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Abstract
Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and 

provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity 
and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is 
necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis, and report, 
providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications 
of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, 
wall-to-wall optical and LiDAR data are extensively used for a wide range of applications—many times in combination—whilst radar 
or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared 
sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification 
and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses 
carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the 
European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources 
to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with 
a growing support from RS technologies. 
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Introduction

Forests and other woodlands cover 27.7 million 
hectares of the Spanish land (MAPAMA, 2011; INE, 

2017), and provide important services such as carbon 
storage, habitat for fauna, wood and non-wood pro-
ducts, as well as societal benefits like education, 
recreation, and conservation (Montero & Serrada, 
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2013). Spanish forests are variable in composition, 
comprising more than 150 tree species and have an 
overall complex structure (Alberdi et al., 2017). 
Fo rests in mountain areas are generally dominated 
by Pinus, Quercus, Fagus, Abies or Betula species. 
Many of the se forests are structurally complex and 
consi de red na tural. Natural forests coexist with very 
homogeneous coniferous reforestations from the 
middle 20th century in the Mediterranean region and 
with fast growing plantations of Pinus and Eucalyptus 
in the Atlantic region. In the plains open woodlands 
(named dehesas) and dense forests (often as coppices) 
dominated by Quercus and Fraxinus are spread 
over the Mediterranean area, along with pinewoods 
managed for production of timber, fruit and resin, and 
productive plantations of Populus and Eucalyptus 
(MAPAMA, 2011). Forests may be diffi cult to access, 
especially in the mountains, making field work 
inconvenient and giving added value to remote sensing 
(RS) technologies. Under a multi-functional and sus-
tainable forest management paradigm (Cubbage et 
al., 2007) monitoring forests poses specific reporting 
requirements. A traditional field-sampling-based long 
rotation (e.g., 10 years) inventory of wood products 
followed by statistical generalization does not cover 
cur rent information needs for multipurpose sustaina-
ble management, which requires more frequent data 
acquisition to fulfil national and international repor-
ting obligations, especially where fast-growing species 
are planted (Diaz-Balteiro & Romero, 2008). Carbon 
and biodiversity reports demand frequent, specific, 
and detailed characterizations based on systematically 
acquired data that enable comparable and harmonized 
information as required by global policies. Moreover, 
understanding forest dynamics and drivers of change at 
various spatio-temporal scale is essential for preservation 
and management in a context of rapid change, and 
requires up to date data to be regularly acquired.

Remote sensing technology provides an exceptional 
source of data acquired with overview perspective, 
and powerful tools for monitoring forest dynamics 
and the drivers of change. RS provides data at a 
variety of spectral, spatial, and temporal resolutions 
enabling modelling forest condition and change 
under different scenarios. Forestry applications have 
benefited from RS data since Earth observations 
were available in the early 1970s (Cohen & Goward, 
2004). Applications have become more detailed and 
specific with the improvement of data quality, storage 
capacity, and analysis techniques, and also as result 
of the information needs imposed by society, going 
from simple characterization to complex measure and 
modelling. As forest management policies intensify 
preservation, and international agreements on forest 

monitoring begin to include forest degradation 
(Kissinger et al., 2012) there are greater demands 
on RS to provide a range of detection capabilities 
(Cohen et al., 2018). Applying RS methods in 
Mediterranean forests may pose a different set of 
challenges to those found in temperate, boreal, or 
tropical forests, related to the low canopy density 
and the presence of shrubs and understory vegetation 
in some forest types. Likewise, RS application in 
the Spanish Atlantic re gion requires attention to the 
complexity of the landscape, which results from fire 
regimes and impacts the forest structure.

Current international Earth Observation program-
mes such as the European Copernicus with the Sen -
ti nel satellites, or the USA Landsat and MODIS pro-
vide huge amounts of data accessible online (Table 
1), including their processing standards to facilitate 
use. Although data access policies are variable, there 
is an increasing trend towards data free of economic 
cost to all users (e.g., Sentinel, Landsat), and some 
programs facilitate the use for research with reduced 
costs (e.g., the Advanced Land Observation Satellite, 
Phased Array type L-band Synthetic Aperture 
Radar—ALOS PALSAR) (Table 1). The frequency 
of available and useable observations depends on 
mission characteristics, cloud regime (for optical data), 
and sometimes historical management (Wulder et al., 
2016). MODIS acquires daily observations with va-
rious spatial resolutions (250-1000 m), whereas Land-
sat OLI/ETM+ and the Sentinel-2A/B MSI ob ser  ve the 
entire Earth with 8 and 5-days intervals respectively 
(Li & Roy, 2017) providing optical data of medium 
to high spatial resolution (10-60 m). Sentinel-2 and 
Landsat-OLI optical sensors are highly compatible and 
constitute a virtual satellite constellation (Wulder et 
al., 2015; Claverie et al., 2018). In Spain, the Natio-
nal Territory Observation Program (Plan Nacional de 
Observación del Territorio, PNOT) (Arozarena et al., 
2006) which coordinates the acquisition and sharing of 
national geographic information, encompases SIOSE 
(Sistema de Información sobre Ocupación del Suelo 
en España), PNT (Plan Nacional de Teledetección), 
and PNOA (Plan Nacional de Ortofotografía Aérea). 
PNOT supplies RS data covering the entire country, 
including aerial multispectral orthophotography up-
dated every 3 years (http://pnoa.ign.es/) and air borne 
Li D AR coverage intended to be updated eve ry 6 years. 
The first LiDAR acquisition (density of 0.5 point × m-2) 
was acquired between 2009 and 2015. A second Li DAR 
acquisition with variable pulse density depen dent on 
regional government co-funding (0.5-14 pulse × m-2) is 
being acquired since 2015 and expected to be comple -
ted by 2020, promising important opportu ni ties to 
assist forest monitoring.

http://pnoa.ign.es/
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This communication reviews the RS technologies 
employed to monitor the Spanish forest ecosystems 
during the last decades, and identifies opportunities 
offered by the currently available data and analysis 
techniques. In the next section an overview of RS 
technologies is presented, followed by a review section 
of RS applications in Spanish forests. We then wrap-up 
with a synthesis of the current needs and opportunities 
offered by RS to monitor the Spanish forests.

Remote sensing techniques

Remote Sensing involves a range of technologies 
including acquisition of data from a certain distance 
and their analysis. The platform type (i.e., satellite, 
aircraft, unmanned aerial vehicle—UAV) and on-board 
sensor (i.e., optical, thermal, LiDAR, radar) determines 

the characteristics of the data acquired, which in turn 
influences the potential applications. Sensors may 
be active or passive, according to whether they emit 
energy toward the target object, or just detect sun 
radiation reaching the sensor. Passive sensors (e.g., op-
tical, hyperspectral) take advantage of the sun ener  gy, 
whilst active sensors (e.g., radar, LiDAR) beam their 
own energy pulses. RS synergically combines with 
Geographic Information Systems (GIS) and machine 
learning for spatial data analysis and modelling (Figure 
1). Herein we provide an overview of RS techniques 
commonly used in forest applications in Spain, grou-
ped by the characteristics of the data acquired.

Aerial photogrammetry

Aerial photographs have been used as base for 
developing forest maps and resource inventories 

Table 1. Examples of currently operational satellites providing data applicable in forest monitoring. 
Satellite (Sensor) Data type Revisit (day) Cost policy Reference

Landsat (ETM+, OLI) Optical 16 (8)* Free https://landsat.usgs.gov/about-landsat

Sentinel-1 (SAR) Radar 12 (6)** Free https://earth.esa.int/web/sentinel/user-guides/sentinel-1-sar

Sentinel-2 (MSI) Optical 10 (5)** Free https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi

Terra and Aqua (MODIS) Optical 2 (1)** Free https://modis.gsfc.nasa.gov/about/specifications.php

ALOS-2 (PALSAR) Radar 14 Under research 
licence

http://global.jaxa.jp/projects/sat/alos2/index.html

Radarsat-2 Radar 24 Under research 
licence

https://mdacorporation.com/geospatial/international/satellites/
RADARSAT-2

TanDEM-X Radar 11 Under research 
licence

https://www.dlr.de/dlr/en/desktopdefault.aspx/tab-
id-10378/566_read-426/#/gallery/345

WorldView- 2, 3, 4 Optical 1 Commercial https://www.satimagingcorp.com/satellite-sensors

RapidEye Optical 2.1-8.3 Commercial https://www.satimagingcorp.com/satellite-sensors
*Note. Landsat 7 ETM+ and Landsat 8 OLI constitute a virtually dual program with highly compatible data.**Note. Sentinel-1(A/B) 
and Sentinel-2(A/B) are dual satellite missions with opposed orbits: Sentinel-1 satellites have a 12-day repetition interval and together 
provide a 6-day repetition, while Sentinel-2 satellites have a 10-day interval (together 5-day repetition). Terra and Aqua also compose 
a dual satellite system carrying the MODIS instrument: each satellite has a 2-day repetition interval and together they provide daily 
repetition interval.

Figure 1. Example of a typical flowchart for application of RS technology in forest monitoring.
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since the 1930s (Moessner, 1953) and these images 
are frequently used as reference or validation data. 
Photogrammetric techniques for analysis are well esta-
blished, and interpretation is also intuitive. A very 
high spatial resolution (0.1-0.25 m) is the strongest 
trait of aerial photography, and when accurately 
geo-referenced it facilitates precise identification of 
objects on the ground. Its low temporal repetition and 
limited spatial coverage—both related to high cost of 
acquisition—limit a more generalized use of aerial 
photography. Tree top displacement in overlapping 
photo acquisitions and tree shadows have traditio na  lly 
been used for estima tion of tree heights using photo-
gram metry. Nowadays, digital aerial photo gra  phy 
(DAP) provides a source of 3D information enabled 
by recent improvements in sensor technology and 
image matching algorithms (Leberl et al., 2010) like 
Struc ture from Motion (SfM) and Multiview-Stereo 
(MVS). These image matching algorithms facilitate 
produ cing point clouds to reconstruct forest three 
dimensional structure in near real time (Smith et al., 
2016). Radiometric data captured by DAP can be 
employed for stand delineation and characterization, 
as well as for identification of forest species (Packa-
lén & Maltamo, 2006; Packalén et al., 2009). Point 
clouds derived from DAP provide limited informa-
tion about vertical distribution of vegetation within the 
canopy, and they lack capacity to provide information 
about the posi tion of the ground (Lisein et al., 2013). 
Alternatively, DAP can be efficiently combined with 
LiDAR (see below) (Packalén et al., 2009; Valbuena et 
al., 2011) for measurement of vegetation heights whilst 
informing spectral features (Manzanera et al., 2016), 
posing new opportunities for improving the certainty 
of forest estimations (Valbuena et al., 2013a; 2017a).

Satellite optical remote sensing

Optical remote sensing is the most commonly 
used RS technique for monitoring forests (Wulder, 
1998), due to an intuitive interpretation of the visual 
spectrum and to the wide range of spatial (i.e., from a 
few cm to some km) and temporal resolutions offered. 
Optical sensors are passive sensors that record values 
of the returned sun radiation from targets on the Earth, 
enabling relative comparison of spectral response 
in space (single date observations) and time (multi-
temporal observations). Strong relationships are found 
between forest reflectance at different wavelengths—
visible (0.4-0.7 µm), near-infrared (0.7-1.5 µm), 
and shortwave infrared (1.5-3.0 µm)—and forest 
parameters, thus enabling the construction of direct 
models (e.g., biomass and species diversity), as well as 
identification of landscape disturbances and recovery 

(White et al., 2017) and drivers of change over time 
(Kennedy et al., 2015; Oeser et al., 2017). When rela-
ted to biomass and other forest parameters, optical 
sensors are limited by the saturation of spectral values 
(Turner et al., 1999; Duncanson et al., 2010), that is, 
given a threshold value of e.g., biomass, reflectance 
response does not change.

