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Abstract: Airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) have both been
demonstrated as reliable sources of information on forest stand inventory attributes. The increasing
availability of both datasets provides a means for improving stand dynamics information over time;
however, the cost of multi-temporal ALS can be prohibitive in some circumstances. As a result,
a combination of ALS at an initial time step and subsequent updates using DAP has been proposed
as a cost-effective alternative for maintaining forest inventories. In this study we used low density
ALS and DAP point clouds acquired in 2007 and 2015, respectively, to quantify changes in forest
structure, in a highly disturbed boreal mixedwood forest in Alberta, Canada. We examined the
capacity of the two technologies to model changes in top height (H), volume (V), and basal area
(BA) using both direct and indirect approaches for estimation. Results indicate that the proportion
of explained variance (adjusted R2) for the models derived from the ALS (Time 1; T1) and DAP
(Time 2; T2) data were highest for models predicting H at T1, and lowest for BA at T1 and T2 (R2

was 0.66–0.70). The indirect estimates of change in H, BA, and V were calculated by subtracting
the T1 and T2 predictions. For the direct approach, separate regression models were developed
that used the differences in point cloud metrics between T1 and T2 as predictors. Results indicated
that the accuracy of the estimates generated using the indirect approach were markedly lower than
the estimates generated using the direct approach, with especially poor results for ∆BA and ∆V.
Best results were achieved for ∆H using the direct approach with an R2 coefficient of 0.65 and an root
mean square error (RMSE)% of 190.06%. We found that the error associated with change estimates of
H, BA and V increased with the increase or decrease in mortality. We conclude that forest managers
should act carefully when applying the multi-temporal and multi-sensor analysis of forest growth if
forest growth is slow and the level of mortality is high.
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1. Introduction

Canadian boreal forests and woodlands cover approximately 347 Mha [1] making up nearly 10%
of forest cover globally. As a result, sustainable forest management strategies for timber production
and ecosystem services including carbon sequestration, clean water production, and biodiversity
conservation are critically important [2]. One key component of sustainable forest management is the
timely and accurate acquisition of forest information to quantify the amount and condition of forest
resources. This includes the evaluation of structural change over time, which can inform growth models
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critical for developing future predictions of forest inventory variables [3]. To date, forest inventory
methods have focused on ground-based measurements, complemented with the manual interpretation
of aerial photography for stand delineation, species identification, and structural quantification [4].

The development and implementation of three-dimensional point cloud datasets acquired with
airborne platforms to measure forest stand inventory attributes have become the basis of precision
forestry [5] and have been deemed promising as cost-effective and spatially extensive means of
supplementing the current modes of inventory using the area-based approach (ABA) [6]. Two common
methods may be used in developing the required point clouds: (1) Airborne laser scanning (ALS)
technologies, which measure the time between emitted sensor pulses and received reflections [7];
and (2) digital aerial photogrammetry (DAP) which produces image-based outputs by matching points
on stereo aerial photographs and calculating the parallax [8]. While the concepts of ALS are well
known, the basis of DAP involves deriving the measurement of an object’s position based on images
acquired from two or more locations. A digital surface model (DSM) can be created when this method
is applied on multiple overlapping images [9]. Image acquisition flights are usually performed higher
and faster than ALS flights. With a wider field of view, image platforms are able to cover a much
larger area for a given amount of flying hours. Overall, image acquisition is estimated to cost one-half
to one-third to that of ALS data [8]. However, image-matching algorithms are only successful when
objects are directly visible in the images themselves. Without penetrability, image-based point clouds
can solely explain upper canopy structure [10]. To normalize the returns to elevations above terrain,
an external terrain model is required, preferably derived from ALS data [11], particularly beneath forest
canopies. Imagery is also influenced by brightness and viewing angles, which limit optimal flying
hours [7,8]. While ALS data can produce highly accurate vegetation profiles, repeated acquisitions
for growth monitoring only from ALS can be costly and often involve trade-offs between the area
covered and issues such as point density and scan angle [12]. As a result, a combination of the two
technologies, with ALS as the initial measurement followed by updates of DAP, is seen as an optimal
solution to obtain forest growth estimates over large spatial extents.

