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ABSTRACT
Growing pressures linked to global warming are prompting governments to put
policies in place to find alternatives to fossil fuels. In this study, we compared the
impact of tree-length harvesting to more intensive full-tree harvesting on the
composition of fungi residing in residual stumps 5 years after harvest. In the tree-length
treatment, a larger amount of residual material was left around the residual stumps in
contrast to the full-tree treatment where a large amount of woody debris was removed.
We collected sawdust from five randomly selected residual stumps in five blocks in
each of the tree-length and full-tree treatments, yielding a total of 50 samples (25 in
each treatment). We characterized the fungal operational taxonomic units (OTUs)
present in each stump using high-throughput DNA sequencing of the fungal ITS
region. We observed no differences in Shannon diversity between tree-length and
full-tree harvesting. Likewise, we observed few differences in the composition of fungal
OTUs among tree-length and full-tree samples using non-metric multidimensional
scaling. Using the differential abundance analysis implemented with DESeq2, we did,
however, detect several associations between specific fungal taxa and the intensity of
residual biomass harvest. For example, Peniophorella pallida (Bres.) KH Larss. and
Tephromela sp. were found mainly in the full-tree treatment, while Phlebia livida
(Pers.) Bres. and Cladophialophora chaetospira (Grove) Crous & Arzanlou were found
mainly in the tree-length treatment. While none of the 20 most abundant species in
our study were identified as pathogens we did identify one conifer pathogen species
Serpula himantioides (Fr.) P. Karst found mainly in the full-tree treatment.

Subjects Biodiversity, Ecology, Mycology, Natural Resource Management, Forestry
Keywords Deadwood, Fungal diversity and communities, Next generation sequencing,
Full-tree and tree-length forest harvest

INTRODUCTION
Residual forest biomass, including non-merchantable tree-tops and branches, may
serve as a renewable feedstock for bioenergy and an alternative to fossil fuels
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(Mabee & Saddler, 2010; De Jong et al., 2017), and is expected to provide up to 40% of the
world’s energy by 2050 (GEA, 2012). In regions that have already begun to transition
towards increased reliance on bioenergy such as Fennoscandia, the extraction of forest
biomass for bioenergy can reduce volumes of residual logging material after harvest by
42–65% (Rudolphi & Gustafsson, 2005; Eräjää et al., 2010). However, increased utilization
of residual biomass may pose significant conservation risks for many organisms that rely
on deadwood either as a habitat or as a resource (Walmsley & Godbold, 2009; Toivanen
et al., 2012). Furthermore, because of intensive harvest of timber forest products,
numerous fungi are threatened with extinction (Stokland, Siitonen & Jonsson, 2012).
In Fennoscandian boreal forests, numerous fungal species are dependent on deadwood
(Siitonen, 2001) and more than 40% of polypore fungi are red listed (Kotiranta et al., 2019).

Managed forests contain a lower quantity of deadwood than natural forests (Vallauri,
Andre & Blondel, 2003; Debeljak, 2006; Fridman &Walheim, 2000). For example, Siitonen
(2001) has shown that in clear-cut managed boreal forests, the quantity of coarse wood
debris (>10 cm diameter) (i.e., stumps, tree tops, and logs) is less than 10% of the volume
observed in natural forests. Some European forests are currently subject to harvest for
biofuel purposes. In these forests, residual biomass will be more intensely harvested than in
clear-cut forests. For example, Eräjää et al. (2010) showed that the average residual
biomass left on the ground in clear-cut forests is 42.3 m3 ha−1 while in forest fuel
harvesting the quantity of residual biomass remaining is 26.0 m3 ha−1. Numerous studies
have shown that intensive residual biomass harvest can reduce species richness and
abundance of some non-saproxylic organisms (i.e., arthropods: spiders, beetles (Work,
Brais & Harvey, 2014), oribatida (Battigelli et al., 2004); mammals (Sullivan et al., 2011))
and saproxylic organisms (i.e., arthropods: beetles: Jonsell, 2008; fungi: Bader, Jansson &
Jonsson, 1995; Stokland & Larsson, 2011).