Numerous satellite missions are equipped with 
optical sensors to monitor the environment (Belward 
& Skøien, 2015) providing data with diverse characte-
ristics to meet a range of information needs. However 
optical data is frequently hindered by the presence of 
clouds and clouds´ shadows, reducing the amount of 
usable observations. Pixel-based image compositing 
has become a common practice to produce complete 
representations of a territory using clear observations 
from various dates (White et al., 2014). Pixel-based 
compositing technique combines data from a user-
restricted period (e.g., a month, year, various years) 
and quality level into an image composite repre sen ting 
a specific time. Open data policies have facilitated the 
development of optical data analysis techniques (Wul-
der et al., 2012) incorporating the temporal di mension 
into long (e.g., Landsat archive with 45 years of data) 
or dense (e.g., MODIS daily data) records. Since 
forests are highly dynamic systems, our understan ding 
and assessment of resources benefit from analysis and 
interpretation of time series of data (Banskota et al., 
2014). Optical data are used by them sel ves or enhan   ced 
in combination with other data sources for estimation 
of land cover attributes, including forest distribution, 
condition, structure, and composition.

Hyperspectral remote sensing

Hyperspectral sensors acquire data in many—
typically hundreds—very narrow bands along the 
electromagnetic spectrum (from the visible, near- 
and mid-infrared, to thermal infrared) facilitating 
identification of Earth surface features. Hyperspectral 
imagery is unique for identification of vegetation spe-
cies (e.g., Clark et al., 2005) through spectral libra ries 
or field references (Xie et al., 2008), for monitoring 
forest health (Fauzi et al., 2013) and environmental 
stressors (Schlerf et al., 2010). Processing hundreds 
of bands and identifying the most informative ones is 
not straightforward (Axelsson et al., 2012). To date 
hyperspectral data has been mainly collected from 
airborne platforms (e.g., AVIRIS, with 224 bands) 
with just a few satellite missions carrying hyperspec-
tral sensors (Transon et al., 2018), among which the 
Earth Observing-1 (EO-1) satellite launched by NASA 
in 2000 carried the Hyperion sensor. Hyperion was 
an instrument equipped with two spectro-radiometers 
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acquiring VNIR to SWIR (i.e., from 0.43 to 2.40 µm) 
data with 30 m spatial resolution and an average spec-
tral resolution of 0.010 µm for each of its 220 functio  nal 
channels (Datt et al., 2003; Ungar et al., 2003). EO-1 
acquired data by request and was decommissioned on 
February 2017, with its 16 years of archived ima  gery 
remaining accessible online (https://earthexplorer.usgs.
gov/). Other satellite hypers pectral missions are in 
study stage (e.g., HyspIRI from NASA) or about to be 
launched (e.g., EnMap from Germany).

Synthetic aperture radar (SAR)

Radar (radio detection and ranging) is an active RS 
tech nology emitting microwave pulses (1 mm-1 m) and 
recording the radiation backscattered from the surface. 
Radar has the capacity to provide data in nearly all-
weather conditions, day and night (Henderson & Lewis, 
1998). The radar instrument configuration—wavelength 
and polarizations—determines its capacity to acquire 
information from the ground. Different wavelengths 
(X-, C-, L-, and P-bands) have been used in forestry 
applications with success depending on objectives and 
analysis methods. Most synthetic aperture radar (SAR) 
systems have the capacity to mea sure the phase—related 
to the distance between the sen sor and the target—
and the backscatter coefficient—related to the target 
scattering properties. In forestry applications the phase 
in for mation is often used to de r  i ve forest height, through 
interferometric (InSAR) or polarimetric-interferometric 
(PolInSAR) proces sing (Askne et al., 2003; Garestier 
et al., 2008) or to provi de information on the dominant 
scattering mechanism using polarimetric decomposition 
techniques (Cloude & Papathanassiou 1998; Hajnsek et 
al., 2003). Recently, multiple SAR observations acquired 
with a certain platform separation (baseline) are used 
to resolve the vertical structure of the forest using SAR 
tomographic processing (Tebaldini & Rocca, 2012).

The relationships between radar backscatter coe-
ffi cient and forest structure were demonstrated al-
most three decades ago (Le Toan et al., 1992). The 
sensitivity of radar backscatter to forest parameters 
increases with increasing wavelength, with P-band 
recognized as the most sensitive due to its greater 
penetration through vegetation (Dobsonet al., 1992; 
Le Toan et al., 1992; Rignot et al., 1994). Also, 
stronger relationships between the radar backscatter 
and forest structural properties are generally found 
for the cross-polarized (HV and VH) channels when 
compared to the co-polarized (HH and VV) channels 
(Le Toan et al., 1992; Pulliainen et al., 1994; Sandberg 
et al., 2011; Cartus et al., 2012; Shimada et al., 2014). 
The scarcity of historical and consistently acquired 
radar data, especially when compared with the optical 

archives, precludes long retrospective analysis. 
However, operational satellite programmes carrying 
SAR instruments ensure data continuity over the next 
decades at least for some wavelengths. For example, 
the Sentinel-1 C-band mission is guaranteed until 2030 
through the European Space Agency (ESA) agree-
ments for the procurement of replacement satellites. 
Of particular interest for forestry, the European 
BIOMASS satellite mission is due for launch 2021, 
promising unprecedented capabilities for global assess-
ment of forest biomass and carbon accounting from 
P-band data (Le Toan et al., 2011), while the Japan 
Space Exploration Agency (JAXA) L-band PALSAR 
programme would continue past the current mission 
(i.e., PALSAR-2). Among SAR missions currently 
in feasibility phase, the Tandem-L would provide 
global data for implementation of space-borne L-band 
PolInSAR with single-pass acquisitions, enabling fo-
rest height and height change assessment. Tandem-L 
could be launched in 2022 with a 10-year operational 
life span (Moreira et al., 2015).

Light Detection and Ranging (LiDAR)

LiDAR (light detection and ranging) is an active 
remote sensing technology with high capacity to 
assist in mapping, monitoring, and assessment of 
forest resources (White et al., 2016). RS LiDAR 
instruments measure the time a laser emitted beam, 
usually near infrared (NIR) takes to travel forth and 
back from the target, as one or multiple returns in the 
case of a discrete return system, or as a continuous 
return waveform in the case of a full-waveform system. 
The high positional accuracy granted by the Global 
Navigation Satellite Systems (GNSS) combined 
with an Inertial Measurement Unit (IMU) on LiDAR 
aircrafts allows the generation of three dimensional 
point clouds representing the spatial distribution of 
canopy elements, thus providing accurate measures 
of the vegetation’s structure (Lefsky et al., 1999).
As any other sensor, LiDAR can be mounted on a 
variety of platforms: ground-based, UAV, airborne 
or satellite. Discrete return LiDAR systems on-board 
airplanes are commonly known as Airborne Laser 
Scanning (ALS). A key property of discrete LiDAR 
data is the pulse density or number of pulses reaching 
the surface unit. LiDAR pulse density may differ from 
number of points returning from the surface unit, as 
a function of the sensor configuration and the surfa ce 
complexity. To date LiDAR is the most accurate RS 
technique to measure forest structure (Valbuena et al., 
2013b; Bottalico et al., 2017) and it is typically used 
for predicting forest inventory attributes (González-
Ferreiro et al., 2012; Montealegre et al., 2016; Mau ro 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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et al., 2017a; Valbuena et al., 2017b) and probability 
density functions (e.g., Arias-Rodil et al., 2018). The 
3D structural information obtained from LiDAR can 
also be employed to characterize forest areas (Valbue na 
et al., 2013c; 2016b) and a combination of LiDAR and 
optical data can efficiently complement the capabili-
ties of each sensor (Manzanera et al., 2016; Valbuena 
et al., 2017a). The wealth of information provided by 
LiDAR enables forest managers to make informed 
and dynamic decisions at small management units 
(Pascual et al., 2016). Despite relatively high costs of 
data acquisition, LiDAR is operationally used in forest 
inventories in some countries (Tomppo et al., 2008; 
Hilker et al., 2008).

Satellite LiDAR is expected to provide important 
opportunities for forest applications in the near 
future. From 2003 to 2009 the Ice, Cloud, and Land 
Elevation Satellite (ICESat) carried the Geoscience 
Laser Altimeter System (GLAS) sensor, providing 
waveform data from space with a 170 m footprint 
(Schutz et al., 2005). Although conceived to study 
the evolution of land and sea glacial masses, GLAS 
potential and application to analyse large scale forest 
structure was relevant (Lefsky, 2010; García et al., 
2012). ICESat-2 was launched on 15th September 2018 
carrying ATLAS, an improved sensor with sma ller 
footprint (70 m). Another LiDAR sensor launched at 
the end of 2018 (5th December) is the Global Ecosys tem 
Dynamics Investigation (GEDI) which will orbit the 
Earth on-board the International Space Station (ISS) 
scanning forests between 52°S and 52°N. GEDI will 
provide high-resolution full-waveform LiDAR data 
aimed to measure vegetation height, vertical structure, 
and bare ground elevation (Qi & Dubayah, 2016). GEDI 
is the first LiDAR on space mainly created to study the 
carbon cycle and biodiversity in forest ecosystems.

Unmanned Aerial Vehicles (UAV)

Commonly known as Unmanned Aerial Vehicles 
(UAV), the small Remotely Piloted Aircraft Systems 
(RPAS) constitute an innovative means to assist civilian 
applications including forest monitoring (Pajares, 2015). 
UAV flying space and civilian use regulations are 
under development worldwide. In Spain UAVs of less 
than 25 kg are subject to simple specific regulations by 
the national Agency of Aerial Safety (Agencia Estatal 
de Seguridad Aérea, AESA) and the latest regulatory 
framework was established in 2017 (RD 1036/2017). 
UAVs can typically fly under 120 m height and no 
more than 500 m from the remote pilot (Visual Line Of 
Sight, VLOS flying mode), although this distance can 
be protracted with obser  vers (Ex tended Visual Line 
Of Sight, EVLOS). Remotely piloted vehicles may 

carry a number of sensors (Gómez & Green, 2017), 
among which conventional photographic cameras 
are most popular for easiness in data processing and 
interpretation, as well as for their low cost. Complex 
sensors (e.g., LiDAR, hyperspec tral) are generally 
heavier and require more power supply, restricting the 
number of vehicles that can carry them. Fixed-wing 
platforms are adequate for monitoring larger areas 
with a pre-defined flight plan and need space for lan-
ding, while multi-rotor platforms are better suited for 
manoeuvrability, having easier take-off and lan ding. 
Both types of platforms are well suited for forestry 
applications (Torresan et al., 2017). For example, a 
fixed-wing vehicle equipped with multispectral (MS) 
sensor can repeatedly fly over the same area providing 
information of the forest health at different dates. A 
rotary wing vehicle would be more efficient and better 
suited to observe plots in difficult areas. Like the pilo-
ted counterparts, UAVs require very accurate location 
in for mation, which is provi ded by an IMU and GNSS 
receivers. UAVs flexibi lity enables optimal time data 
acquisition, provides very high spatial resolution data, 
and are relatively low-cost. Photogrammetric mat ching 
algorithms men tioned before (e.g., SfM, MVS) have 
found in UAV-based photogrammetry an extensive 
field for application. In comparison to ALS, UAV-based 
digital aerial photography is inexpensive and the point 
cloud can easily match ALS densities. However, the 
larger point density does not necessarily yield greater 
vertical accuracy, since it cannot penetrate vegetation 
(Guerra-Hernández et al., 2017). Current limitations 
to the use of UAVs are imposed by battery duration, 
payload weight and local regulations (Manfreda et al., 
2018), as well as massive data processing capability. 
Although the sensor on-board a UAV defines the RS 
technology, we have considered UAV separately as the 
flying conditions impose specific characteristics to the 
data and processing required. 