Boreal forests can have heterogeneous patterns of composition and structure and are driven
by different disturbance agents, particularly wildfire [13]. Boreal forests in Canada are dominated
by several genera including Abies, Betula, Larix, Picea, Pinus and Populus, with varying growth rates
between regions [14–16]. Slow growth can be difficult to correctly quantify in the field if growth
changes are small compared to instrument errors [17]. In addition, the cost of locating and measuring
the required number of field plots logistically limits data collection spatially and temporally, especially
in remote areas.

Several studies have investigated the use of multi-temporal point cloud datasets to monitor forest
growth. St-Onge and Vepakomma [18] evaluated the height growth in hardwood and softwood stands
and by three height classes. They showed that the average differences in the upper height percentiles
were near to the average observed growth in deciduous and coniferous stands. The increment in height
was generally close to the reference age–height table values (average deviation = 0.42 m). Næsset and
Gobakken [19] measured growth at plot and stand levels in Lorey’s height (HL). Their results showed
that the increment in height was often close to the root mean square error (RMSE), indicating challenges
related to the use of point cloud datasets, especially in the young stands. HL growth was also analyzed
by Hopkinson et al. [20], who showed that DSM-based height growth estimates were nearly parallel to
the reference. Yu et al. [21] demonstrated three methods to estimate HL growth: individual tree crown
differencing, DSM differencing, and an ABA. The ABA yielded the least accurate results, with the
lowest R2 value and the highest RMSE. As shown by Véga and St-Onge [22], longer time intervals
between data acquisitions increase the accuracy of height growth despite errors in in height estimates
at individual times. Estimates of stand growth can also be calculated by integrating exisitng growth
simulators with ALS or DAP-based predictions of forest attributes [23,24]. Cell-level yield curves can
be computed by assigning weights to the input attributes based on their prediction accuracy.
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Overall, studies assessing growth with multi-temporal remotely sensed data have been more
successful in forests with taller mean stand heights. Growth assessments in temperate forest zones
have usually been more successful, though assessments from boreal forest zones have varied. In boreal
studies, success was caused by using large growth intervals [22] and comparatively simpler stand
structures [21]. No patterns of successful outcomes to growth assessments were apparent regarding scale
or sensor choice. Few studies that have evaluated height growth have validated their models against
independent data sources, and only two have utilized a multi-sensor method [22,24]. A multi-sensor
method can reduce the expense of obtaining multi-temporal point cloud data for stand-level growth
evaluations. It does so by leveraging the ALS-derived digital terrain model (DTM) from an initial
acquisition of ALS data for the subsequent processing of DAP data acquisitions [8].

In this study, we examined the capacity of ALS and DAP technologies to assess the change in top
height (∆H), change in basal area per ha (∆BA), and change in total volume per ha (∆V) over roughly
eight years in managed yet highly disturbed boreal forest stands near Slave Lake in central Alberta,
Canada. Through this analysis, we asked the following specific questions.

What is the predictive capability of integrated ALS and DAP technologies to quantify ∆H, ∆BA, and ∆V?
The majority of existing studies that used a bi-temporal point cloud to characterize stand growth

have used ALS data [18–21] or relied on dense DAP point clouds [25]. Because of the differences
between ALS and DAP point clouds, additional research is required to analyze the specific aspects of
combining these datasets for quantifying change in stand conditions.

Which modeling approach (direct or indirect) provides more accurate estimates of ∆H, ∆BA, and ∆V,
when ALS- and DAP-based predictors are used?

The change in forest attributes can be estimated either directly (i.e., a single model is developed
to predict change) or indirectly (i.e., based on a difference between two separate models developed
to predict values at Time 1 (T1) and Time 2 (T2)) [26,27]. It is unclear which of these two approaches
is better suited for characterizing change in forest attributes when low density ALS and DAP point
clouds are used and when the forest growth is slow.

How is the predictive capability for ∆H, ∆BA, and ∆V impacted by increasing plot-level mortality?
Stand-level mortality has been shown to alter forest structure [28]. Existing approaches to

quantify mortality using point cloud datasets utilize return intensity-based metrics as predictors [29,30].
However, intensity metrics from ALS data are often not calibrated and vary due to differences in
acquisition parameters. In the absence of a method to enumerate mortality directly from the point
cloud data, there is a need to measure the impacts of plot-level mortality on the accuracy of area-based
estimates of forest attributes. To assess the impacts of plot-level mortality on ∆H, ∆BA, and ∆V
estimates in Slave Lake, we iteratively measured the accuracy of optimized height models while
incrementing the number of plots with mortality in the dataset.