Residual biomass is an important resource for many organisms and for forest ecosystem
function. Coarse woody debris (stumps, logs) is an important habitat and resource in
forests for numerous heterotrophic and decomposer organisms (Harmon et al., 1986;
De Jong & Dahlberg, 2017) including beetles (Jonsell & Schroeder, 2014), lichens (Svensson
et al., 2016), bryophytes (Caruso & Rudolphi, 2009) and wood inhabiting-fungi
(Jonsson & Kruys, 2001; Nilsson, Hedin & Niklasson, 2001; Toivanen et al., 2012; Kubart
et al., 2016). Futhermore, decomposition of wood by organisms living on coarse woody
material including saproxylic fungi (Fukasawa, Osono & Takeda, 2009) plays an important
role in nutrient cycling and degradation of organic matter (Boddy & Watkinson, 1995;
Laiho & Prescott, 2004). Although most studies of fungal community composition in
forests have focused on coarse woody debris, fine woody debris also appears to be an
important habitat for many fungi (Kruys & Jonsson, 1999; Juutilainen et al., 2011; Küffer
et al., 2008). For example, Nordén et al. (2004) found that for the same volume of broadleaf
tree woody debris, the diversity of Ascomycota is higher in fine woody debris than in
coarse woody debris. Decreasing the amount of deadwood and in particular fine woody
debris after intensive logging in forest fuel harvesting can also indirectly affect fungi, for
example, by modifying soil microclimate and influencing fungal networks (Ódor et al.,
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2006; Brazee et al., 2014). In Norway spruce dead wood, decreasing fungal diversity can
lead to reduced rates of decomposition in the early stages (Valentín et al., 2014).

Stumps can provide a long-term resource for wood-decaying species compared with
smaller diameter woody debris such as branches (De Jong & Dahlberg, 2017; Suominen
et al., 2018), because their rate of decomposition is slower and stumps are often larger and
persist longer in the forest landscape than smaller woody debris (Holeksa, Zielonka &
Żywiec, 2008). For wood-inhabiting fungi, biomass harvesting may reduce habitat
availability and connectivity (Hanski, 2005) thus influencing community composition
(Nordén et al., 2013) and species occurrence (Hanski, 1998). Intensive harvesting of
biomass lead to a decrease in the occurrence of fungal fruiting bodies on stumps and wood
material >2 cm diameter 5 years after clear-cut harvesting (41% less in the forest fuel
harvesting than clear cut) (Toivanen et al., 2012). In this context, stumps may be one of the
only available substrate for fungi after harvesting.

Following clear-cutting, the increase of exposure of stump surfaces tends to promote
fungal pathogen infestations (Oliva, Thor & Stenlid, 2010). Some pathogens, such as the
basidiomycete Heterobasidium annosum (Fr.) Bref., can spread via mycelia from residual
stumps to living tree root systems after harvesting, leading to increased disease and tree
mortality. This pathogen also spreads through the air via spores that are deposited most
often on tree stumps. Forest pathogen infestations can have major ecological and economic
impacts, as for Heterobasidium annosum in the northern hemisphere (Garbelotto &
Gonthier, 2013) and is responsible for significant economic losses in Europe (Woodward
et al., 1998). Moreover, it has already been demonstrated in Fennoscandinavian forests,
that the presence of the pathogen Heterobasidium parviporum Niemelä & Korhonen on
the Norway spruce population can affect forest regeneration (Piri & Korhonen, 2001).
For these reasons, it is important to monitor potential infestations caused by pathogens
after forest harvesting in order to be able to detect potential economic and ecological losses.

