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Abstract Although there is growing evidence that silicon (Si)-based plant defenses effectively reduce both the

palatability and digestibility of leaves, and thus impact nutrient assimilation by insect herbivores,

much less is known about how this is affected by extrinsic and intrinsic factors. For example, do her-

bivores exhibit compensatory feeding on poor-quality diets with Si or are Si defenses less effective in

agroecosystems where high N availability increases plant quality? To investigate the interactive effects

of N and Si on insect feeding, we conducted insect performance and compensatory feeding bioassays

using maize, Zea mays L. (Poaceae), and the true armyworm, Pseudeletia unipuncta Haworth (Lepi-

doptera: Noctuidae). In the performance assay, the addition of Si alone resulted in increased larval

mortality compared with the controls, likely because early instars with poorly developed mandibles

could not feed effectively. However, larvae fed on plants treated with both Si and N survived better

than on plants treated with Si only, although pupal mass did not differ between treatments. In our

compensatory assay, Si addition reduced maize consumption, but increased both armyworm

approximate digestibility and N assimilation efficiency, suggesting that enhanced post-ingestion

feeding physiology, rather than compensatory food intake, could have accounted for the lack of Si

effects on pupal weight. Overall, our results demonstrate that, similar to other chemical andmechan-

ical defenses, the effectiveness of plant Si defense is influenced by plant nutrient status and consumer

compensatory ability.

Introduction

Plants take up silicon (Si) in the form of monosilicic acid,

which is then deposited as solid opaline phytoliths in the

epidermis (Cooke & Leishman, 2011; Hartley et al., 2015),

and this silicification can increase leaf abrasiveness (Mas-

sey et al., 2006) leading to reduced consumption rates and

lower levels of insect herbivory (Salim & Saxena, 1992;

Kvedaras & Keeping, 2007). Furthermore, once ingested,

Si may affect the efficiency of digestion and nitrogen (N)

assimilation. This results in increased mortality and lower

mass of those that survive (Kvederas et al., 2007; Massey &

Hartley, 2009) and may lead to an overall reduction in

insect population size (Nikpay &Nejadian, 2014).

The importance of Si-based defenses may be species

dependent because monocots accumulate much higher

foliar Si than dicots (Hodson et al., 2005) and the impor-

tance of Si defenses could be less in low accumulating taxa

(Hogendorp, 2008; but see Katz, 2014; Teixeira et al.,

2017). Furthermore, the efficacy of Si-based defense may

be counteracted to some extent by increased N availability,

either through exogenous application or Si-induced root

nodulation (Cahenzli & Erhardt, 2012; Nabity et al., 2012;

Johnson et al., 2017). Herbivores generally express prefer-

ence for N-rich plant material (Slansky & Scriber, 1985;

White, 1993), although deleterious effects may arise from

excessive or imbalanced N (Behmer, 2009; Lebigre et al.,

2018). Feeding on plants with high N content can increase

dry matter digestibility (Bultman & Conard, 1998; Hwang

et al., 2008) and N assimilation (Slansky & Feeny, 1977),

leading to increased survival, fecundity, and abundance

(White, 1984; Kyt€o et al., 1996; Awmack & Leather, 2002;

Keeping et al., 2014). These benefits can be partially
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attributed to the amelioration of carbon-based plant

defenses in response to N amendment (Coley et al., 1985;

Stamp, 2003). In contrast, N effects on silicon-based

defense, and the resultant consequences for insect feeding

and performance, remain poorly understood.

Insect herbivores express compensatory feeding mecha-

nisms in response to plant quality (Simpson & Simpson,

1990), and this could influence the impact of opposing N

and Si effects because increased leaf consumption is

observed in response to either increases or decreases in

food quality (Slansky, 1993; Berner et al., 2005; Behmer,

2009). Also, despite evidence for reduced consumption

rates in response to greater leaf abrasiveness following Si

addition (Massey et al., 2006, 2007; Frew et al., 2017), the

effects vary depending on the species of consumer (Nabity

et al., 2012). In addition to altering feeding patterns, an

insect’s compensatory response may have a physiological

basis because some lepidopteran larvae can digest plant N

and other cell contents even when leaf mastication is mini-

mal (Barbehenn, 1992). Because Si’s major mode of action

on insect herbivores is reported to be excessive mandible

wear (Djamin & Pathak, 1967; Ebeid et al., 2013), the

effects would be most evident with early-instar larvae, and

although the impact may bemitigated with each successive

molt, sub-lethal Si effects may accumulate across instars

(Massey &Hartley, 2009).