2. Materials and Methods

2.1. Study Area

The Slave Lake Forest Management Area covers approximately 700,000 ha and is located near
the township of Slave Lake, Alberta (Figure 1). The study area is situated in the Central Mixedwood,
Lower Foothills, and Upper Foothills natural subregions. The annual precipitation is 600 mm, while the
mean summer and winter temperatures are 20 and −21 ◦C, respectively [31]. The elevation ranges
from 546 to 1375 m a.s.l. The Slave Lake forest is a mixedwood boreal stand including aspen (Populus
tremuloides), white spruce (Picea glauca), balsam poplar (Populus balsamifera), Lodgepole pine (Pinus
contorta) and black spruce (Picea mariana) as some of the most common species [31].

Forest dynamics in the region are characterized by natural and anthropogenic disturbances
including wildfires, harvesting activities, oil and gas exploration, and non-stand replacing disturbances
such as wind damage (Figure 1). A large fire occurred in 2011 that burned 40% of the township.
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Figure 1. Location and outline of the study area. Black dots indicate sample plot locations. Dominant 
species codes: AW: Trembling aspen; PL: Lodgepole pine; SB: Black spruce; SW: White spruce. 

2.2 Ground Plot Measurements 

Thirty-eight plots were established and monitored between 2004 and 2006, and they were re-
measured in 2012, 2016 or 2018. The circular plots each had a radius of 11.28 m (400 m2). For every 
tree in the plot, we measured the location, species, diameter at breast height (DBH), height, height-
to-live-crown, and crown class (dominant, codominant, intermediate or suppressed). Plot-level 
summaries of individual tree measurements included top height (H), basal area (BA), total volume 
(V). Only trees with a DBH over 7 cm were measured. Plots were omitted if they had mortality rates 
of 100% or if there was evidence of harvesting, fire or significant blowdown within the plot during 
the measurement period. Standing dead trees were measured and included in the analysis of 
mortality. Plot-level summaries were projected from the year they were collected to the year of the 
ALS or DAP data acquisition. Projections were performed with GYPSY (Growth and Yield Projection 
System), which is a forest stand-based growth simulator developed by the Alberta Agriculture and 
Forestry Ministry of the Government of Alberta, Canada [32]. ΔH, ΔBA, and ΔV were calculated as the difference between the projected T1 and T2 values for a plot. The projected plot-level data are 
summarized in Table 1. 

Table 1. Summary of the ground plot data. 

Time Type H [m] BA [m2/ha] V [m3/ha] 
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mean 17.68 28.04 194.39 11.61% 
sd 5.58 15.08 134.54 16.24% 
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2.3 ALS Data  

ALS data were acquired for the study area between 2006 and 2008. The point clouds were 
collected with an Optech ALTM 3100 sensor. Very similar flight and acquisition parameters were 
used in all cases, with a scan angle of 50°, a flight speed of 160 kts, and a flying height between 1250 
and 1400 m. The average point density was 1.5 pts/m2. 

Figure 1. Location and outline of the study area. Black dots indicate sample plot locations. Dominant
species codes: AW: Trembling aspen; PL: Lodgepole pine; SB: Black spruce; SW: White spruce.

2.2. Ground Plot Measurements

Thirty-eight plots were established and monitored between 2004 and 2006, and they were
re-measured in 2012, 2016 or 2018. The circular plots each had a radius of 11.28 m (400 m2).
For every tree in the plot, we measured the location, species, diameter at breast height (DBH), height,
height-to-live-crown, and crown class (dominant, codominant, intermediate or suppressed). Plot-level
summaries of individual tree measurements included top height (H), basal area (BA), total volume
(V). Only trees with a DBH over 7 cm were measured. Plots were omitted if they had mortality
rates of 100% or if there was evidence of harvesting, fire or significant blowdown within the plot
during the measurement period. Standing dead trees were measured and included in the analysis of
mortality. Plot-level summaries were projected from the year they were collected to the year of the
ALS or DAP data acquisition. Projections were performed with GYPSY (Growth and Yield Projection
System), which is a forest stand-based growth simulator developed by the Alberta Agriculture and
Forestry Ministry of the Government of Alberta, Canada [32]. ∆H, ∆BA, and ∆V were calculated as
the difference between the projected T1 and T2 values for a plot. The projected plot-level data are
summarized in Table 1.