Remote sensing applications in Spanish

The range of techniques outlined above, toge ther 
with an increasing amount of data available and the 
improved storage and computing capacity offer myriad 
opportunities for monitoring forest ecosystems. As 
summarized in this section, many of these techniques 
have been used to monitor the Spanish forests. 

Landscape characterization

Land cover (LC), land use (LU), and their changes 
over time are fundamental information for many 

forest ecosystems
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environmental applications, including assessment of 
carbon budgets and diversity, and characterization 
of forest structure and dynamics. RS offers spatially 
explicit and comprehensive data to get valuable 
insights about the land cover and use at different 
scales. The overall monitoring of Spanish landscapes 
is supported by three projects employing some form of 
RS: the Forest Map of Spain (Mapa Forestal Español, 
MFE), the Spanish Land Use Information System 
(Sistema de Información de Ocupación del Suelo en 
España, SIOSE), and CORINE (Coordination of the 
Information on the Environment) Land Cover.

The main objective of MFE is to support the national 
forest inventory. MFE has mapped the national LC 
three times since 1990, at scales ranging from 1:200000 
to 1:25000. The most recent MFE versions are deri-
ved by photointerpretation of aerial photography and 
digitization of polygons with minimum mapping unit 
(MMU) from 0.5 ha in treed areas to 2 ha in agricultural 
areas. Polygons are characterized and clas si fied accor-
ding to the vegetation present in the area. MFE has a 
temporal frequency enough to support decadal fo-
rest inventories but too scarce for assessment of 
forest dynamics. SIOSE is generated to fulfil natio-
nal information needs of land cover and use, with 
photointerpretation of satellite images and orthophotos 
at 1:25000 scale. The main source of data for the first 
SIOSE version was SPOT HGR (fusion of MS 10 m 
and panchromatic (PAN) 2.5 m data) complemented 
with aerial photography, Landsat images, and other 
cartographic data sources available. SIOSE is produ-
ced by manual digitization of polygons of MMU 
0.5-2 ha, labelled according to a descriptive data 
model: polygons are not given a single label but a 
set of descriptors, providing flexibility for advan-
ced interpretations. The first SIOSE was carried out 
in 2005, and has been updated in 2009 and 2011. 
CORINE LC is a continental project to map Europe 
from Landsat imagery. Abiding to some general 
guidelines, each country maps its territory with its 
own resources. CORINE was first developed in 1990 
and has been updated in 2000, 2006, 2012, and 2018. 
The latest Spanish versions of CORINE are produ-
ced by generalization of SIOSE maps (García-Álva-
rez & Camacho-Olmedo, 2017; Martínez-Fernán dez 
et al., 2019) representing a change in methodology 
and making the comparison with previous versions 
troublesome. Despite the completeness of the three 
mapping projects (MFE, SIOSE, CORINE) changes 
in very dynamic landscapes may remain undetected. 
However, data acquired by optical Sentinel-2 or radar 
Sentinel-1 could support national scale LC maps and 
drastically increase their frequency, enabling detailed 
monitoring of landscape dynamics. Although just 

at the scene level, the capacity of Sentinel-2 data to 
map land use has already been explored in Spain by 
Borrás et al. (2017) with better results obtained when 
compared to using SPOT images.

At the landscape level, habitat mapping is requi-
red for the European Natura 2000 conservation 
commitments and assessment of habitat connectivity 
and frag mentation is a following challenge (Hernando 
et al., 2017). Regional efforts ongoing in Castilla y 
León (Bengoa et al., 2017) or Cantabria (Álvarez-
Martí nez et al., 2017) combine optical, LiDAR, and an-
cillary data to classify and map vegetation types with 
machine learning techniques. Gastón et al. (2017) re-
cent ly compared the performance of PNOA LiDAR, 
MFE data, and CORINE data to assess forest habitat 
sui tability for brown bears across the Cantabrian 
Range employing canopy cover variables. Object-
based image classification techniques—in which the 
basic unit is a group of spectrally similar pixels rather 
than the pixel itself—combining aerial multispectral 
imagery and LiDAR data from PNOA were used 
by Hermosilla et al. (2012) to characterize forest 
abandoned lands. In addition, texture information from 
spectral bands may improve accuracy in land cover 
classification (e.g., Ruiz et al., 2005). Data fusion 
combining SPOT 6, Landsat 8, and Terra MODIS 
data was also crucial in describing spatial landscape 
heterogeneity to identify forested and human modified 
areas by Silveira et al. (2018).

Evidence on species composition is needed to 
inform silvicultural prescriptions, biodiversity or 
other management needs. Although traditional RS 
approaches to characterize tree species dominance 
have had variable success (Fassnacht et al., 2016; 
White et al., 2016), improved results were obtained 
with multi-date or time series analysis. Gómez et al. 
(2018) have recently mapped the distribution of Fa gus 
sylvatica L. (European beech) in the Central Range, 
based on a multi-date classification of Landsat OLI 
data. Beech species, considered relict in the area, is 
expanding as indicated by the comparison of current 
and previous cartographic records as well as field 
verification measurements. To estimate changes in 
species dominance in Ordesa National Park a 33 
year annual series of Landsat data classified with 
support vector machine was used by Gómez et al. 
(2016a), corroborating trends in F. sylvatica L., 
Abies alba Mill., and Pinus sylvestris L. recent 
dynamics (Camarero et al., 2011; Sangüesa-Barreda 
et al., 2015). Combining field data and time series of 
Tasseled Cap Wetness values (a linear combination of 
spectral bands which is indicative of water content) 
in a geostatistical model Aulló-Maestro et al. (2017) 
confirmed a change in species dominance in Pinar de 
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Hoyocasero (Ávila) that will affect local biodiversity 
(Rubio et al., 2011). Coarser spatial resolution data 
from MODIS has been employed to discriminate pine 
species by differences in phenology (Aragonés et al., 
2017). The authors modelled 368 16-day composites 
of data acquired in 2000-2016—spatially stratified by 
field data from the National Forest Inventory—and 
characterized curve patterns corresponding to five pine 
species classified with >70% accuracy. 

Quantification of resources 

In Spain as in many other countries the National 
Forest Inventory (NFI) is an effort to keep forest 
resources (e.g., volume, biomass) assessed periodically, 
providing base information for decision making, 
forest management, and research. The Spanish NFI 
(SNFI) is based on a 1×1 km network of permanent 
field plots measured every ten years. The high cost 
of measurements precludes more frequent updates, 
making the sole use of SNFI data imperfect for current 
reporting needs. SNFI represents a robust database 
reliable as reference for calibration and validation of 
forestry studies and applications based on RS datasets. 
For instance, González-Alonso et al. (2006) estimated 
biomass at national level calibrating their models with 
data from the SNFI 2nd rotation, and Gómez et al. 
(2014) modelled and assessed biomass and change of 
biomass in pines of the Central Range with Landsat 
time series calibrated with data from the 2nd (ca. 
1990) and 3rd (ca. 2000) SNFI rotations. Other authors 
have found useful the integration of SNFI and SAR 
data for estimation of biomass (Joshi et al., 2017) 
and SNFI and LiDAR data for estimation of canopy 
fuel (González-Ferreiro et al., 2017) and structural 
parameters (Fernández-Landa et al., 2018).

The nationally available LiDAR data from PNOA 
has been operationally used for forest inventory 
from management unit to forest scale (100-10000 
ha), and some online tools have been developed to 
facilitate access to volume estimates or fire models. 
Some examples are GINFOR for Castilla la Mancha 
(Blanco-Martínez et al., 2017) or Forestmap, which 
is currently available for 11 provinces (Fernández-
Landa et al., 2017; Tomé et al., 2017). This kind of 
tool requires basic input from the user, like selecting 
an area of interest, and facilitates rapid estimations 
for decision making. LiDAR allows extraction of 
individual tree attributes through individual tree 
crown (ITC) approaches (Hyyppä & Inkinen, 1999) 
and estimation of stand-level variables using the area 
based approach (ABA) (Næss et, 2002; White et al., 
2013) or Empirical Best Linear Unbiased Predictors 
(EBLUPs) (Mauro et al., 2016). The PNOA LiDAR 

dataset was tailored for topographic applications, and 
its low point density may limit forestry applications 
such as structural characterization of dense forests 
(Adnan et al., 2017). Nonetheless, many important 
inventory variables (e.g., height, density) can be 
estimated with sufficient accuracy for certain purposes 
when there are enough ground returns to retrieve an 
accurate DTM, by choosing the appropriate relation 
between LiDAR pulse density and plot size (Ruiz et 
al., 2014). Alt hough high density (> 3 pulse × m-2) 
LiDAR is expensive, some regional administrations 
in cooperation with the National Geographic Insti-
tute have acquired this quality of LiDAR data (e.g., 
Navarra: 14 pulse × m-2; Basque Country and La 
Rioja: 2 pulse × m-2)—superior to densities typically 
found in national programmes in countries with 
highly productive forest resources, such as Finland 
(Valbuena et al., 2016a)—that may provide more 
accurate estimates in dense forests.

When forest inventories require estimates of struc-
tural attributes at stand or sub-stand level (0.5-50 ha) 
with relative errors below 5-10% (e.g., for manage-
ment purposes; Pascual et al., 2018b), ABA LiDAR 
assisted methods become economically unaffordable 
due to the need of sufficient field data. To address this 
problem Mauro et al. (2016) implemented small area 
estimation approaches to a LiDAR-assisted inventory 
in a Pinus pinaster Ait. forest in Burgos. Mauro et 
al. (2016, 2017a, 2017b) based their estimations on 
EBLUPs using LiDAR data as auxiliary information, 
and demonstrated this approach is more accurate than 
traditional inventories over small areas. Additionally, 
with this approach area level models just require 
identification of the plot/stand correspondence and 
an accurate location of plots is not needed. Thus, 
the SNFI plot positioning difficulty no longer applies 
(Mauro et al., 2011; Valbuena et al., 2012; Pascual et 
al., 2018a), enhancing the EBLUP methods the value 
of SNFI and PNOA LiDAR for operational forest 
inventories.

Focussing on biomass and carbon budgets—neces-
sary for monitoring management practices and for re-
por ting to international commitments (Montero et al., 
2005; Ruiz-Peinado et al., 2011)—a host of RS tech-
niques and data types have been employed in Spa nish 
forests during the recent decades (Table 2). González-
Alonso et al. (2006) estimated forest bio mass over the 
entire country at the province level with Normalized 
Difference Vegetation Index (NDVI) composites 
from SPOT VEGETATION and NOAA-AVHRR, and 
SNFI plots. This approach is useful for overall reports 
but lacks enough detail for manage  ment or local 
assessment. In a more detailed scale, opti cal images 
from the Advanced Spaceborne Thermal Emission and 
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Table 2. Examples of works for estimation of biomass and carbon fluxes with remote sensing in Spanish forest 
ecosystems.

