-
tion between elevation and VOL m3 ha−1, but at greater altitudes 
VOL never exceeded 400 m3 ha−1. The correlation between CH 
and VOL was positive for CH less than approximately 20 m, but 
nearly zero for CH > 20 m. The influence of sCH on VOL was 
complex. When sCH was less than 2 m, VOL was less than 400 
m3 ha−1. At larger values of sCH, the value of sCH had no obvious 
bearing on VOL.

Figure 6. Stand map of relative elevation (top left), per unit area stem volume (top right), canopy height (bottom left), and standard devi-
ation of canopy height (bottom right). Values increase from black to white. Stand boundaries are indicated by dashed lines.
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Appendix B
BI Data from Baden-Württemberg. The considered area in the 

state forest of “Breisgau-Hochschwarzwald” with image flight 
data from 2015 is located between 47.784°N and 48.120°N, 
and 7.532°E and 8.005°E. For the case study, we focused on the 
subarea located between 47.790°N and 47.955°N, and 7.746°E 
and 8.008°E. Plots of the BI of Baden-Württemberg are arranged 
in a systematic grid of 100 × 200 m. For each BI plot, data are col-
lected for single trees in concentric circles. The volume is calculated 
by means of taper functions requiring the tree attributes “species,” 
“lower diameter” (dbh), “upper diameter,” and “height.” However, 
the upper diameter is not measured in the field but estimated 
based on species-specific form factors derived from volume tables 
(so-called “volume-table equivalent taper”).

A large size digital aerial matrix camera (UltraCam Eagle) with four 
spectral bands (red [R], green [G], blue [B], and near-infrared [NIR]) 
and a focal length of 100.5 mm was used during the image flights in 
2015. The generated digital aerial stereo images are characterized by a 
nominal ground resolution of 20 cm, forward overlap of 70 percent, 
and side overlap of 40 percent. LGL further provided a high-quality 
DTM with 1-m resolution, being derived from airborne laser scan-
ning data collected between 2001 and 2004, with an approximate 
point density of 0.8 points per square meter. LGL reported the nom-
inal height accuracy as 0.5 m or better.

The software SURE of nFrames was used to generate a high-
resolution DSM point cloud (0.4 m) from the stereo images in a dense 
image matching process. The filtered point clouds served as a basis to 
generate a canopy height model, whereas the software LAStools (van 
Rees 2013) was used to derive a raster-DSM (spatial resolution of 1 m; 
equivalent to the resolution of the DTM) from each point cloud: within 
the planimetric pixel extent (1 m2), the elevation of the highest point 
was used to the determine each DSM pixel value. If no matching points 
were available, pixel values were calculated via Triangular Irregular 
Network streaming (Isenburg et al. 2006). The canopy height models 
(1 m2 resolution) were obtained by subtracting the DTM from the 
photogrammetric DSMs.

Endnote
1.	 FVA Geobasisdaten © Landesamt für Geoinformation und 

Landentwicklung Baden-Württemberg, http://www.lgl-bw.de/, Az.: 
2851.9-1/19
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