Maize (Zea mays L.) (Poaceae) accumulates high con-

centrations of foliar Si (Rojanaridpiched et al., 1984;

Goussain et al., 2002). In agroecosystems, it is simultane-

ously treated with fertilizers to maximize productivity, so

we used this model system to study possible interactions

between N and Si availability on the performance of herbi-

vores. We conducted a performance assay to determine

the response of the true armyworm, Pseudeletia unipuncta

Haworth (Lepidoptera: Noctuidae), an important pest of

maize (Metcalf & Flint, 1962), to host plants subject to dif-

ferent levels of Si and N amendment. We conducted a sec-

ond, mechanistic assay to explore whether the treatments

could influence armyworm leaf consumption, approxi-

mate digestibility, or N assimilation efficiency, and how

these compensatory responses might account for trends

observed in the performance assay. We predicted that (1)

the addition of N or Si alone would increase and decrease

insect performance, respectively, and (2) when applied

simultaneously, the positive effect of the N would at least

partially mitigate the negative effects of Si treatments.

Materials and methods

Maize silicon and nitrogen treatments

All maize plants used in the feeding assays were grown for

4 weeks, which reflects a suitable host age for both young

and old armyworm larvae (Schaafsma et al., 2007). Maize

was grown in pots (10 cm diameter, 20 cm deep) with

standard Pro-Mix potting soil (Premier Tech, Rivi�ere-du-

Loup, Quebec, Canada) under a L16(25 °C):D8(10 °C)
photo- and thermoperiodic cycle at 70% r.h. Plants were

randomly assigned to one of four treatment groups con-

sisting of a two-way factorial combination of N (de-

ionized water control or 400 mg l�1 ammonium nitrate,

NH4NO3) and Si (de-ionized water control or 150 mg l�1

sodium silicate, NaSiO3•9H20), with each plant receiving

100 ml of their respective treatment solution weekly. The

N treatment was equivalent to 20 g m�2 N, the applica-

tion rate employed in previous studies (Fern�andez et al.,

1996; Liu & Wiatrak, 2011), whereas the Si treatment fol-

lowed the protocol used for other Poaceae species (Massey

& Hartley, 2006, 2009). Each week plants also received

100 ml of Hoagland’s solution (0.02% potassium as

K2SO4, 0.03% calcium as CaCl2, 0.01% phosphorus as

KH2PO4, 0.02% magnesium as MgSO4, 0.03% nitrogen as

NH4NO3, and trace amounts of iron, boron, manganese,

zinc, copper, and sodium molybdate). This solution was

provided to both avoid premature tissue chlorosis or

necrosis of control plants (and applied to all plants to

maintain consistency) over the course of the experiment,

as well as to provide plants with essential growth micronu-

trients absent from the pottingmix.

Insect performance assays

Assays were conducted at 20 °C, 70% r.h., and L16:D8

photoperiod. Ten plants from each treatment were placed

into plastic sleeves with a mesh top to promote air and

moisture exchange but leaving the base of the pot exposed

for bottom watering. Each plant was infested with 10 neo-

nate P. unipuncta larvae, and after 2 weeks, larval survival

was assessed. Because late instars are cannibalistic, all sur-

vivors were subsequently reared in individual containers

and provided daily with maize leaves from their corre-

sponding treatment ad libitum until pupation. The duration

of larval development as well as pupal mass were recorded.

Compensatory feeding assay

No-choice feeding assays were carried out under the same

controlled conditions, using newly molted fourth instars

from the laboratory colony. Leaf disk samples were taken

along themid rib of the twomost recently expanded leaves

with a cork borer (1 cm radius) and their wet weights were

recorded. To develop allometric equations for the conver-

sion of wet to dry weight (DW), 10 leaf disks from plants

in each of the four treatments were measured for leaf area,

and then dried for 72 h at 70 °C to obtain dry mass. For

each of the treatments, 20 larvae that had been starved for

24 h were weighed and then placed individually in Petri
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dishes each containing five fresh leaf disks of known mass.

The assay was terminated after 8 h to ensure that there was

still food remaining. The caterpillars and leaf disks were

reweighed (wet and dry weights, respectively) so that the

amount consumed could be calculated. The larvae were

held for an additional 24 h without food and the frass pro-

duced was collected, dried, and weighed to calculate

approximate digestibility and nitrogen assimilation effi-

ciency, two common nutritional indices used to determine

the effectiveness of consumer resource use (Scriber & Slan-

sky, 1981; Manuwoto & Scriber, 1985; Karowe & Martin,

1989). Approximate digestibility was calculated using the

equation: [(DW leaf consumed –DW feces)/DW leaf con-

sumed] 9 100%.

Leaf and fecal N content were quantified by Kjeldahl

digestion followed by colorimetric analysis for ammonium

(EPA method 353.2) using a SmartChem 140 discrete

auto-analyzer (Westco Scientific Instruments, Brookfield,

CT, USA). This was used to calculate N assimilation effi-

ciency using the equation: [(N consumed – N in frass)/N

consumed] 9 100%.