Reference Variable Data source Area 
(km2) Forest type Approach Error/accuracy

García 
et al., 2010

Biomass:
foliage
branches 
total

LiDAR
(1.5-4.5 pulse × m-2)

382 Pinus nigra,
Juniperus 
thurifera and 
Quercus ilex

Regression
(stepwise)

RMSE:
1.12 T × ha-1

15.27 T × ha-1

17.82 T × ha-1

Estornell 
et al., 2011a

Biomass LiDAR
(4 pulse × m-2)

10 Quercus coccifera Regression RMSE = 34.7% 
(1.45 kg)

Gómez
et al., 2012a

Carbon 
change

Landsat TM, ETM+ 10000 Coniferous Time series
1984-2009

N/A

Sevillano-Marco
et al., 2013

Biomass CBERS
ASTER

150 Coniferous Regression RMSE = 39.9%

Estornell 
et al., 2012

Biomass LiDAR
(4 pulse × m-2)
MS image

10 Quercus coccifera Regression RMSE = 22% 
(96.55 kg) 

González-Ferreiro 
et al., 2013a

Biomass:
crown
stem
total

LiDAR
(4 pulse × m-2)

4 Eucalyptus 
globulus

Regression RMSE:
3.5 T × ha-1

19.9-25.9 T × ha-1

23.2-30.1 T× ha-1

Fernández-Manso 
et al., 2014

Biomass ASTER 68.5 Coniferous Fraction images RMSE = 37.7%

Gómez 
et al., 2014

Biomass 
dynamics

Landsat TM, ETM+ 814 Coniferous Time series
1984-2009

70% accuracy

Tanase
et al., 2014a

Biomass ALOS PALSAR 134 Coniferous Parametric /
non-parametric

RMSE = 60-80% 
(21±2.2 T × ha-1)

Méndez 
et al., 2016

Biomass ALOS PALSAR 210 Coniferous and 
broadleaved

Regression RMSE = 39-51%

Guerra-Hernández 
et al., 2016

Biomass:
stem 
crown 
total

LiDAR
(0.5 pulse × m-2)

7.48 Pinus pinea,
Quercus 
pyrenaica, and 
mixed

Regression
(stepwise)

RMSE (P. pinea):
26.16%
25.89%
25.90%

Domingo 
et al., 2017

Biomass 
loss and CO2 
emissions

LiDAR
(1.5 pulse × m-2)

142/ 
33.9

Pinus halepensis Regression 
(multiple linear)
Random Forest
Support Vector 
Machine
Decision Tree

RMSE = 11.1%

Montealegre 
et al., 2017b

Biomass 
loss and CO2 
emissions

LiDAR
(1 pulse × m-2)

82.7 Pinus halepensis Regression 
(forward stepwise)

RMSE = 27.35%

Navarro-Cerrillo
et al., 2017

Total 
aboveground 
biomass

LiDAR
(4 pulse × m-2)

N/A Pinus sylvestris
Pinus nigra

Regression
(multiple linear)

RMSE: 
P. sylvestris = 
2.89%
P. nigra = 0.38%

Trassierra
et al., 2017

Biomass LiDAR
(0.5 pulse × m-2)
Landsat OLI

N/A Cistus laurifolius Regression
Random Forest

RMSE:
(LiDAR) = 26.75%
(Landsat) = 41%

Valbuena
et al., 2017b

Biomass LiDAR
(1.15 pulse × m-2) 
and MS-DAP

8 Pinus sylvestris Most similar 
neighbour

RMSE = 14.4 %

Hernando 
et al., 2019

Biomass:
foliage
branches
total 

LiDAR
(1.15 pulse × m-2) 
and MS-DAP

8 Pinus sylvestris Most similar 
neighbour

RMSE: 
19.99 %
18.21 %
16.72 %
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Reflection Radiometer (ASTER) images were used by 
Fernández-Manso et al. (2014) to estimate biomass 
of pines in Segovia. A combination of the red and 
SWIR bands with the green fraction obtained applying 
Linear Spectral Mixture Analysis (LSMA) yielded 
the strongest relationship with biomass (R = 0.63). 
LSMA was applied to lessen the effect of mixed pixels 
and showed a positive contribution in the modelling. 
Gómez et al. (2012a) described changes in carbon 
content at the landscape level in pines of the Central 
Range employing a time series of Landsat images (8 
images for a 25-year period). Through interpretation 
of the temporal derivative of the time series—named 
Process Indicator (PI)—the rates and directionality of 
change (i.e., increase or decrease) were characterized. 
The same Landsat series served a 2D wavelet 
transformation model calibrated with SNFI plots for 
estimation of biomass dynamics (Gómez et al., 2014), 
whereby changes in biomass were mapped with 70% 
accuracy. In general, the biomass of Spanish forests 
has proven difficult to characterize with spectral 
traits (Vázquez de la Cueva, 2008) in part due to 
their heterogeneity and location in rugged areas. Such 
factors, added to the saturation of optical and radar 
sensors, preclude accurate estimation of high values 
of biomass. LiDAR technology has become key for 
assessment of aboveground forest biomass, enabling 
estimation of its distribution among crowns, trunks, 
branches and leaves, and quantification of biomass loss 
and CO2 emissions (Table 2).

National Parks Administration (Organismo Autó-
nomo de Parques Nacionales, OAPN) currently moni-
tors the net primary production (NPP) of ecosystems 
in National Parks with REMOTE, an application 
for analysis of MODIS NDVI and EVI (Enhanced 
Vegetation Index) time series (Cabello et al., 2016). 
Information of the NPP contributes to inform about 
the National Parks state of conservation. The high 
frequency of continuous data and accumulated refe-
rence data facilitates an alarm system for identi-
fication of anomalies as well as characterization of 
tendencies. Cicuéndez et al. (2015) demonstrated that 
the NASA derived MODIS Gross Primary Produc tion 
(GPP) product (MOD17A2, 1 km spatial resolution) 
underestimates dehesa GPP due to ecological para-
meters such as soil moisture and precipitation. For 
such finding the authors compared 5 years (2004-
2008) of MOD17A2 with a MODIS-based locally cali-
brated GPP in a 600 ha holm-oak dehesa in Cáceres.

Shrub ecosystems—18.4 million ha in Spain, 
MAPAMA 2011—have attracted efforts for estimation 
of biomass and volume. Estornell et al. (2011a) 
employed high density LiDAR (average 8 point × m-2) 
to evaluate biomass of a Q. coccifera dominated area 

in Chiva (Valencia) and obtained accurate results        
(R2 = 0.73) in plots of 1.5 m radius when a highly 
accu rate Di gital Terrain Model (DTM) (RMSE < 0.2 m) 
was employed. Biomass estimates over the same area 
were improved by combining LiDAR with spectral 
data from an airborne flight and when assessing results 
in squared plots of 100 m2 (Estornell et al., 2012). 
Tras sierra et al. (2017) estimated Cistus laurifolius L. 
aerial biomass in experimental plots (11.3 m ra dius 
with subplots of 2 m radius) in Soria and compared 
models based on PNOA LiDAR or Landsat variables. 
The authors found better results when building 
parametric models with LiDAR data, but Landsat 
spectral information was considered as an acceptable 
alternative.

Although information from SAR images is particu-
larly complex to retrieve in fragmented landscapes 
with steep topography, as frequently found in Spanish 
forests, SAR images have demonstrated potential for 
estimation of aboveground biomass (Tanase et al., 
2014a; Joshi et al., 2017). Tanase et al. (2014a) used 
SNFI plots to evaluate parametric and non-parametric 
modelling retrieval of biomass as a function of dual-
polarized (HH, HV) ALOS PALSAR backscatter of 
coniferous forests in Aragon. The study concludes that 
observed errors obtained with non-parametric models 
are similar and that within the sensitivity interval of 
the L-band wavelength (10-100 T × ha-1) biomass 
estimates are relatively accurate (RMSE = 20-35%). 
Considerably larger errors were observed outside this 
interval since at low biomass levels (<10 T × ha-1) 
backscattering largely depends on surface properties 
while at high biomass levels (>100 T × ha-1) signal 
saturation sets in. Méndez et al. (2016) used ALOS 
PALSAR for estimating eucalyptus and pine forest 
biomass in Huelva by modelling the relationship 
between the backscatter coefficients and wood vo-
lume. Correlations were high (R = 0.7-0.8) but so was 
the relative error (RMSE = 39.8-51.6%). The signal 
saturation point was identified at 100 T × ha-1 suggesting 
that improved modelling approaches are needed to 
meeting forest management needs, a conclusion also 
reached in other studies over similar environments 
(Tanase et al., 2014b). Joshi et al. (2017) found that 
the inclusion of forest structural information is cru cial 
to establishing suitable relationships between stand 
volume or biomass and SAR backscatter, and using 
that approach mapping forests with SAR images may 
not need to be restricted to areas with low biomass.

Structural characterization 

Characterizing structural parameters like dominant 
height or basal area at different scales—individual tree, 
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plot, stand, landscape—employing diverse tech niques 
and datasets is a typical RS effort (Table 3). Very high 
spatial resolution (0.7-2.4 m pixel size) data from single 
date QuickBird-2 images were employed by Gómez et 
al. (2012b) to estimate quadratic mean diameter, basal 
area, and number of trees per hectare in pine areas of 
the Central Range. In the same areas Gómez et al. 
(2011) modelled the stand structural diversity and 
found that image texture variables make a valuable 
contribution in structural modelling. The advent of 
LiDAR technology since the beginning of the centu-
ry has reduced estimation error, marking a milestone 
change in this field (Table 3). At local scale UAVs can 
be used for estimation of tree heights (Zarco-Tejada 
et al., 2014), with an on-board LiDAR or from DAP 
point clouds. However, the DAP technology is not 
yet operationally used in the Spanish forest sector, 
although it has shown valuable for estimation of 
structural parameters with accuracies similar to those 
from LiDAR when an accurate DTM is available 
(Navarro et al., 2018).

LiDAR data by itself or in combination with other 
data sources have demonstrated capacity for assess-
ment of the main forest structural variables (i.e., 
height, basal area, volume) and also a number of de ri-
ved forest properties (e.g., complexity, diversity, rege-
neration) (Table 3). For example, Fernández-Landa et 
al. (2018) estimated basal area, volume, and number 
of stems per hectare in pine and beech forests of La 
Rioja with PNOA LiDAR data and SNFI plots, and 
Gonçalves-Seco et al. (2011) estimated canopy cover, 
density, and tree height in dense stands of eucalyptus 
plantations in Galicia. Estornell et al. (2011b) predic-
ted dominant height of Quercus coccifera L. in Chiva 
(Valencia) from discrete LiDAR metrics with accura-
cy (R2 = 0.73), while Crespo-Peremarch et al. (2018) 
characterized understory vegetation attributes (i.e., 
mean and maximum height, cover, and volume) at the 
plot level employing full-waveform LiDAR metrics in 
Sierra de Espadán (Castellón). ITC approaches have 
sometimes been used for measurement of individual 
tree height (e.g., González-Ferreiro et al., 2013b in P. 
radiata plantations in Galicia), but ITC approaches 
are more sensitive to pulse density than ABA and there 
fore less employed in forest inventories. Alt hough 
dis crete LiDAR returns below 1.5-2 m are frequently 
considered signal noise and dismissed—leaving shrub 
structure below this height unaccounted for—some 
studies have focused on the structure of forest lower 
layers, including regeneration stages. Valbuena et 
al. (2013c) showed the relationship of under-canopy 
parameters to other forest structural properties and 
employed these relationships to unravel the success of 
natural regeneration in P. sylvestris forests of Valsaín 

(Segovia). Blázquez-Casado et al. (2015) studied forest 
dynamics and regeneration after storm damage with 
2011 acquired LiDAR (≥ 6 pulse × m-2) and historical 
(1956/1977/1996) aerial photography, showing how 
natural disturbances influence forest development. 
Simonson et al. (2018) explored the effects of pheno-
logy on LiDAR metrics in mixed stands of Quer-
cus suber L. and Quercus canariensis Willd. in Los 
Alcornocales Natural Park (Cádiz). Employing two 
spring datasets acquired in a six week interval, there 
was consistency in the maximum and mean height 
estimations but some differences in standard de via-
tions and skewness. Combining data from multi ple 
sensors usually provides important synergies for the 
characterization of forest structure (Pascual et al., 
2010; Manzanera et al., 2016; Ruiz et al., 2018). 
However, Valbuena et al. (2017a) obtained mixed 
results when combining LiDAR with MS information 
from DAP, suggesting that synergies among sensors 
may be beneficial in some cases but counterproduc-
tive for structural variables that just depend on 
vegetation heights. 