Table 1. Summary of the ground plot data.

Time Type H [m] BA [m2/ha] V [m3/ha]
Percentage of

Dead Trees BA

T1
mean 17.68 28.04 194.39 11.61%

sd 5.58 15.08 134.54 16.24%

T2
mean 19.14 28.44 217.38 20.41%

sd 5.21 15.48 152.39 18.02%

∆T
mean 0.90 (0.12 m/year) 0.15 (0.021 m2/year) 13.78 (1.97 m3/year) 8.79%

sd 2.92 6.61 56.90 11.23%

2.3. ALS Data

ALS data were acquired for the study area between 2006 and 2008. The point clouds were collected
with an Optech ALTM 3100 sensor. Very similar flight and acquisition parameters were used in all
cases, with a scan angle of 50◦, a flight speed of 160 kts, and a flying height between 1250 and 1400 m.
The average point density was 1.5 pts/m2.

2.4. DAP Data

A total of 1527 aerial images were acquired on 26 April, 9 May and 13 May 2015 using a Z/I
DMC II230 at nadir including blue, green, red and near-infrared spectral bands. The ground sample
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distance was 0.3 m, and the along-track and across-track overlaps were 60% and 30%, respectively.
One hundred and thirty-four ground control points were used to register the data.

The DAP data were processed using the Agisoft PhotoScan software. The software first detected
points in the source photos that were stable under viewpoint and lighting variations and generated
a descriptor for each point based on its local neighborhood. It then used a greedy algorithm to find
approximate camera locations and refined them later using a bundle-adjustment algorithm similar to
Bundler [33]. A surface was then constructed using the pair-wise depth map computation [34] and
blended with the source images to form a texture atlas. This resulted in a point cloud with an average
point density of 0.82 points/m2.

As DAP point clouds are known to exhibit systematic distortions relative to absolute coordinate
systems, especially in the vertical direction, largely due to radial distortion [35], an additional point
cloud post-processing procedure was used for DAP processing. This procedure aimed to correct offsets
between an imprecise DAP point cloud known to contain distortion and a precisely georeferenced
reference ALS point cloud. We used the iterative closest point (ICP) algorithm, well-known to be
effective in point cloud registration [36–38], to generate a series of estimated vertical shifts across the
study area. To gather the shift observations, the ICP algorithm was applied to raw ALS and DAP
point clouds at each increment of a moving window operation with widths of 50 and 150 m between
windows. Values produced by the ICP estimation, stored as points at each window centre, include
X, Y and Z translation vectors, a rotation matrix, and the root-mean-square error (RMSE) between
the resulting aligned point clouds. These results were filtered for noise based on manually adjusted
quantile thresholds. Additionally, the point estimates were masked by roads and recently harvested
stands to ensure ground-to-ground matching. A polynomial model was developed to estimate vertical
shifts (Zshiftxy) in two-dimensional space such that:

Zshi f tx,y = β0 + β1x + β2x2 + β3x3 + β4y + β5y2 + β6y3 . . . (1)

where x is the x-coordinate, y is the y-coordinate, and β0, . . . , βn are coefficients of the polynomial
model. Polynomial orders of up to 20 were tested for both x and y to acquire the model with the best
fit, which was then used to adjust the raw DAP point cloud elevation values based on the predicted
vertical shifts.

2.5. Point Cloud Data Processing

The point clouds were processed following standard processing routines, which included tiling,
ground classification (ALS data only), and height normalization. A DTM was developed using
ground-classified returns from the ALS dataset at a 2 m spatial resolution. The DTM was then used
to normalize both the ALS and DAP point heights. Studies have shown that ALS can accurately
and precisely be used to normalize DAP point clouds, assuming the ground is stationary between
fly-overs [9].