Because we did not quantify urea, which represents a

small fraction of N egestion, N assimilation efficiency

results do not account for total N waste nor do our results

reflect the total N budget. Leaf silicon content was deter-

mined by a portable X-ray fluorescence device (P-XRF),

calibrated using Si-spiked synthetic methyl cellulose and

validated using certified reference materials of NCS

DC73349 ‘Bush branches and leaves’ obtained from China

National Analysis Center for Iron and Steel (see Reidinger

et al., 2012). Prior to analysis, leaf material was balled and

pressed into 13-mm-diameter pellets with a manual

hydraulic press using a 13-mm die (Specac, Orpington,

UK).

Statistical analysis

We used a series of two-way fixed-effects ANOVAs to test

for the effects of N and Si addition, and their interaction

(all as between-subjects factors) on maize leaf %N, army-

worm survival (early instar), developmental time, pupal

mass, leaf consumption, approximate digestibility, and N

assimilation efficiency. Because leaf%Si data were not nor-

mally distributed, they were analyzed using generalized

linear regression models with a gamma distribution link

function. When significant main or interactive effects were

present (a = 0.05), we used a Tukey’s test to compare

means among all pair-wise treatment combinations. To

specifically test our prediction that N fertilization alleviates

the negative effects of Si on insect feeding performance,

least squares means (LSM) contrasts were used for planned

comparisons restricted to the Si and N+Si treatment

groups only. All statistical analyses were conducted in R (v.

3.1.1, ‘Sock it to Me’), implementing the ‘MASS package’

(v.7.3-35) to construct GLMs and the ‘lsmeans’ package

(v.2.10) to conduct pair-wise contrasts.

Results

Leaf chemistry

Maize leaf %N content increased significantly in response

to N addition (Figure 1; P-values are presented in

Table 1), but was unaffected by the addition of Si alone or

by Si in combination with N (N+Si). Similarly, leaf %Si

content increased significantly with the addition of Si (Fig-

ure 1), but was not altered by the addition of N alone or

by N+Si (Table 1).

Insect performance assays

Despite the lack of main or interactive effects of N or Si

on armyworm survival (Figure 2A), when assessed as an

LSM contrast, the N+Si-treated plants significantly

increased the survival of armyworms compared with

those feeding on Si-treated plants (Table 1). The interac-

tion between N and Si had a significant effect on army-

worm development time (Table 1), with armyworms fed

N- and Si-treated plant material pupating ca. 1.5 days

sooner than those fed control leaves (Figure 2B). How-

ever, there were no effects of N or Si addition on final

pupal weight (Figure 2C).

Compensatory feeding assays

The Si treatment resulted in a significant decline in leaf

consumption, but there were no such decreases with N

alone, or in combination with Si (Table 1, Figure 3A).

There was a significant interaction between N and Si

Figure 1 Effect of nitrogen (N) and silicon (Si) addition on the

mean (+ SE) foliar concentration of N (n = 8) and Si (n = 10) in

maize leaves. Bars within an element capped with different letters

are significantly different (Tukey’s HSD tests: P<0.05).
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addition on approximate digestibility, with the digestion

of N- and Si-treated maize leaves much higher than con-

trol or N+Si-treated leaves (Figure 3B). Furthermore, the

N+Si treatment resulted in significantly lower digestibility

than Si treatment (Table 1). There was a significant effect

of N alone as well as an interaction with Si on leaf N

assimilation efficiency, with increased assimilation of the

N-, Si-, and N+Si-treated plants relative to control leaves

(Table 1, Figure 3C).

Discussion

The results of this study provide some support for our

original prediction that the addition of Si would have a

negative effect on the true armyworm, and that the simul-

taneous addition of N would have a mitigating effect.

However, the impact observed varied considerably

depending on the parameter measured. The addition of Si

did result in increasedmortality of early instars as reported

for other invertebrate taxa (Kvedaras & Keeping, 2007).

Neonate armyworm larvae feed collectively, a behavior

observed in many lepidopterans that is believed to help

overcome plant physical defenses (Fitzgerald, 1993). Con-

sequently, changes in leaf abrasiveness following the addi-

tion of Si could increase mandibular wear (Massey &

Hartley, 2009; Ebeid et al., 2013) and/or reduce the ability

of young larvae to handle and masticate plant matter

(Hunt et al., 2008), resulting in higher mortality. How-

ever, the deleterious effect of Si was at least partially miti-

gated when there was a concurrent application of N. This

may be explained in part by the increased leaf %N because

adding N with Si can improve dry matter assimilation effi-

ciency (Nabity et al., 2012), and thus starvation may have

been partially offset by an increased retention of plant

material consumed.