Mapping the structural complexity, that is, structural 
types and development stages of forests helps decision 
making. Pascual et al. (2008; 2013) developed a two-
stage method for depicting forest structural types of 
P. sylvestris stands in the Central Range. Attending 
to an increasing participation of forest management 
expert opinion, the best classification of structural 
types was obtained from a fully automatic delineation 
of stands with LiDAR data—by means of an object-
oriented segmentation algorithm—with subsequent 
k-means clus tering of stands into five structural types. 
Automated methods developed from LiDAR data to 
describe forest structural types in Spain (Valbuena et 
al., 2013c) have recently been extended for a more 
generalized use across ecotypes in Europe (Adnan et 
al., 2018).

There has been an intense research effort for 
optimization of methods employing LiDAR data in 
the assessment of structural properties in Spanish 
forests. The influence of pulse density—a key variable 
when acquiring LiDAR data—has received particular 
attention. In 2012 González-Ferreiro et al. evaluated a 
range of pulse densities (0.5-8 pulse × m-2) for estima-
tion of height, basal area, and volume of Pinus radiata 
D. Don. plantations in Galicia, and found similar 
performances. Varo-Martínez et al. (2017) evaluated 
the capacity of (0.5/4.0/10.5 pulse × m-2) LiDAR 
data in the delineation of P. sylvestris stands in Sierra 
de Los Filabres (Almería) and found no significant 
difference, but for estimation of height the densest 
dataset performed best. On the contrary, Marino et al. 
(2017a) found similar performance in the estimation of 
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Table 3. Examples of forest structural characterization in Spain employing remote sensing
Reference Structural variable Data Forest type Approach Error

Pascual et al., 2008
Pascual et al., 2013

Structural types LiDAR
Landsat

Pines
120 ha

Object
classification
Regression

N/A

Estornell
et al., 2011b

Ho LiDAR
(4 pulse × m-2)

Quercus 
coccifera

Regression RMSE= 0.13 m

Gómez 
et al., 2012b

QMD, G, N QuickBird-2 Pines
13000 ha

CART
Stand level 

characterization

RMSE:
QMD = 0.13 m

G = 5.79 m2 × ha-1

N = 98.86
González-Ferreiro 
et al., 2012

G, V, Ho, Hm LiDAR 
(8 pulse × m-2)

Pinus radiata
3600 ha

Regression RMSE:
G = 7.8 m2 × ha-1

V = 76.9 m3 × ha-1

Ho = 1.88 m
Hm = 1.92 m 

Sevillano-Marco 
et al., 2013

G, V CBERS 
and ASTER

Pinus radiata
693.9 ha 

Non-linear 
Regression

RMSE:
G = 19.9 m2 × ha-1

V = 214.2 m3 × ha-1

Condés
et al., 2013

V LiDAR 
(2 pto× m-2)

Pinus sylvestris 
1121 ha

Two-
phase 

regression

Relative error = 5.1 %

Valbuena 
et al., 2013b

G, N LiDAR 
(1.15 pulse × m-2)

Pinus sylvestris
384 ha

PLS 
regression 

and 
multimodel
 inference

RMSE:
G = 9.06%
N = 18.04%

García-Gutiérrez 
et al., 2014

G, Ho, Hm LiDAR
(0.5-8 pulse × m-2)

Eucalyptus 
globulus

Pinus radiata

Genetic 
approach

MLR

RMSE:
G = 8.51/7.60 m2 × 

ha-1

Ho = 2.01/1.89 m
Hm = 1.71/1.86 m

Ruiz 
et al., 2014

G, V, CC LiDAR 
(0.25-6 pulse × m-2)

Pinus nigra
Pinus sylvestris

Regressions; 
adaptive 
threshold

Variable RMSE 
depending on pulse 

density and plot sizes 
used.

Blázquez-Casado 
et al., 2015

G, Hm, N, 
cover, Nm, Dm, 

Do, RD_H to define 
structural types

LiDAR 
(6 pulse × m-2)

Pinus uncinata
208 ha

Aggregation of 
individual 

tree metrics into 
stand level 
structural 
variables 

to define forest 
types 

N/A

Manzanera
et al., 2016

V, Hl, SDI, GC, La, 
BALM

LiDAR 
(1.15 pulse × m-2)

MS imagery

Pinus sylvestris
4.6 ha

Back-p
rojecting 

and 
canonical 
correlation 

analysis

Canonical R2 = 98.9

Montealegre
et al., 2016

G, Hm, QMD, N LiDAR (PNOA)
(1 pulse × m-2)

Pinus halepensis Multiple 
regression

RMSE:
Hm = 0.72 m 

QMD = 1.99 cm
G = 2.39 m2 × ha-1

N = 187 stem × ha-1
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P. sylvestris height in Valsaín (Segovia) when compa-
ring 0.5 with /1.5-5.0 pulse × m-2 LiDAR data, but the 
lower strata was better characterized with denser point 
clouds. Ruiz et al. (2014) analysed the combined effect 
of plot size and LiDAR pulse density on estimates of 
volume, biomass, basal area, and canopy cover in pines 
of the Central Range (Cuenca). The authors found that 
the rate of improvement in model estimates decreases 
when using plot areas ≥ 500-600 m2, while densities 
>1 pulse × m-2 do not significantly improve predictions. 
The variety of sometimes apparently opposite results 
suggests there is no general optimal LiDAR data den-
sity, but it rather depends on the work objectives and 
structure of the target forest. A good choice of LiDAR 
predictive variables is relevant when modelling forest 
structure (García-Gutiérrez et al., 2014; Valbuena et al., 
2017b), and the estimation and classification methods 
may also play a significant role (Guerra-Hernández et 
al., 2016; Valbuena et al., 2016b; Domingo et al., 2017, 
2018). Regarding the scale of data aggregation, Mauro 
et al. (2016) showed that it has important consequences 
and demonstrated the subsequent trade-offs with the 
desired accuracy in the estimation of forest structural 
variables. 

Fire assessment

Remote sensing technology has extensively been 
used for fire related applications in Spain, inclu-
ding identification of area burned and fire severity, 
characterization of fire drivers, and monitoring 

regeneration (Table 4). A burned forest area can be 
determined by classification of a single post-fire image 
(Quintano et al., 2006) since the spectral signature 
of burned vegetation has higher visible and SWIR 
values and lower NIR values compared with non-
burned areas. However, differential approaches (i.e., 
temporal comparison) and active fire information based 
on thermal anomalies are more reliable for large and 
heterogeneous areas. Merino de Miguel et al. (2010) 
successfully applied a scar detection algorithm based on 
MODIS active fire data and a single MODIS post-fire 
infrared reflectance image (500 m) in Galicia, making 
use of freely available and highly processed products 
and without needing field data. Deepening on this 
cost-effective method and working on the same area, 
Hues ca et al. (2013a) demonstrated similar mapping 
results employing MERIS post fire infrared reflec -
tance data (300 m), and certainly higher accuracies 
than achieved by global fire products. Overall, these 
low spatial resolution datasets have great value for 
regional assessments, although they lack sufficient 
spatial de tail for management. With fine spatial detail 
Verdú & Salas (2010) compared four pairs of Landsat 
and SPOT composites for the period 1991-2005 at 
irregu lar intervals of 1-5 years and visually identified 
and mapped fire scars over Spain. As expected the 
total area burned by fires larger than 100 ha was better 
correlated with the official fire database in the shortest 
interval product (1999-2000) than in other 5-year 
interval products. But mapping fire scars at large scale 
with fine temporal frequency and spatial resolution 

Reference Structural variable Data Forest type Approach Error
Fernández-Landa 
et al., 2018 

G, N LiDAR 
(0.5 point × m-2)
SNFI, Landsat

Pinus sylvestris
Fagus sylvatica

16000 ha

Area based 
approach

GLM 
modelling 

RMSE:
Gbeech = 6.9 m2 × ha-1

Gpine = 3.3 m2 × ha-1

Nbeech= 361 stem × ha-1

Npine = 392 stem × ha-1

Arias-Rodil
et al., 2018

QMD, Dm LiDAR (PNOA)
(0.5 pulse × m-2)

Pinus radiata Regression RMSE:
QMD = 3.42 cm
Dm = 3.62 cm

Crespo-Peremarch
et al., 2018

Understory:
V, Hm, Hmax, cover

LiDAR 
full-waveform 

(14 pulse × m-2)

Shrub under 
Pinus 

halepensis, 
Pinus pinaster

Regression RMSE:
V = 56.49 m3 × ha-1

Hm = 0.08 m
Hmax = 0.51 m
cover= 9 %

Navarro 
et al., 2018

G, V, Ho, N DAP from 
PNOA imagery 

(4.32 point × m-2)
LiDAR 

(2.96 point × m-2)

Pinus pinaster
1926 ha

Random 
Forest

RMSE:
G = 27.02%
V = 26.80%

Ho = 10.71%
N = 43.02%

Note. G: basal area; V: volume; CC: canopy cover; QMD: quadratic mean diameter; Dm: mean diameter; Hm: mean height; Ho: 
dominant height; Hl: Lorey´s height; N: stem density; SDI: stand density index; GC: Gini coefficient; La: Lorenz asymmetry; BALM: 
proportions of basal area larger than the QMD; Nm: Recruitment with D between 2.5 and 7.5 cm; RD_H: relative difference between 
dominant and mean height.

Table 3. Continued.
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Table 4. Examples of forest fire related remote sensing applications in Spain.
AREA BURNED

Study Data Techniques
Quintano et al., 2006 NOAA AVHRR and Landsat Classification of fraction images
Verdú & Salas, 2010 Landsat and SPOT Visual analysis
Merino de Miguel et al., 2010 Active fire data and MODIS (500 m) 

reflectance 
Threshold correlation

Huesca et al., 2013a Active fire data and MODIS (250 m)/
MERIS (300 m) reflectance

Threshold correlation

Gómez et al., 2017 Landsat time series (TM, ETM+) Trend analysis of NBR with C2C algorithm
Belenguer-Plomer et al., 2018 Sentinel-1 time series Change detection, Reed-Xiaoli anomaly 

detection, Random Forests
FIRE SEVERITY

Study Data Techniques
Álvarez-Taboada et al., 2007b Landsat-TM OBIA

Thresholding
De Santis & Chuvieco 2007 Landsat-TM Radiative transfer model inversion simulations
Chuvieco et al., 2007 Landsat-TM, Terra-MODIS, SPOT-HRV, 

Envisat-MERIS, IRS-AWIFS
Radiative transfer model inversion simulations

De Santis & Chuvieco 2009 Landsat-TM and SPOT5-HRG Spectral Angle Mapper supervised classification
Tanase et al., 2010a ERS 1/2, ENVISAT ASAR, TerraSAR-X, Radar backscatter
Tanase et al., 2010b ALOS PALSAR Radar coherence
Tanase et al., 2011a Landsat TM Change detection
Tanase et al., 2014c Radarsat-2, ALOS PALSAR Polarimetric decomposition
Tanase et al., 2015a, b ALOS PALSAR, Landsat TM Change detection
Quintano et al., 2015 Landsat ETM+ Correlation and regression of Land Surface 

Temperature and CBI
Viedma et al., 2015 Landsat TM Relative Differenced Normalized Burn Ratio and 

Boosted regression tree analysis
Fernández-Manso et al., 2016a Sentinel-2A Multinomial logistic regression
Montealegre et al., 2017a LiDAR PNOA (0.5 pulse × m-2) Logistic Regression
Botella-Martínez & Fernández-
Manso, 2017

Landsat 8 OLI Threshold classification of NBR derived indices

Fernández-García et al., 2018 Landsat 8 OLI/TIRS, ETM+ Linear Regression
Quintano et al., 2018 Sentinel-2A MSI, Landsat 8 OLI Threshold classification of NBR derived indices