In this study we evaluated the response of fungal communities in residual stumps
5 years post-harvest in two forest harvesting treatments with differing levels of fine and
coarse woody debris for use as a biomass feedstock. In the tree-length harvesting
treatment, 84 m3 ha−1 (SE = 15 m3 ha−1) of woody material was left behind after cutting,
whereas 28 m3 ha−1 (SE = 3 m3 ha−1) was left after cutting for the full-tree harvesting
treatment. We hypothesized that fungal community structure will change, and that fungal
diversity will be lower after the full-tree forest harvesting treatment, since intensive
harvesting of residual biomass around stumps would cause a decrease in the resources
available for wood-inhabiting fungi and a resulting decline in fungal diversity.

MATERIALS AND METHODS
Study site
We sampled fungi from stumps at the Island Lake Experimental Research Site (47�42′N,
83�36′W), 30 km southwest of Chapleau, ON, Canada (Fig. 1A). The Island Lake
Experimental Research site is a replicated silvicultural experiment where residual woody
material including fine and coarse woody debris, cut stumps and even organic material and
the upper layers of soil were removed in three increasingly intensive biomass removal
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treatments which were applied following clear-felling. For our study, we focused on only
two of these treatments; standard tree-length harvesting whereby trees were delimbed at
the stump and all logging residuals were left on site (Fig. 1B) and full-tree biomass
harvesting whereby all trees including non-merchantable trees were cut and removed from
the site prior to being delimbed (Fig. 1C). At our sampling locations, in the tree-length
treatment, an average of 84 m3 ha−1 (SE = 15 m3 ha−1) of residual biomass was left on
the soil, while this volume was 28 m3 ha−1 (SE = 3 m3 ha−1) in the full-tree treatment.
The tree-length treatment had 3.2–4.3 times more total deadwood biomass and
2.7–3.1 times more coarse woody material (>10 cm diameter) volume than the full-tree
treatment (Kwiaton et al., 2014).

Because our study focused on fungal assemblages present in residual stumps, we did not
study the remaining more intensive treatments where stumps were removed (stump
removal and blading). All treatments were replicated five times in a randomized complete
block design. The initial clear felling took place over the winter of 2010–2011 and was
carried out using a Tigercat 870C feller plug and a Caterpillar 545C grapple skidder
(Kwiaton et al., 2014). Prior to harvesting, the site was dominated by jack pines
(Pinus banksiana Lamb.) that were planted in 1960 and had not been subjected to
pre-commercial thinning. Following biomass removal, sites were replanted with both jack
pine and black spruce (Picea mariana (Mill.) BSP) with a target stocking density of

Figure 1 (A) The study area of the Island Lake Experimental Research site in Ontario, Canada; (B) example of a tree-length harvested plot;
(C) example of a full-tree biomass plot. Photo credit: Paul Hazlett, Canadian Forest Service, Natural Resources Canada.

Full-size DOI: 10.7717/peerj.8027/fig-1
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3,300 stems/ha. The average annual temperature at this site is 1.7 �C and the average
annual precipitation is 797 mm (532 mm of rain and 277 mm of snow).

Fungal community sample collection
Fungi were collected from stumps in September 2016 (5 years post-harvest). We collected
samples from five randomly selected stumps in five blocks in each of the tree-length and
full-tree treatments, yielding a total of 50 samples (25 in each treatment). Fungi were
collected from sawdust (ca. 100 mg) extracted from stumps using a 1 mm diameter drill.
Two sawdust samples were taken from the sides of each of the stumps, including wood and
bark, and pooled together. Surfaces of stumps were not surface sterilized in any way.
Samples were placed directly in tubes containing a cetyltrimethylammonium bromide
(CTAB) solution after collection. The drill bit was sterilized between stumps using a
blowtorch for 20 s followed by a 100% bleach wash to avoid contamination. All samples
were transported to the lab and stored at −20� until further processing. The use of
the CTAB solution to preserve and extract fungal DNA has been recommended
(Van Burik et al., 1998; Kim et al., 1990), and makes it possible to denature and eliminate
contaminants of proteins (Blin & Stafford, 1976). We followed the CTAB extraction
protocol used by DeBellis & Widden (2006). The first step of the extraction consisted of
breaking up sawdust pieces using a bead beater MiniBead Beadbeater-16 (BioSpec
Products, Bartlesville, OK, USA) for 6 min with shaking speeds of 2,000–3,800 strokes/
minute using sterilized 2.3 mm diameter stainless steel beads (BioSpec Products,
Bartlesville, OK, USA).