Surprisingly, the larvae that survived on Si-treated

plants had the shortest development time (albeit only by

an average of ca. 1 day) and had the same pupal mass as

individuals from all other treatments, suggesting they

exhibited a compensatory response to this suboptimal

Table 1 Summary of P-values for the effects of nitrogen (N)

and silicon (Si) addition, as well as their interaction (N9SI),

on maize foliar chemistry and armyworm feeding and fitness

parameters

N Si N9Si

Least squares

means

contrast

(Si vs. N+Si)

Foliar chemistry

Leaf N <0.0001 0.43 0.65 0.001

Leaf Si 0.99 0.0005 0.44 0.29

Fitness parameters

Survival 0.15 0.27 0.27 0.047

Development time 0.18 0.20 0.038 0.55

Pupal weight 0.36 0.76 0.71 0.70

Feeding parameters

Leaf consumption 0.62 0.03 0.54 0.45

Approximate

digestibility

0.99 0.73 0.005 0.045

Nitrogen

assimilation

0.007 0.41 0.001 0.66

Figure 2 Effect of nitrogen (N) and silicon (Si) addition onmean

(+ SE; n = 10) (A) larval survival, (B) development time, and

(C) pupal mass of true armyworm larvae reared onmaize.
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diet. Although increased food consumption is a common

compensatory mechanism when insect herbivores are

reared on plants with suboptimal nutrient content (Matt-

son, 1980; Berner et al., 2005; Stiling & Cornelissen, 2007)

or increased leaf abrasiveness (Raupp, 1985; Massey et al.,

2006; Han et al., 2015), maize consumption by fourth

instars in the compensatory assay significantly decreased

in response to Si addition. Instead, compensation can

likely be attributed, at least in part, to the increased

digestibility and N assimilation efficiency on the Si-treated

plants. The observed increase in N assimilation efficiency

with Si amendment is consistent with reports for other

Lepidoptera, including the fall armyworm (Nabity et al.,

2012), andmay be associated with enhanced enzyme activ-

ity (Hocking & Depner, 1961). Furthermore, the per-

itrophic membrane in the larval mid-gut offers protection

from abrasive food particles (Hegedus et al., 2009), and

because the structure can change in response to food qual-

ity (Plymale et al., 2008), a Si-induced response may have

benefited overall digestion. Interestingly, the growth

parameters of larvae fed on plants treated with both Si and

N did not differ from those fed plants receiving one or

other treatment alone, even though digestibility was

reduced.

Silicon has a substantial influence on herbivore fitness

at both the individual (Reynolds et al., 2009) and popula-

tion levels (Massey et al., 2008; Reynolds et al., 2012).

However, our findings show that the overall efficacy of Si-

based defenses against the true armyworm is contingent

on additional factors. Nitrogen availability not only influ-

enced the response of armyworm feeding physiology to Si-

treatedmaize but also significantly reduced overall mortal-

ity. Therefore, plant Si defenses can be strongly diluted

under conditions of high soil fertility, a response that is lar-

gely consistent with the effects of N amendment on car-

bon-based chemical defenses (Coley et al., 1985; Stamp,

2003). Although negative effects of N addition have been

reported for other species (Behmer, 2009; Lebigre et al.,

2018), none was observed in any performance or compen-

satory metrics we carried out on the true armyworm. Also,

despite the potential for associational changes in defense

metabolites such as Dimboa, previous work has shown its

foliar concentration was insensitive to N fertilization

(Manuwoto & Scriber, 1985). In addition to plant nutrient

status, intrinsic herbivore feeding mechanics and digestive

capacity could also dictate the extent of Si effects. Where

differential responses between herbivore taxa and larval

stages to Si treatment have already been observed (Massey

et al., 2006; Massey & Hartley, 2009; Nabity et al., 2012),

our results suggest that this relationship further extends to

an individual’s compensatory ability. The fact that delete-

rious Si effects were most pronounced for younger instars

is of particular significance because early-instar survival is

a key component of population dynamics in Lepidoptera

(Zalucki et al., 2001, 2002). Overall, our findings further

support the role of Si in driving plant–insect interactions,
but much like with other forms of foliar defense, both

intrinsic and extrinsic factors contribute substantially to

dictate the ultimate consequences on herbivore feeding

and performance.

Figure 3 Effect of nitrogen (N) and silicon (Si) addition onmean

(+ SE; n = 20) (A) leaf consumption, (B) approximate

digestibility, and (C) N assimilation efficiency by true armyworm

larvae reared onmaize. Bars within a panel capped with different

letters are significantly different (Tukey’s HSD tests: P<0.05).
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