FUEL TYPE AND STRUCTURE
Study Data Techniques

Riaño et al., 2002 Landsat TM and DEM-derived data Supervised classification (maximum likelihood)
Arroyo et al., 2006 QuickBird-2 OBIA classification
González-Olabarría et al., 2012 LiDAR (2 pulse × m-2) FlanMap simulation 
González-Ferreiro et al., 2014 LiDAR (0.5 point × m-2) Regression
Marino et al., 2016 LiDAR(1 pulse × m-2) and Landsat 8 OLI Vegetation classification and fuel model 

assignment 
Alonso-Benito et al., 2016 LiDAR(2.43 point × m-2) and WordView2 OBIA classification
Robles et al., 2016 LiDAR(2 point × m-2) and aerial images OBIA classification
Hevia et al., 2016 LiDAR (8-16 point× m-2) Regression
Marino et al., 2018 LiDAR (1 pulse × m-2) and ForeStereo OBIA classification
Arellano-Pérez et al., 2018 Sentinel-2A Random Forest and Multivariate Adaptive 

Regression Splines
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using RS techniques requires automatic approaches. 
In this sense, Bastarrika et al. (2014) developed semi-
automatic software named Burned Area Algorithm 
Software (BAMS) for identification of burned areas 
based on threshold values of various spectral indices. 
BAMS supports the use of Landsat TM, ETM+, and 
OLI images and works on ArcGIS environment. 
Recently time series approaches are preferred to 
bi-temporal approaches for their effec tiveness and 
temporal accuracy in identifying fire occurrence. 
Gómez et al. (2017) tested Composite2Change (C2C), a 
change identification algorithm ba sed on trend analysis, 
to reconstruct 31 years (1985-2015) of annual fires in 
Northern Spain. C2C (Hermosilla et al., 2015, 2016) 
was developed for analysis of forest change in Cana-
da, and it analyses the Normalized Burn Ratio (NBR) 
trajectory of individual pixels of Landsat composites, 
identifying an abrupt decrease of values in the trend 
as a change, and aggregating neighbouring pixels with 
similar trend into polygons. Furthermore, the object-
oriented approach usually performs better than pixel-
based approaches when mapping burned area and 
severity, as shown by Álvarez-Taboada et al. (2007b) 
using Landsat TM data.

Burn severity is frequently estimated fitting ground 
reference data—e.g., the Composite Burn Index (CBI, 
Key & Benson, 1999) a semi-quantitative index of 

severity—and RS variables from a range of data 
sources (De Santis & Chuvieco, 2007). In order to un-
ders tand the causes of variability in spectral response 
with variations in burn severity, Chuvieco et al. (2007) 
simulated factors like soil background, leaf colour, and 
leaf area index, and compared models of burn severity 
produced with various sensors (Table 4). Landsat-TM 
provided the best compromise between spectral and 
spatial resolution and it best fitted the measured and 
observed CBI values. Burn severity models are typically 
more reliable in estimation of high than intermediate or 
low severity levels, both working at regional (Tanase et 
al., 2011a) or local scale (De Santis & Chuvieco, 2009). 
Viedma et al. (2015) used Landsat data to estimate se-
verity in burned pines in Guadalajara (>12600 ha) and 
identified burning conditions like weather, propagation 
direction or rate of spread, as more relevant factors 
driving severity than pre-fire stand structure and 
directional topography. Temperature measured from 
a series of post-fire Landsat ETM+ datasets was 
tested as indicator of burn severity by Quintano et al. 
(2015) evidencing that surface temperature is strongly 
related with ground CBI values, thus proving its 
value to understand fire severity patterns. Fernández-
Manso et al. (2016a) employed Sentinel-2A data to 
discriminate four levels of burn severity in Sierra del 
Teleno, demonstrating the superiority of the red-edge 

FUEL MOISTURE
Study Data Techniques

Chuvieco et al., 2002 Landsat-TM Multi-temporal analysis
Chuvieco et al., 2004a NOAA14 AVHRR Regression and trend interpretation
Chuvieco et al., 2004b Landsat TM, SPOT Vegetation, NOAA14 

AVHRR
Regression and trend interpretation

Yebra & Chuvieco 2009 MODIS Look Up Table
RECOVERY

Study Data Techniques
Vicente-Serrano 2011 Landsat time series (TM, ETM+) Trend analysis of NDVI
Tanase et al., 2011b ENVISAT ASAR, TerraSAR-X, ALOS 

PALSAR
Trend analysis

Huesca et al., 2013b MODIS and AHS Time series of NDVI (MODIS)
Spectral unmixing (AHS)

Fernández-Manso et al., 2016a Landsat time series (TM, ETM+) Trend analysis of a Vegetation Recovery Index 
defined from MESMA fraction images

Martínez et al., 2017 Landsat TM, ETM+ Trend analysis of TCW with LandTrendr 
algorithm

Viana-Soto et al., 2017 Landsat TM, ETM+ Ordinary Least Squares and Geographic 
Weighted Regression between NDVI and CBI

Marino et al., 2017b LiDAR (1 pulse × m-2) Comparison of structural metrics pre- and post-
fire

Debouk et al., 2013 LiDAR (0.7 pulse × m-2) Artificial Neural Network

 

Table 4. Continued.
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indices for this purpose, in agreement with Huang et 
al. (2016) who found the 20 m MSI NIR, red-edge, 
and SWIR bands best for mapping burned areas in 
different vegetation formations around the Globe. 
Aiming to evaluate the capacity of LiDAR data, 
Montealegre et al. (2017a) modelled and mapped 
burn severity in four large fires (> 500 ha) in Aragon 
with PNOA LiDAR data. Correlations between 
LiDAR and field measured CBI were comparable 
to those between Landsat-based NBR maps and 
CBI. Hyperspectral imagery has also demonstrated 
capacity to estimate burn severity, from the satellite 
platform Hyperion (Parra & Chuvieco, 2005), and 
from an aerial platform (Huesca et al., 2013b), but 
the scarcity of data makes this type of sensor less 
attractive for the purpose. On the contrary, over the 
past decade SAR-based retrieval of fire impacts has 
received significant attention over Spanish forests and 
the potential of radar sensors has been demonstrated 
for all wavelengths (X-, C-, and L-bands) available 
on satellite platforms. The variables and approaches 
implemented are diverse, including a range of SAR 
metrics from backscatter coefficient (Tanase et al., 
2010a), interferometric coherence (Tanase et al., 
2010b) and polarimetric decomposition (Tanase et al., 
2014c). A combination of active and passive datasets 
in a multi-temporal change detection approach was 
also proposed in an operational framework for rapid 
fire impact assessment at regional to continental 
scales (Tanase et al., 2015a, 2015b). The framework 
was tested in various locations in Spain as well as in 
Australia and the US and it is based on the Radar Burn 
Ratio (RBR), an index pre-calibrated with in situ data.

Evaluating fire risk and danger requires knowledge 
of the fuel type and its moisture content, as well as 
factors like climate and topography. Certainly at large 
scale these factors are best estimated or modelled 
with some RS support. Riaño et al. (2002) generated 
a fuel type map of Cabañeros National Park with 
a supervised classification of Landsat data, getting 
the global accuracy considerably increased—from 
67.3% to 79.4%—when illumination and slope were 
considered. Arroyo et al. (2006) demonstrated the use-
fulness of very high spatial resolution data to map fuel 
types by classifying optical data from QuickBird-2 
(0.7-2.4 m) and mapping six vegetation structural types 
in Madrid with an overall accuracy of 80%. To predict 
the potential type of wildfire (surface, passive-crown, 
active-crown fire) at large scale, Arellano-Pérez et al. 
(2018) employed Sentinel-2 data over homogeneous 
plantations of P. radiata and P. pinaster in Galicia. A 
main limitation of spectral data for fuel type mapping 
is the inability to penetrate forest canopies (Keane 
et al., 2001) and to provide direct estimation of 

vegetation height. On the contrary, LiDAR airborne 
data can successfully be used to estimate critical cano-
py fuel parameters (e.g., Riaño et al., 2004 in pine 
forests of central Spain) which may be integrated with 
SNFI data (e.g., González-Ferreiro et al., 2017 in pine 
forests of Galicia). González-Olabarría et al. (2012) 
combined fuel type derived from LiDAR data with fire 
behaviour models to assess fire risk at the landscape 
level in Urbión (Soria). At regional scale LiDAR and 
spectral data have been combined to provide fuel type 
cartography in Natural Park of Alto Tajo (Guadalajara) 
(García et al., 2011). Likewise, to map forest fuel 
types in Canary Islands Marino et al. (2016) emplo-
yed LiDAR data (1 pulse × m-2) after stratification 
with Landsat images, and Alonso-Benito et al. (2016) 
fusioned WorldView-2 optical images and LiDAR 
data into an object-oriented classification approach. 
In the context of wildfire suppression in the wildland-
urban interface, Robles et al. (2016) evaluated the 
risk of damage in case of a wildfire of buildings and 
infrastructures in a 36 km2 rural area of Pontevedra. 
With LiDAR and aerial photographs from PNOA, and 
an object-oriented approach the authors classified 
forests into 5 forest fuel types and the buildings next 
to forests into 3 groups of risk.

Live fuel moisture may be estimated with passive 
(Chuvieco et al., 2004a) or active sensors (Tanase 
et al., 2015c), and it is an important parameter to 
determine fire risk, but also burning efficiency for 
evaluation of gas emissions from wildland fires (Chu-
vieco et al., 2004a). Aiming to evaluate fire danger 
in shrubs and pastures in Cabañeros National Park, 
Chuvieco et al. (2002) employed seven Landsat ima-
ges acquired at various dates—spring, summer, au-
tumn—over three years to estimate moisture with a 
number of spec tral indices. The authors indicated the 
relevance of SWIR data for estimation of vegetation 
moisture and interpreted spectral variations according 
to vegetation types. In a later work in the same area 
Chu vieco et al. (2003) employed NOAA-14 AVHRR—
with low spatial resolution (1100 m) and lacking SWIR 
bands—images acquired during summer time in 1996-
1999. A model including spectral and thermal varia-
bles was accurate (R2 = 0.8) and helped identifying 
trends of moisture change in the area and when 
extended to other Mediterranean areas (Chuvieco et al., 
2004a). Comparing the performance of Landsat-TM, 
SPOT-Vegetation, and NOAA-AVHRR in estimation 
of fuel moisture, Chuvieco et al. (2004b) demonstrated 
the synergies of NIR and SWIR combined, and that 
the NDVI relationship with vegetation moisture 
over time is stronger in grasslands than in shrubs. 
Yebra & Chuvie co (2009) employed MODIS 8-day 
composites, with 500 m pixel size and including NIR 
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and SWIR data, to demonstrate that the retrieval of 
fuel moisture content is more accurate when species 
specific conditions are considered. The authors worked 
in an area dominated by Quercus ilex L. and compared 
generic and specific reflectance look-up-tables. 