Fungal community sequencing
We prepared samples for high throughput sequencing by amplifying the internal
transcribed spacer region using the fungal specific primer ITS1F (Gardes & Bruns,
1993) and ITS2 (White et al., 1990). The primers were designed for sequencing on
the Illumina MiSeq platform by combining an Illumina sequencing adapter, a 12
nucleotide barcode to identify each sample, and the ITS1F-ITS2 primer sequences (ITS
forward: 5′-CAAGCAGAAG ACGGCATACGAGATG TGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT xxxxxxxxxxxx CTTGGTCATTTA GAGGAAGTAA 3′, and
ITS2 Reverse: 5′-AATGATACGGCG ACCACCGAGATCT ACACTCTTTCCCTAC
ACGA CGCTCTTCCGATCT xxxxxxxxxxxx GCTGCGTTCT TCATCGATGC-3′.
The symbol × represents the 12 barcode nucleotides used for demultiplexing of samples
after sequencing). The polymerase chain reaction (PCR) reactions included 5 ul of
buffer 5xHF (Thermo Scientific, Waltham, MA, USA), 0.75 M of DMSO, 0.5 M of dNTP
(10 uM), 0.5 M of the reverse and forward primer, 0.25 M of polymerase phusionHot start
II and molecular grade water in a final volume of 25 ul.

PCR reactions were performed following initial denaturation at 98 �C for 30 s, followed
by 35 cycles of 15 s at 98 �C, 30 s at 60 �C and 30 s at 72 �C, with a final elongation phase
for 10 min at 72 �C. PCR products were cleaned and normalized with Invitrogen
Sequalprep PCR clean-up and normalization kit. The resulting normalized samples were
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pooled and sequenced on an Illumina Mi-Seq using MiSeq� Reagent Kit v3 (paired end
300 base pair) at the Université de Montréal.

Sequencing of normalized samples yielded a total of 479,034 sequences from 49
samples. We processed raw sequence data using pear (Zhang et al., 2013) and QIIME
version 1.9.1 (Caporaso et al., 2010) software to assemble paired end sequences into a
single continuous sequence, demultiplex sequences based on the sample they were
associated with, and to eliminate low quality sequences using a quality control cutoff that
eliminated all sequences with a mean quality score of 30 or less. We then binned the
remaining sequences into operational taxonomic units (OTUs) using a 97% sequence
similarity cutoff using the uclust algorithm (Edgar, 2010). We determined the taxonomic
identity of each OTU using the RDP algorithm by comparison with the UNITE sequence
database (Nilsson et al., 2011) as implemented in QIIME. We then identified the
potential ecological role of the fungi detected in our samples by comparing OTUs that
could be identified taxonomically to the species level with various literature sources
(Boulet, 2003; Kebli et al., 2012; Stokland & Larsson, 2011; Van Der Wal et al., 2017).
We removed all singleton OTUs, all samples containing less than 1,350 sequences and
one outlier sample from all further analyses, leaving a total of 56,700 sequences from
42 samples after quality control and processing. We identified 1,813 OTUs from these
sequences and samples. We were able to identify 625 of these OTUs to the taxonomic rank
of species.

Data analyses
In order to assure our sampling effort was sufficient to characterize the diversity of fungal
communities, we calculated rarefaction curves for each sample to determine how the
number of OTUs scaled with the number of sequences per sample. Rarefaction curves were
based on 100 random iterations per sample.

We calculated the alpha diversity of fungal communities using the Shannon index
(Shannon & Weaver, 1949) based on the rarefied relative abundances of OTUs.
We compared Shannon diversity between treatments using linear mixed models where
biomass removal treatment was treated as a fixed effect and experimental block was treated
as a random effect.