Statistical metrics describing forest stand structure were extracted from the ALS and DAP point
clouds within the sample plots. Metrics were generated using returns above 2 m [39] and using only
first returns in case of the ALS. Metrics included measures of central tendency (mean, median, mode),
measures of dispersion (variance, standard deviation, interquartile range), percentiles, proportions,
and densities of point heights above ground. All metrics were calculated using the lidR package
for R [40,41].

2.6. Predictive Models

Ordinary least squares (OLS) regression was used to estimate H, BA, and V from ALS data at
T1 and DAP data at T2. A stepwise variable selection approach was used to develop a total of six
regression models. Models for H were based on a single ALS- or DAP-based predictor describing
canopy height. Models of BA, and V used a maximum of four variables following the approach



Remote Sens. 2019, 11, 2102 6 of 15

of Bouvier et al. [42]. Predictor variables were selected to characterize stand height, heterogeneity
of stand height, canopy cover, and stand vertical complexity. We tested different combinations of
variables from each of these groups, as well as different variable transformations, selecting a final
model based on the AIC coefficient. We calculated the bias and RMSE (absolute and relative) and used
an equivalence test to assess the predictions. Specifically, we used the equiv.boot function available in
the equivalence package for R [43] to validate the models. In this regression-based test of equivalence,
a linear regression model is established between the observations and predictions, and predetermined
regions of equivalence are established for the intercept and slope. The tests for intercept and slope
are performed independently and are based on determining if the confidence intervals are contained
inside the regions of equivalence [44]. As described by Fekety et al. [45], the test for intercept informs
on the bias and determines if the means of the two compared variables are equal. The test for slope,
which determines if the slope is equal to 1, informs on the proportionality of the observed and predicted
variables. We used the default region of equivalence of ±25%, as per previous studies [45–47].

Two methods are commonly applied to evaluate forest growth using three-dimensional point
cloud datasets: Direct and indirect methods [26,27]. Direct methods estimate growth from differences
in common metrics acquired from two datasets from two different points in time. Indirect methods
calculate growth by differencing two independent estimates, at T1 and T2, with the two models not
requiring the same predictor variables [48]. We applied both methods to test their feasibility for
estimating stand growth. In the indirect approach, the predicted values for ∆HI, ∆BAI, and ∆VI were
derived by differencing the predicted values from models at T1 and T2. To apply the direct approach,
we first calculated differences between point cloud metrics derived for T1 and T2. These difference
metrics were then used as candidate predictors in OLS models to estimate ∆HD, ∆BAD, and ∆VD.

Relative bias, absolute bias and RMSE were calculated as follows:

bias =
1
N

N∑
i=1

(ŷi − yi) (2)

bias% =
bias

y
× 100 (3)

RMSE =

√√√
1
N

N∑
i=1

(ŷi − yi)
2 (4)

RMSE% =
RMSE

y
× 100 (5)

where N is the number of plots, yi is the observed value at plot i, ŷi is the predicted value at plot i,
and ȳ is the mean of the observed variable over all plots.

The RMSE values for ∆HI, ∆BAI, and ∆VI (indirect approach) were calculated from the RMSEs
for the models at times T1 and T2 as per Equation (6) adapted from [49]:

RMSEG =
√(

RMSE2
T1 + RMSE2

T2

)
(6)

where RMSEG is the root mean square error of the growth model and RMSET1 and RMSET2 are the
errors of the T1 and T2 models. The predictions of growth were also assessed using the equivalence
test as described above.

2.7. Sensitivity of Model Outcomes to Plot-Level Mortality

To observe the impact of tree mortality on the model predictions, we analyzed how the RMSE%
changes with different levels of stand-level mortality. To do that, we developed indirect and direct
models for ∆H, ∆BA, and ∆V iteratively, using a subset of plots for each iteration. The number of plots
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increased at each iteration, and by ordering the plots by the level of mortality, the accuracy of each
model could be related to the level of plot mortality. At each iteration, predictions and RMSEs were
generated from the separate T1 and T2 models (indirect approach) and from a single model for the
direct approach.