Despite an elusive relationship between spectral 
recovery and vegetation regeneration, recovery after 
fire is frequently studied with RS time series (e.g., 
Vicente-Serrano, 2011; Viana-Soto et al., 2017). Also 
with a time series approach Martínez et al. (2017) 
employed LandTrendr (Landsat-based Detection of 
Trends in Disturbance and Recovery, Kennedy et al., 
2010) an algorithm designed to characterize landscape 
changes, for evaluation of recovery processes in a 
large forest fire (> 7600 ha in Zaragoza/Navarra) 
characterizing patterns of spectral recovery and classes 
of recovery magnitude. The trajectory based approach 
showed there is a relationship between fire severity and 
recovery magnitude. Prominent among the approaches 
to retrieve change and regeneration information after 
fire is using vegetation indices such as NBR and 
its multi-date approach (dNBR—differential NBR, 
RdNBR—Relative differential NBR) (Álvarez-Taboada 
et al., 2007b; Botella-Martínez & Fernández-Manso, 
2017; Arellano et al., 2017) or NDVI (Díaz-Delgado 
& Pons, 1999; Ruiz-Gallardo et al., 2004). However, 
other approaches may be more informative of forest 
regeneration. For example, short term recovery from 
fire was modelled by Fernández-Manso et al. (2016b) 
in 30 km2 of P. pinaster in Sierra del Teleno using a 13-
year series of Landsat MESMA (Multiple Endmember 
Spectral Mixture Analysis) fraction images. The 
authors found a recovery period between 7 and 20 years 
depending on fire severity and indicated interpretation 
simplicity as an advantage of image fraction over 
vegetation indices time series. Tanase et al. (2010a) 
compared the sensitivity of radar (X-, C-, and L-bands) 
and optical data to post fire forest regrowth in various 
Pinus halepensis Mill. locations of Spain. They found 
that L-band backscatter is sensitive to forest structural 
changes 40 to 60 years past disturbance, whereas optical-
based indices reach saturation within 10 to 20 years, 
representing a reduced monitoring capacity. LiDAR can 
also be useful to evaluate post-fire regeneration at the 
landscape level. For example, Marino et al. (2017b) 
compared metrics derived from < 4 m strata returns 
of three LiDAR datasets (1 pulse × m-2) acquired 
pre- (2011) and post-fire (2012, 2014) in Garajonay 
and characteri zed vegetation recovery, demonstrating 
the value of repetitive LiDAR acquisitions. Debouk 
et al. (2013) employed low density LiDAR data                        
(0.7 pulse × m-2) ac quired over 104 km2 of mixed fo-
rest (P. halepensis and Q. ilex) in Barcelona five years 
after fire, and modelled vegetation recovery with an 

Artificial Neural Network (ANN) for classification 
and mapping. Martín-Alcón et al. (2015) combined 
low density LiDAR (0.5 pulse × m-2) acquired in 
2009 with MS aerial photography acqui red in 2011 
to classify a P. nigra forest burned in 1998 into five 
post-fire regeneration types. Malak et al. (2015) rela-
ted vegetation regrowth over an area ~2900 km2 in 
Valencia with Landsat TM EVI time series, and also 
demonstrated that the number of fires occurred in a 
short interval have a negative impact on vegetation 
growth. LiDAR and aerial photography combine well 
although both sources of data are constrained by the 
limited frequency of acquisition. Regeneration after 
a large fire has been recently studied with ultra-high 
spatial resolution imagery (0.2 m) acquired with 
UAV technology during a two-month campaign 
(Fernández-Guisuraga et al., 2018) in a 3000 ha area 
in León. Despite some banding noise and non-homo-
geneous radiometry, when compared with high spatial 
resolution WorldView-2 data (2 m pixel size) the UAV 
provided more accurate information of structural 
variability. 

Health status 

The Spanish forests and plantations host endemic 
populations of insects like the pine processionary 
moth (Thaumetopoea pityocampa D. &. Schiff.), 
the European gypsy moth (Lymantria dispar L.), the 
beech weevil (Rhynchaenus fagi L.) or the eucalyptus 
snout beetle (Gonipterus platensis Marelli). These 
populations cause low level defoliations but eventual 
outbreaks may occur in years of climate deviations 
(Cardil et al., 2017). Monitoring is necessary to 
evaluate the severity and areal extent of pest effects 
on the health and growth of trees, for management, 
and to develop effective protection strategies. The 
Spanish national forest health monitoring system is 
based on field observations over a network of plots 
(UNECE, 2016) and provides valuable data for overall 
assessments, but has inherent limitations for detailed 
mapping. RS data with complete spatial coverage 
and periodical observations may enhance the value 
of in situ measurements, and facilitate modelling 
and assessment of trends and deviations from normal 
condition. However, according to Radeloff et al. (1999) 
monitoring defoliation with RS is hampered by three 
problems: the short periods when defoliation can be 
detected, a difference in the scale of affection (lea-
ves) and detection (canopy), and the close interactions 
between factors and effects on insect populations.

Discerning the canopy reflectance signal from noise 
in forests slightly affected by a pest or disease requires 
fine spatial and spectral resolutions coupled with the 
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right temporal acquisitions, ideally at pre-, peak-, and 
post-defoliation times (Rullán et al., 2013). Rullán et al. 
(2013) suggested a two level scaled system for regional 
or national level monitoring of insect defoliation, with 
an early warning provided by MODIS time series, 
and Landsat data to assess dama ge affection. In 2004 
Álvarez-Taboada et al. propo sed a monitoring system 
of the health status in Eucalyptus globulus Labill. 
incorporating modelling, RS, and GIS (Eucalyptus 
Health Monitoring System, EHMS). Although an op-
timal application of the EHMS depends on climatic, 
soil and forest stand data, and validation of some rela-
tionships between the radiometric information and 
eucalyptus stand parameters, damage detection just 
requires Landsat TM SWIR data, a DEM, and stand 
density data. When applied in Galicia the EHMS 
identified damaged stands with leaf loss over 25% 
with a true positive accuracy of 72.31% and user’s 
accuracy of 95.92% (Álvarez-Taboada, 2006; Álvarez-
Taboada et al., 2007a). SAR-based change detection 
approaches may be better suited to identify areas 
susceptible to insect outbreaks or experiencing the 
initial outbreak phase, as demonstrated for coniferous 
forests elsewhere (Tanase et al., 2018). In this work 
the L-band SAR backscatter was sensitive to insect 
induced changes a year in advance when compared to 
optical reflectance from high resolution orthophotos. 
Such differences were explained by the sensitivity of 
the SAR data to the vegetation moisture content, which 
decreases during the initial attack phase (green phase) 
when leaves are still green (i.e., there is little to no 
change in optical reflectance).

As noted by Carter (1993) discoloured vegetation 
stressed by a pest or disease increases reflectance 
in the green and red (VIS), an effect typically first 
observed in the red edge (0.7 µm), whereas defolia-
tion is identifiable by a decrease in the NIR reflectan ce 
(Jensen, 2005). Vegetation indices based on VIS, NIR, 
and SWIR wavelengths are frequently used to quanti-
fy forest defoliation. In particular the ratio between 
SWIR and NIR, named Moisture Stress Index (MSI, 
Rock et al., 1986) has been found to be strongly related 
with defoliation caused by diverse drivers (e.g., pine 
processionary moth in Sierra de Gúdar (Teruel)—
Sangüesa-Barreda et al. (2014); beech weevil in the 
southern Cantabrian range—Rullán-Silva et al., 2015). 
In absence of extreme defoliation, modelling damage 
with MSI becomes more robust for intervals of low and 
moderate affection (Rullán-Silva et al., 2015). Álvarez-
Taboada et al. (2014) developed a multi-sensor and multi-
scale system for monitoring forest health in P. radiata 
stands affected by the European gypsy moth in a study 
area of 150 ha in Cubillos del Sil, León. At stand level 
the authors identified three levels of defoliation severity 

employing pre- and post- outbreak Landsat OLI data 
and an object oriented supervised approach, achieving 
an overall accuracy of 97.61%. In the same area Castedo 
Dorado et al. (2016) tested the UAV technology with 
RGB and NIR images (Ground Sample Distance, GSD 
= 0.15 m) acquired with a fixed-wing platform to map 
defoliation severity at tree level. Overall accuracies were 
67.68%, 71.72%, and 92.93% for 4, 3, and 2 severity 
classes. Also using UAVs Cardil et al. (2017) assessed 
defoliation by the pine processionary moth in two pine 
stands in an area of 24.6 ha. The authors classified 
RGB images captured with a Phantom 3 DJI and 
validated the results with field estimations at the tree 
level. The accuracy of detection was 79%, and only a 
few trees with low level of defoliation (10-20%) were 
misclassified.

Pests and diseases may have long term effects 
on trees that are more difficult to notice with RS 
than temporal defoliation, requiring additional data 
for interpretation. Sangüesa-Barreda et al. (2014) 
combined Landsat data with dendrochronological 
characterization of changes in basal area to estimate 
loss of growth due to the processionary moth. 
Cifuentes et al. (2017) classified affections caused by 
the fungus Cryphonectria parasitica (Murrill) (blight) 
in chestnut stands in El Bierzo (León). The authors 
estimated blight severity levels by visual analysis of 
RGB ortophotography (GSD = 0.08 m) acquired with 
a fixed-wing UAV and validated its correspondence to 
182 field measurements. The overall accuracy for six 
severity levels was 63%, whereas for 5and 4 levels, was 
74% and 77%, showing usefulness of this approach to 
map blight severity at the tree level.

For an early detection of forest decline photosyn the-
tic activity and pigment content are better indica tors 
than structural degradation. Sun induced fluorescence 
(SIF), which can be assessed from ultraviolet active 
laser fluorosensors and from passive multispectral or 
hyperspectral radiance sensors, has shown to be a proxy 
of photosynthetic activity. Q. ilex declining condition 
due to water stress and Phytophtora was explored by 
Hernández-Clemente et al. (2017) analysing the red and 
far-red SIF from airborne hyperspectral imagery. The 
authors found the relationships between SIF and vigour 
decline depend on spatial resolution, being significant for 
0.6 m pixels but not for 30 m pixels. Recently Zarco- 
 Tejada et al. (2018) explored the capacity of red-
edge spectral data to assess pine decline in 7000 ha 
of P. pinaster and P. nigra in Extremadura analysing 
the temporal responses of Sentinel-2A red edge 
chlo rophyll index and NDVI. Validated with aerial 
hyperspectral data and field measures of chlorotic and 
defoliated trees the authors found that declining and 
healthy pine trees have different NDVI vs. chlorophyll 
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index temporal trajectories, demonstrating the value of 
the red-edge data to monitor forest decline.

Synthesis

Forests and other woodlands cover more than half 
of the Spanish land and provide important services to 
society, including economic benefits and recreatio nal 
opportunities. RS offers options for monitoring the 
environment and it is increasingly being employed to 
improve our understanding on the state and dynamics 
of forest ecosystems in Spain. Applications that benefit 
from the use of RS techniques include medium to large 
scale characterization of forest structure, estimation of 
aboveground biomass, mapping of fire extension and 
severity, and monitoring of forest health. Certainly 
optical medium spatial resolution data have been the 
most frequently used source of data in the past, due to 
availability and suitability for a range of applications. 
However, LiDAR and SAR data are increasingly being 
employed (Table 3), especially for the retrieval of 
forest structural parameters, due to their capability to 
penetrate through the canopy. Innovative RS techni-
ques are developed and applied in Spanish forests, 
being remarkable the use of small aerial platforms 
(UAVs) for local scale data acquisition and assisting 
in assess ment of forest health, and the application of 
machine learning for analysis and modelling.

Through this review we have identified some needs 
and opportunities in the monitoring of Spanish forests 
where RS techniques can play a significant role (Table 
5). In general free access to abundant and frequent 
data, as well as the increased storing and processing 
capacity offer unprecedented opportunities for forestry 
RS applications at spatial scales from local to national 
and with detailed temporal recurrence. Extending 
local models to a national level to provide an overall 
and consistent perspective should be a pursued effort, 
and understanding dynamics retrospectively would 
provide baseline information to build knowledge for 
the future. In this review we mentioned a representation 
of the most relevant RS applications in Spanish forests 
found in the scientific literature, with special attention to 
the most recent ones.