We quantified the taxonomic composition of fungal communities at different
taxonomic ranks in each treatment by calculating the mean abundance of OTUs identified
at the rank of phylum, class, order, family, genus and species and comparing the relative
abundances of each taxon between treatments using ANOVA tests on log-transformed
abundance data.

To visualize the variation in fungal communities between treatments, non-metric
multidimensional scaling (NMDS) analysis calculated from Hellinger transformed OTU
data for communities was used, and the significance of the observed differences was
determined using a permutational multivariate ANOVA (PERMANOVA; Anderson,
2001). The initial sample by OTU matrix rarefied to 1,350 sequences per sample was
converted to a Bray–Curtis dissimilarity for both analyses.
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For the PERMANOVA analysis, experimental block was included as a grouping variable
for permutations. A two-dimensional NMDS failed to converge and had high stress
(26.6%), and so we carried out a NMDS with three dimensions to obtain a stress of 17.8%;
this three-dimensional NMDS was used for subsequent analyses. In these analyses, we used
all OTUs, regardless of whether these OTUs could be resolved to recognized, named
species.

In order to detect taxa or OTUs that were more abundant in the full-tree or tree-length
treatment, we used the DESeq2 package (Love, Anders & Huber, 2014) to quantify
differences in OTU and species abundances between treatments. For this analysis, the
non-rarified community matrix was used but all OTUs found in three or less samples were
removed from the matrix prior to the analysis. We used an adjusted P-value cutoff of 0.05
to consider an OTU or species as significantly differentially associated with one of the
treatments.

Analyses were done using R (R Development Core Team, 2013) with packages picante
(Kembel et al., 2010), vegan (Oksanen et al., 2007) and ggplot2 (Wickham, 2016), DEseq2
(Love, Anders & Huber, 2014), biom (McMurdie & Paulson, 2015), nlme (Pinheiro
et al., 2014), multcomp (Hothorn et al., 2016), devtools (Wickham & Chang, 2015), and
seqtools (Rasmussen, 2002).

RESULTS
Once the community dataset was rarefied to 1,350 sequences per sample and the outlier
sample was removed, a total of 42 samples and 661 OTUs remained. Rarefaction curves of
the number of OTUs versus number of sequences in different samples demonstrated
that our sampling effort was sufficient to quantify the diversity of the wood inhabiting
fungi present in the residual stumps of the two treatments, as the observed number of
OTUs within each sample reached a plateau at a lower number of sequences per sample
than the number used for our analyses (1,350 sequences per sample) (Fig. S1).

The Shannon diversity of fungal OTUs per sample was marginally lower (linear mixed
model; F1,37 = 3.62, P value = 0.06) in the full-tree treatment (1.91 ± 0.66) compared to the
tree-length treatment (2.31 ± 0.59). Block as a random effect explained only 0.004% of
the variance in diversity. We did not detect any statistically significant differences in the
abundance of fungal taxa considering all named taxa at the ranks of phylum, class,
order, family, and genus (ANOVAs of log-transformed relative abundance of each taxon
between treatments for taxonomic ranks including phylum, class, order, family and
genus; all P-values >0.05). The most abundant fungal phyla across all communities
collected from stumps after residual harvesting were Basidiomycota (70% of sequences)
and Ascomycota (30% of sequences).

The most abundant OTUs across both treatments included Perenniporia subacida
(11%), an unidentified fungus OTU 2512 (11%) and Scytinostorma sp. (10%). The relative
abundance of the most abundant fungal taxa in each treatment are presented in Table 1.
Several taxonomically unidentified OTUs were among the most abundant OTUs (Table 1).
None of the most abundant species found in our study are known to be pathogens but
some could be unknown.
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There were no significant differences in fungal community composition between
treatments (PERMANOVA test on Bray–Curtis dissimilarities; r2 = 0.04, P value = 0.2).
The variation in the original dissimilarities explained by the three axes of the NMDS was
11% (Fig. S2). While there were no differences in overall community composition between
treatments, some OTUs and species were differentially abundant in one of the two
treatments (Table 2). For example, the species Peniophorella pallida, Tephromela sp. and