Mortality was defined as the change in percentage of dead trees basal area in a plot between T1
and T2, and it was calculated as follows:

mortality =
BAdead,T2

BAall,T2
× 100−

BAdead,T1

BAall,T1
× 100 (7)

where BAall is the total basal area of a plot and BAdead is basal area of dead trees.

3. Results

3.1. Plot-Level Estimates of Forest Attributes

The proportion of explained variance (adjusted R2) for the models derived from the ALS (T1) and
DAP (T2) data were highest for models predicting HT1 and lowest for BAT1, BAT2, and BAT1, for which
the R2 was 0.66–0.70 (Figure 2, Table 2). A power regression approach was used for modeling BA and
V, and a bias correction factor was used when back-transforming the predicted values. The highest
RMSE% was for VT1 (40.1%). The correlation coefficients between independent variables were always
lower than 0.7 for models with more than one independent variable. All independent variables
remaining in each of the models were significant (α = 0.05). The results of the equivalence test (Figure 3)
showed that the predictions of all attributes were statistically equivalent in terms of bias and that
predictions of HT1, HT2 and BAT1 were statistically equivalent in terms of proportionality.
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(BA), and total volume (V). Stand attributes modeled using airborne laser scanning (ALS) data at Time
1 (T1) and digital aerial photogrammetry (DAP) data at Time 2 (T2).
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Table 2. Predictive models for top height (H), basal area (BA), total plot volume (V). Dependent
variables denoted with T1 were modeled using ALS data acquired at T1 (2006–2008), while T2 variables
were modeled using DAP data from T2 (2015). Predictor variables used in these models included the
20th percentile of point heights (P20), the 95th percentile of point heights (P95), the proportion of points
above 5 m (PERC_ABOVE_5), the standard deviation of point heights (SD), and the kurtosis of point
heights (KURT).

Dependent Variable Predictive Model

HT1 2.545 + 0.951×P95
BAT1 e−0.012+0.679×PERCABOVE5+0.342×P20

VT1 e0.708+0.851×PERCABOVE5+0.587×P20

HT2 7.81 + 0.94×P95
BAT2 e3.221+0.958×SD−1.204×KURT

VT2 e4.901+1.356×SD−1.402×KURT
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Figure 3. Results of bootstrapped equivalence tests for stand attributes modeled at T1 and T2 (top) and
change estimated with the indirect (I) and direct (D) approach (bottom). In each case, the equivalence
test is performed for bias and for proportionality. The grey rectangle indicates the region of equivalence,
while the black crossbar depicts the 95% confidence interval. An asterisk indicates cases when the test
is satisfied (i.e., confidence interval within the region of equivalence).

3.2. Indirect and Direct Estimates of Change in Forest Attributes

Results for both the direct and indirect approaches to estimating growth are presented in Figure 4
while model forms for ∆HD, ∆BAD, and ∆VD are presented in Table 3. Results showed that the accuracy
of the change models was markedly lower when compared to the accuracy of individual models of H,
BA, or V using T1 or T2 data. Results also showed that the indirect approach was less accurate than
the direct approach in all of the cases, with especially poor results for ∆BAI and ∆VI. Results were best
for ∆H when the direct approach was used (∆HD). Under this approach, the R2 coefficient was 0.65
and the RMSE% of 190.06% was lowest across all modeled variables and approaches. The accuracy of
∆HI was lower, with an R2 of 0.42 and an RMSE% of 251.59%. ∆BAD and ∆VD had R2 values of 0.35
and 0.39, respectively; however, extreme values of RMSE% were observed for ∆BAD. The results of the
equivalence test (Figure 3) showed that the predictions of change were not statistically equivalent in
any of the variables or approaches.
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Table 3. Predictive models for change in top height (∆HD), change in basal area (∆BAD), and change
in total volume (∆VD) under the direct approach. Predictor variables used in these models included
the change in 99th percentile of point heights (∆P99), the change in proportion of points above 2 m
(∆PERC_ABOVE_2), and the change in standard deviation of point heights (∆SD).