Transversal to landscape, structure, fire, and health 
is the dynamic character of ecosystems. Perhaps the 
most remarkable current opportunity offered by RS 
technology resides in its capacity to characterize dyna-
mics at a range of temporal resolutions, facilitated by 
the amount of free data available from long-life dura ti on 
satellites like Landsat, MODIS and the Sentinels. There 
is an opportunity to monitor trends with high temporal 
frequency and spatial resolution and to retrospectively 
reconstruct a history of change to learn from patterns, 
by combining the Landsat records held by the USGS 
and ESA archives. Integration of data from both archi-
ves requires self-implemented standard processing 

Table 5. Synthesis of the needs and opportunities in the Spanish forestry remote sensing
NEED OPPORTUNITY TECHNIQUE

Frequent LULC Sentinel-2
Sentinel-1
Virtual constellations

Integration of synergic data Classification

Historical fire cartography Landsat 
Combine USGS and ESA image archives

Standardized pre-processing
Spectral trend analysis

Fire risk MODIS
Landsat
Sentinel-2

Hot-spots
Deviation from time series 

Fire behaviour and propagation SWIR imagery 
LiDAR discrete and full-waveform

Modelling

Structural characterization LiDAR
DAP point clouds
Radar

Combined and synergic use of LiDAR and DAP
Polarimetry
PolInSAR

Height characterization LiDAR Standard processing extended to large scale
Height change assessment Radar data from Tandem X/PAZ

LiDAR / DAP point clouds
PolInSAR
Combined and synergic use of LiDAR and DAP

Health assessment Sentinel-1/2
UAV

Time series
Calibration and assessment at local scale

Characterization of forest dynamics Virtual constellations 
(Sentinel -1/2, Landsat)

Time series
Modelling

Habitat cartography Combination of moderate 
resolution with UAV data

Two scale monitoring
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(i.e., geometric alignment and radiometric correc-
tions) until the Landsat Global Archive Consolidation 
initiative (Wulder et al., 2016) completes efforts to 
have all images centralized in a global archive and 
with similar processing. To overcome eventual scarcity 
of available data due to historical circumstances, 
compositing data with a per-pixel approach (White 
et al., 2014) facilitates complete coverage with high 
frequency. Hence, phenological characterization of 
forest ecosystems (Pasquarella et al., 2016; Simonson 
et al., 2018) and identification of species for habitat 
mapping or characterization of invasive species after 
fire (Bradley, 2014) are enabled, adding insights to our 
understanding of global change. The need to understand 
changes in species dominance and structural dynamics 
retrospectively, as well as reco very after fire, exists 
in Spain for reporting and management at national 
scale. Linking historical records and current insights 
facilitates prospective modelling in different scenarios 
for informed decisions.

National scale landscape characterization currently 
based on SIOSE, CORINE, and MFE products may 
be improved with more frequent land cover updates. 
For example, incorporating data from the European 
Copernicus Programme—optical Sentinel-2 and radar 
Sentinel-1—and data from the Landsat Programme 
may update LC products and enable monitoring 
changes annually (Gómez et al., 2016b; Hermosilla et 
al., 2016; Hermosilla et al., 2018). Trade-offs between 
temporal frequency and spatial or spectral resolutions 
in data acquisition have reduced their relevance 
thanks to virtual constellations (Wulder et al., 2015)
that provide a stream of available and compatible data 
from different satellite programs. For retrospective 
monitoring of landscape dynamics Landsat is un-
doubtedly the most adequate source of data, due to 
its long–term archive, spatial resolution, and spectral 
quality. Retrospectively identifying changes at large 
scale with a time series approach (e.g., C2C, Land- 
Trendr) and interpreting rates of change (e.g., Gómez 
et al., 2012a) helps understanding patterns as well as 
drivers of change (Regos et al., 2015). 

For an accurate assessment of resources at national 
level, forest structural maps including height, canopy 
cover, and biomass will benefit overall reports, 
management, and habitat mapping. At regional 
or national scale characterizing structure with RS 
requires extensive and reliable continuous data, and 
there are currently a range of opportunities. Although 
single-date optical data has typically yielded models 
with high relative errors, seasonal imagery acquired 
at key dates over the year have demonstrated higher 
accuracy in estimation of tree density, basal area, and 
wood volume in Mediterranean forests (Chrysafis 

et al., 2017). Undoubtedly the national coverage of 
PNOA LiDAR data provides a unique opportunity 
to create a national map of forest structure. With a 
sampling approach PNOA LiDAR can also be used 
to calibrate predictive models of forest structure 
metrics and biomass using optical time series data, an 
effort successfully implemented at very large scale 
in Canada (e.g., Zald et al., 2016). Additionally, a 
second complete coverage acquisition of LiDAR data 
with comparable density and precision will facilitate 
structural comparisons over time and assessment of 
change. However, for a reliable characterization of 
all kinds of forest structure, it would be beneficial 
to attain an increase in the scanning density of the 
national level PNOA LiDAR data (Adnan et al., 
2017). Higher point densities would also facilitate 
the implementation of individual tree methods (e.g., 
Valbuena-Rabadán et al., 2016). In order to enable the 
production of updated results PNOA LiDAR data has 
to be promptly available to users. Combining LiDAR 
and photogrammetric data might be a cost effective 
option for regular assessment of change in forest 
structure (Tompalski et al., 2018; Navarro et al., 2018). 
With increased temporal frequency, the demonstrated 
synergies between LiDAR and optical data for large 
area mapping of structure (Manzanera et al., 2016; 
Matasci et al., 2018) could provide relevant results in 
Spain, at least in the most dynamic areas. At detailed 
scales, species identification and structural analysis 
at tree level are possible by combining multispectral 
images and LiDAR data (e.g., González-Ferreiro et al., 
2013b), and in the near future multispectral LiDAR 
will provide an integrated alternative. Radar data has 
capacity to characterize forest height and height change 
applying interferometric (Olesk et al., 2016) and Pol- 
Insar techniques (Xie et al., 2017) over large regions 
like the Spanish national territory. PolInsar metrics 
make feasible the retrieval of information on the vertical 
structure of forests which may over come saturation 
effects when estimating biomass or height (López-
Sánchez & Ballester-Berman, 2009). Data from the 
TanDEM-X mission are available for research (Table 
1) and data from the Spanish PAZ launched in 2018 
will be fully compatible with Tan DEM-X, adding to 
the stream of data. Sentinel-1, although not optimally 
configured in polarization and frequency for forestry 
applications, offers a large amount of frequent data 
and opportunities still unexplored. Satellite radar 
missions like BIOMASS, expected to orbit in the near 
future, and satellite constellations combining multiple 
sensors may open important opportunities to monitor 
forest resources. Playing a key role for calibration 
and verification, UAVs equipped with one or more 
sensors already enhance the characterization of forest 
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structure (e.g., Sankey et al., 2017). And in the future, 
unmanned high altitude platforms or pseudo-satellites 
(HAPS) flying at around 20 km height, will provide a 
link between data acquisition scales, complementing 
satellite and aircraft imagery (Gonzalo et al., 2017).

Driven by the relevance of fire as trigger of change 
in Spanish forests, a great effort was focused in the 
last decades on fire related RS applications. Still, 
complete and updated national scale cartographic 
records of fire at high spatial resolution are missing, 
and most assessments rely on non-spatially explicit 
statistics. Developing historical annual cartography 
of fire in forest areas with high accuracy is feasible 
with the current availability of data (Gómez et al., 
2017), facilitating analysis and interpretation of 
change patterns and drivers of change (Cohen et al., 
2016; White et al., 2017). As a modelling technique 
the mapping limitations should be reported to avoid 
misinterpretation or overstating results, providing 
measures of accuracy and confidence intervals. As the 
archive of available data gets longer, standardizing 
data quality to apply novel algorithms is possible (e.g., 
Hermosilla et al., 2017) and enables the maintenance of 
maps up to date. Moreover, identification of hot spots 
and characterization of the wildland urban interface at 
different scales for operational use in wildfire preven-
tion and suppression, and planning of prescribed fires 
benefit from the use of time series of Landsat OLI and 
Sentinel-2 as well as LiDAR data. SAR-based burned 
area detection algorithms are also developed under the 
ESA Fire-CCI Phase 2 project (Lohberger et al., 2018; 
Belenguer-Plomer et al., 2018) and may be applied at 
national scale. Also relevant for fire management is 
the capacity of radar data to estimate live fuel under 
forest canopy demonstrated by Tanase et al. (2015c). 
LiDAR data can be used to estimate fuel variables of 
the forest canopy, crucial information used as input in 
fire behaviour models, while full-waveform systems 
are proper to provide information of the understory 
vegetation (Crespo-Peremarch et al., 2018), particularly 
relevant in Mediterranean ecosystems where shrubs 
are main drivers of wildfire regime. Future attention 
should be paid to LiDAR satellites, such as IceSAT-2 
and GEDI, possibly coupled with TanDEM-X, since 
these data will become available from 2019. These new 
sensors will likely open a new range of operational and 
research applications.

Biological invasions, pests, and diseases progres-
sively getting more frequent and intense may com-
promise the health of Spanish forests. To meet the 
operational needs of timely and accurate forest 
health monitoring systems nowadays efforts focus 
on integrating data at various scales. Comprehensive 
and spatially-explicit data—only feasible from RS—

contribute towards increasing our knowledge of the 
invasions biology and developing more efficient 
management strategies (Hernández et al., 2014; 
Pascual et al., 2016). RS techniques also improve 
the efficiency of sampling for prediction of outbreaks 
(Wulder & Dymond, 2004). In this sense UAV 
technologies have emerged as an opportunity offering 
above canopy perspective of stand condition that can 
bridge field to satellite scales, and as a source of data 
for calibration and validation of RS monitoring sys-
tems (Hall et al., 2016). Two of the major threats to the 
chestnut stands in Spain are Cryphonectria parasitica 
(chestnut blight) and Phytophthora cinnamomi (ink 
disease) (Melicharová & Vizoso-Arribe, 2012), which 
eventually can cause the death of trees. Combining data 
from different sensors mounted on UAVs can provide 
helpful information (e.g., detection, monitoring of the 
treatments) about infes tations which require treat ments 
at tree or at stand level. Detecting and monitoring 
Bursaphelenchus xylophilus (a pine wood nematode), 
and Xylella fastidiosa, the biggest hazards regarding 
forest health in Spain (Karnkowski & Sahajdak, 2010) 
remains challenging. Xylella fastidiosa is one of the 
most dangerous plant bacteria worldwide, causing a va-
rie ty of diseases with huge economic impact (Sherald, 
2007). Due to its severity and economic impact, the 
European Union has taken emergency control measures 
for both (EC, 2017), which involves their detection, 
location, and monitoring. For an early detection with 
RS high spatial and hyperspectral imagery is needed, 
being multispectral imagery useful to supervise 
and monitor whether the affected stands have been 
removed, and whether the decay is spreading beyond 
the demarcated areas. Despite the ephemeral character 
of defoliation, near real time monitoring of this effect 
is possible with dense time series of multispectral 
data (Pasquarella et al., 2017) at stand or forest scale, 
although the defoliation driver may remain unknown. 
Common pests in forest plantations like defoliators of 
Eucalyptus spp. (e.g., Gonipterus platensis) or pine 
engravers like the bark beetle (Ips sexdentatus) which 
causes decay and even death of Pinus spp. may be 
monitored in Spain with this approach. Especially in 
the case of the bark beetle, monitoring the decay will 
help knowing whether the population is under control 
or whether pheromone traps or tree removal is needed 
to prevent its spread. A quick spread of new pests like 
the chestnut gall wasp (Dryocosmus kuriphilus) is an 
outstanding example of recent human-aided biological 
invasion with ecological impacts and economic losses 
(Bonal et al., 2018). Detecting this type of pest with 
RS is challenging unless the level of infestation is 
very high, but in heavily infested areas monitoring the 
treatment success at stand level could be a suitable task 
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for multispectral high spatial resolution imagery (e.g., 
Sentinel-2, World View-4).

Overall, RS contributes to our better understanding 
of the services provided by Spanish forest ecosystems, 
allowing insights on the forest state and dynamics and 
this helping towards a better planning and sustainable 
management. We live a time of opportunities provided 
by the use of optical, radar, hyperspectral or LiDAR 
sensors, individually or in combinations that leverage 
their synergies for forestry applications.
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