Table 1 The relative abundance and taxonomic identity of the 20 most abundant fungal operational taxonomic units (OTUs) in wood from
stumps after full-tree and tree-length treatments at Island Lake. Information on the ecology, pathogenicity, and wood-decaying ability of fungi
was obtained from literature sources (see Methods text for details). For ecology, pathogenicity, and wood-decaying ability, a blank cell indicates we
were unable to find information for the species.

Phylum Species Ecology Pathogen Wood
decaying fungi

Relative abundance
(% of sequences)

FT TL

Ascomycota Hyaloscypha sp no 0.02 0.02

Ascomycota Capronia leucadendri no 0.01 0.01

Ascomycota Chalara sp. yes 0.01

Ascomycota Unidentified 0.01 0.01

Ascomycota Cenococcum geophilum Ectomycorrhiza yes 0.01 0.01

Ascomycota Eurotiomycetes sp. yes 0.01 0.01

Ascomycota Leotiomycetes sp. 0.01

Ascomycota Helotiales sp. 0.01

Ascomycota Leotiomycetes sp. 0.01

Basidiomycota Perenniporia subacida White rot no yes 0.08 0.03

Basidiomycota Scytinostroma sp White rot no yes 0.06 0.04

Basidiomycota Hyphoderma praetermissum White rot yes 0.02 0.02

Basidiomycota Phlebia livida White rot no yes 0.01

Basidiomycota Phlebia subserialis White rot no yes 0.01

Basidiomycota Botryobasidium subcoronatum White rot no yes 0.01

Basidiomycota Trichaptum fuscoviolaceum White rot no yes 0.01 0.01

Basidiomycota Hyphodontia floccosa White rot no yes 0.01

Basidiomycota Phlebia tremellosa White rot no yes 0.01

Basidiomycota Botryobasidium subcoronatum White rot no yes 0.01

Basidiomycota Tyromyces chioneus White rot no yes 0.01

Basidiomycota Hypholoma fasciculare White rot no yes 0.01

Basidiomycota Hypochnicium subrigescens 0.01

Basidiomycota Hyphoderma obtusiforme White rot no yes 0.01

Basidiomycota Hyphoderma puberum White rot no yes 0.01

Basidiomycota Peniophorella pallida 0.04

Basidiomycota Botryobasidium sp. 0.01 0.01

Basidiomycota Dacrymyces sp. 1233 0.01

Basidiomycota Dacrymyces sp. 2551 0.08 0.03

Basidiomycota Coniophora sp. 0.01

Basidiomycota Unidentified 0.02
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Trichoderma citrinoviride were found to be more abundant in the full-tree treatment
(−5.14, −3.54, −2.71 log fold change value respectively (Table 2)). Conversely, Phlebia
lavida, an unidentified Ascomycota and Cladophialophora chaetospira are examples of
species found much more abundantly in the tree-length treatment (3.68, 1.81, 1.65 log-fold
change values respectively (Table 2)). For the majority of the nineteen species that were
found to be differentially abundant between treatments, we were unable to find any
information on their ecology or pathogenicity (Table 2). The pathogen Serpula
himantioides was differentially more abundant in the full-tree treatment.

DISCUSSION
Contrary to our hypothesis, the diversity and composition of wood-inhabiting fungal
communities in residual stumps were not significantly influenced by full-tree harvesting
5 years after harvest. It is important to stress that in both tree-length and full-tree harvest

Table 2 Fungal species that were significantly differentially abundant in full-tree or tree-length harvesting treatments at Island Lake.
Differential abundance was quantified using DeSeq2 with an adjusted P-value of 0.05 or lower considered as significant association with a
treatment. Negative values for log-fold change in abundance between treatments corresponds to an association with the full-tree treatment, and
positive log-fold changes represent an association with the tree-length treatment. Information on the ecology, pathogenicity, and wood-decaying
ability of fungi was obtained from literature sources (see Methods text for details). For ecology, pathogenicity, and wood-decaying ability, a blank
cell indicates we were unable to find information for the species.