Dependent Variable Predictive Model

∆HD 3.266 + 0.558× ∆P99
∆BAD 1.589 + 0.089× ∆PERC_ABOVE_2 + 0.469× ∆P99
∆VD 43.641 + 7.94× ∆P99− 1.93× ∆SD

3.3. Influence of Stand Mortality on Change Prediction Accuracy

We found that the error associated with estimates of ∆H, ∆BA, and ∆V increased with increasing
absolute plot-level mortality. For all three attributes, the RMSE% increased markedly when the
mortality increased or decreased (Figure 5). The positive values of mortality indicate the increase
in proportion of dead trees basal area between T1 and T2, while a mortality value below 0 indicates
ingrowth—new trees growing into the minimum measurable size during the measurement period or
that the dead trees were no longer present in the stand. As the direct approach showed to be more
accurate in predicting change in stand attributes (Figure 4), for similar values of mortality, the RMSE%
values were also lower for the direct approach. Results show that for ∆HD a mortality of about 18%
corresponded to a 100% RMSE% value and that value doubled when mortality is close to 30%. For ∆V,
results were similar, although a mortality level at 20% corresponded to a higher RMSE% of about 200%.
Though the pattern on the relationship between mortality and RMSE% was similar for ∆BA, RMSE%
reached extreme values that resulted from the poor accuracy, especially of the indirect model.
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4. Discussion

This study had three main objectives. The first was to assess the predictive capability of ALS
and DAP data for estimating plot-level growth in H, BA, and V; the second was to determine which
approach (direct or indirect) is more suitable for estimating growth; and the last was to determine
how the accuracy of growth predictions depend on the level of mortality. Predictive models were
developed for H, BA, and V at T1 and T2 using ALS-based metrics for T1 models and DAP-based
metrics for T2 models. Indirect estimates of growth were calculated as a difference between T1 and
T2 model predictions, whereas separate models were developed to directly estimate the growth of H,
BA, and V. Ground-plot measures indicated two confounding factors for growth assessment in this
mixedwood boreal forest environment: Slow growth rates for H, BA, and V, as well as relatively high
levels of mortality (Table 1).

We found that the direct approach resulted in more accurate estimates of growth for all three of
the selected stand attributes. Results showed that the direct predictions of ∆H were by far the most
accurate, while indirect models of ∆BA and ∆V were not suitable for predicting growth. When the
change in forest attribute was calculated based on the difference between T1 and T2 models, estimation
errors from the T1 and T2 models were compounded. This effect increased with the decrease of
accuracy of the T1 and T2 models, which was especially pronounced for the indirectly derived ∆BA
and ∆V. Though the accuracy of the individual models for BA and V at T1 and T2 was on par with
accuracies reported in the literature for similar forest stand conditions [24,50], the analyses show that
this level of accuracy was insufficient for determining growth in these stand conditions.

Our results are similar to those of Cao et al. [26] and Bollandsås et al. [51], who also found the direct
approach to provide superior results when modeling forest growth. In their study, Cao et al. [26] used
to two ALS datasets acquired over six year period to estimate forest biomass dynamics. The authors
reported that the direct model had an R2 value of 0.63 and an RMSE% of 25.64%. Bollandsås et al. [51]
used two ALS datasets to estimate change in above ground biomass. Authors found that the direct
method gave best results, with an RMSE between 1.9 and 21.7 Mg ha−1. In our case, the lower accuracy
of the growth predictions may have resulted from much slower tree growth—with a seven-to-nine
year difference between ALS and DAP data acquisitions, the increase in tree size was very often lower
than the error of the developed models. Given a mean H growth rate of 0.12 m yr−1 in this set of plots
(Table 1), approximately 14 years (an additional, approximately, seven years) would be required for the
growth to exceed the modeling error reported herein. Moreover, as a result of the lower accuracy of
∆VD, approximately 22 years would be required for the growth to exceed the error associated with the
volume estimates.

We found that stand mortality affects the prediction accuracy of the change models and that
the impact of mortality on model outcomes is similar for both the indirect and direct approach.



Remote Sens. 2019, 11, 2102 11 of 15

The reference data used to calibrate the models did not include dead trees (i.e., plot-level summaries of
H, BA, and V were calculated using living trees only); however, the presence of dead standing trees in
a plot will contribute to the point cloud metrics and impact the developed models. ALS returns from
snags in or above the canopy may have affected the point cloud metrics used in modeling by either
obscuring live trees or by modifying the plot’s canopy surface.