Denovo Phylum Species Ecology Pathogen Wood
decaying
fungi

Log-fold change
in abundance
between treatments

Adjusted
P-value

Full-tree

OTU811 Basidiomycota Peniophorella pallida White rot no yes −5.14 <0.01

OTU484 Ascomycota Tephromela sp. Lichen no −3.54 <0.01

OTU1451 Ascomycota Trichoderma citrinoviride soil fungus no −2.71 <0.01

OTU2268 Ascomycota Rhizoscyphus ericae Ectomycorrhiza no −2.70 <0.01

OTU1918 Ascomycota Scytalidium lignicola no yes −2.47 <0.01

OTU2735 Ascomycota Leptodontidium elatius Black yeast fungi no yes −2.18 <0.01

OTU959 Ascomycota Xylomelasma sp −2.21 <0.05

OTU668 Ascomycota Mytilinidion mytilinellum no no −1.71 <0.05

OTU905 Ascomycota Penicillium sp. −1.69 <0.05

OTU875 Basidiomycota Saitozyma sp. Yeast no yes −1.64 <0.05

OTU1019 Basidiomycota Serpula himantioides Brown rot yes yes −1.56 <0.05

OTU729 Ascomycota Rhizoscyphus ericae Ericoid
mycorrhiza

−1.41 <0.05

OTU2158 Basidiomycota Thelephora terrestris Ectomycorrhiza −1.39 <0.05

OTU97 Ascomycota unidentified −1.35 <0.05

Tree-length

OTU436 Basidiomycota Phlebia livida White rot no yes 3.68 <0.01

OTU747 Ascomycota Unidentified 1.81 <0.01

OTU2285 Ascomycota Cladophialophora
chaetospira

Black yeast fungi no 1.65 <0.01

OTU672 Basidiomycota Russula sp. Ectomycorrhiza 1.57 <0.05

OTU2105 Ascomycota Capronia semiimmersa yes 1.43 <0.05
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treatments, we sampled fungal communities in residual stumps and not residual logging
slash for the simple reasons smaller diameter logging residual was removed at the time
of treatment. It is well documented that residual slash does serve as an important substrate
for certain species (Kruys & Jonsson, 1999; Juutilainen et al., 2011; Küffer et al., 2008).
In contrast to our findings studies from Europe that demonstrate strong effects of biomass
removal on fungal composition often come from landscapes with a long history of
intensive management that have yet to be created in North America (Gu, Heikkilä &
Hanski, 2002; Östlund, Zackrisson & Axelsson, 1997). Forests with a longer history of
logging likely contain less deadwood (Stokland, 2001), which for saproxylic fungi may
result in habitat loss with ensuing effects related to isolation of individual habitat
patches and overall reduced area of forests with old growth characteristics (Penttilä
et al., 2006). Persistent reductions in volumes of dead wood have been shown to reduce
the diversity of wood-inhabiting fungi (Siitonen, 2001). The minimum thresholds for
harvesting biomass in Europe range between 6.1 m3 ha−1 (Fridman &Walheim, 2000) and
13 m3 ha−1 (Gibb et al., 2005) depending on harvest intensity.

Basidiomycetes and Ascomycetes dominated the fungal communities in the residual
stumps in our study, a result that is, consistent with all types of fungal survey work on
dead wood (Lindner, Burdsall & Stanosz, 2006; Rajala et al., 2010; Rajala et al., 2012).
Many of the most abundant species and OTUs identified in our study, for which ecological
data were available, were identified as white and brown rot fungi. These groups are
characterized by their enzymatic ability to degrade wood (Erickson, Edmonds & Peterson,
1985) and are considered as the main decomposers of deadwood (Stokland, Siitonen &
Jonsson, 2012). The most abundant species found in our study was P. subacida, a white rot
fungus. This species is often reported to be present in stumps and residual branches in
logged areas (Kubart et al., 2016; Penttilä, Siitonen & Kuusinen, 2004; Brazee et al., 2012),
but it is generally not one of the most abundant species. Interestingly, despite its
abundance at our study site, P. subacida is a vulnerable species of conservation concern in
Europe (Kubart et al., 2016; Parmasto, 2001). The relative abundance of this species in
our study and its scarcity in Europe are consistent with the idea that prolonged and
intensive forest management has had an impact on the abundance of wood-inhabiting
fungi species; in Europe, P. subacida is more common in forests that have limited impacts
from forestry (Penttilä et al., 2006).

Brown rot fungi were not found to be abundant in this study, which is surprising
given that brown rot fungi are more numerous in many studies on fungal diversity on
the dead wood (Rayner & Boddy, 1988; Rajala et al., 2012). Brown rot fungi are considered
the main decomposers of the boreal forest (Renvall, 1995) but this was based on the
identification of fruiting bodies on conifer wood. Similarly, while ectomycorrhizal fungi
can be retained by the root and stumps several years after forest harvesting and are
ecologically important in boreal forests (Hagerman et al., 1999; Heinonsalo, Koskiahde &
Sen, 2007), we found only one of the 20 most abundant OTUs per treatment in our
study to be mycorrhizal (Table 1). None of the most abundant species in this study are
known to be pathogens.
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While the overall diversity and composition of fungal communities did not differ
between harvesting treatments, there were individual fungal OTUs and species that were
differentially abundant in one treatment. The abundance of 19 fungal OTUs differed
significantly between treatments, but information about their ecology could be found only
for half of these species and ecologically important fungi such as mycorrhizal fungi were
found in association with both the full-tree and tree-length treatments. The pathogenic
species S. himantioides. was more abundant on stumps in the full-tree treatment. This
species is primarily a pathogen of conifers (Seehann, 1986) that can cause a significant
loss of tree volume (Chakravarty, 1995) and cause root tissue death (Seehann, 1986).
Follow-up studies will be required to determine if the association of this pathogen with the
full-tree treatment will lead to increased rates of infection in this treatment.

In general, our study highlights the advantages and limitations of molecular approaches
to quantify fungal community structure. Molecular analyses of the fungal taxa present in
deadwood such as the present study detect a greater diversity of fungi than do studies
based on the identification of fungal fruiting bodies or morphological identification of
fungi in wood (Ovaskainen et al., 2010; Kubartová et al., 2012). However, molecular studies
of fungal communities are currently limited by the lack of taxonomic resolution for many
OTUs and the lack of information on the ecology of most of these taxa (Rajala et al., 2012;
Ovaskainen et al., 2010). Alternatively, fungal community studies based on sporocarp
surveys have other limitations as it will only detect species that form ephemeral,
above-ground fruiting bodies (Ovaskainen et al., 2013), resulting with the vast majority of
fungal taxa remaining unidentified (Allmér et al., 2005). Because very little is known on the
ecology of fungi identified with environmental sequencing approaches beyond making
broad categorizations such as rot fungi or mycorrhizal fungi, our ability to infer ecological
differences among communities is limited even though molecular studies provide a
wider range of fungal diversity. There is thus a pressing need to develop databases of the
ecology of different fungal taxa that can be used to understand community and ecosystem
responses to forest harvesting.

CONCLUSIONS
Overall, our results do not suggest any difference in the diversity or structure of fungal
communities between full-tree and tree-length treatments. However, some fungal species
and OTUs were more abundant in one or the other of the two treatments. This study took
place 5 years after harvesting in a forest dominated by a single tree species. Variation
among host trees and decay stages of dead wood are important factors in the structuring of
fungal communities. Future studies will be required to understand the potential long-term
impacts of forest harvesting on fungal diversity.
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