This paper demonstrates a number of challenges related to assessing forest growth using
bi-temporal point cloud datasets acquired with two different technologies. These challenges originate
not only from the type of data used (ALS vs. DAP) but also from the time interval between data
acquisitions, the growth rate of the forests, and the level of stand mortality. Our results showed that
even for forest stand attributes like H, which is among the most accurately predicted with point cloud
data, estimates of growth are not accurate (RMSE% exceeding 150% for the most accurate estimates of
growth). Considering that the typical accuracy of stand attributes like BA or V is lower, estimating
change in these attributes using the direct or indirect approach was even more challenging in the
stand conditions present in this study. Though extending the time between the data acquisitions may
result in more accurate predictions of stand growth, it may not be desirable from a forest management
perspective if more frequent data are required to update for disturbances.

Alternative methods for estimating forest growth that may be used in highly disturbed,
slow growing forest stands like the ones analyzed in this study involve linking the point cloud-based
estimates of stand attributes to growth simulators. For example, Lamb et al. [23] demonstrated how
ALS-predicted stand attributes can be matched with a library of plot-level measurements and used
as inputs for a locally calibrate tree-list growth model. Forest stand attributes predicted with point
cloud data can also be integrated with stand-level growth models by generating a database of growth
curves and using cell-level predictions to identify the most suitable growth curve [24,52]. Though
such approaches benefit from a bi-temporal dataset, they can be used with a single ALS acquisition.
They are also less prone to errors originating from the time difference between data acquisitions (when
two or more datasets are used) or growth rate—the growth is determined by the existing growth model,
rather than calculated using the predictions derived from the data.

Despite recent technological advancements, ALS data collection currently remains a relatively
expensive option for monitoring forest growth over large forest areas. However, ALS, in a forestry
context, contributes to a full suite of applications including forest operations, inventory, planning,
and management for a broad suite of ecosystem goods and services. ALS acquisitions are also necessary
for the production of a high-quality and detailed DTM and high-quality attribute estimates, which,
together, can largely balance the costs from the data’s collection and processing [53]. The province
of Alberta, in which this study took place, has invested in near wall-to-wall acquisition of ALS
data between 2003 and 2014 and is interested in maximizing the utility of the existing data set [54].
By supplementing ALS data acquisitions with DAP, the forest industry can save on operational costs [8]
and provide other predictive statistics including spectral tone, texture, and pattern [55]. These metrics
have been valuable in quantifying other forest attributes that are challenging to resolve using ALS,
such as species composition and health status [56]. They also serve well for other forest applications
including the monitoring of the mountain pine beetle [57], monitoring forest fires [58], or tree species
identification [59]. However, the capacity of these data to support growth assessments in the highly
disturbed and slow growing forests of the mixedwood boreal was not demonstrated in this study.
What is clear from the results presented herein is that empirical estimates of growth derived from
point cloud data in this forest environment require sufficient time between data acquisitions, rigorous
ground plot measurements and plot-level estimates of mortality.

5. Conclusions

This study exemplifies the challenges of growth monitoring in a structurally complex mixedwood
forest environment using a bi-temporal and multi-sensor approach. Focusing on three stand attributes
including H, BA, and V, we demonstrated the accuracy of estimating growth in forest attributes using



Remote Sens. 2019, 11, 2102 12 of 15

low density ALS and DAP point cloud datasets, direct and indirect modeling approaches, and the
impact of mortality on the accuracy of growth estimates. We conclude that the accuracy of the stand
attributes derived with ALS- and DAP-based predictors was similar. Estimates of growth were
inaccurate for BA and V, and we recommend the direct approach when modeling ∆H. The accuracy
of the predictive models decreased with increasing plot-level mortality, and minimizing plot-level
mortality effectively maximized the accuracy of predictions. Regardless, the low accuracy of the
optimized models demonstrates that a multi-sensor approach to growth monitoring using ALS and
DAP is better suited to forest environments with lower mortality and/or faster growth rates.

Future studies in multi-sensor growth should concentrate on attribute estimation and modeling
approach optimization. More research is required to assess the combination of ALS and DAP data to
estimate forest growth in unmanaged boreal forests, particularly with respect to basal area and gross
total volume.
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