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This study aimed to estimate the contribution of disturbances to the uncertainty of forest growth forecasts in
the Bas-Saint-Laurent region in Quebec, Canada. We focused on two major disturbances affecting that region:
spruce budworm (SBW) outbreaks and harvest activities. Growth forecasts were carried out for a period of
100 years (2003–2103) using ARTEMIS-2009, a stochastic individual-based model. Using the Monte Carlo
technique, we simulated four scenarios: a baseline; a harvest scenario; a SBW scenario; and a scenario includ-
ing both harvest and SBW. Uncertainty estimation was performed using a bootstrap variance estimator that
applies to the context of hybrid inference. The results revealed that the total variances increased over time.
For the scenarios including SBW, the variances were three to six times greater than those in the scenarios
without outbreaks. Harvesting did not greatly contribute to the total variance. We conclude that to reduce the
uncertainty of large-area growth forecasts in the Bas-Saint-Laurent, considering SBW dynamics is a crucial
issue.

Introduction
The influence of disturbances on forest ecosystems has been
given special attention over the last decades due to anticipated
environment changes (Turner, 2010). The disturbance regime
plays a dominant role in shaping forest dynamics, such as influ-
encing structure and composition (Bouchard and Pothier, 2011),
as well as determining temporal and spatial patterns (Didion
et al., 2007). This important role has triggered efforts to include
disturbances in forest management plans (Daniel et al., 2017)
and in growth forecasts (Turner, 2010).

Natural disturbances along with anthropogenic activities are
one of the major agents that shape the landscape. In European
forests, the most common large-scale disturbances are storms,
followed by fires and insect outbreaks (Schelhaas et al., 2003).
In the Canadian boreal forests, the natural disturbances are
mainly fires and insect outbreaks such as forest tent caterpillar
(Malacosoma disstria), jack pine budworm (Choristoneura pinus)
and spruce budworm (Choristoneura fumiferana (Clem.); SBW)
(Brandt et al., 2013). They are known to affect up to millions of
hectares (Gauthier et al., 2015). Among other anthropogenic
disturbances such as agriculture and roads, harvest activities
have become a key driver of forest dynamics (Venier et al.,
2014). Approximately 40 per cent of the boreal forest is under
management and these managed areas are more disturbed by
harvesting than by natural disturbances (Venier et al., 2014).

Including disturbances in growth models is necessary to prop-
erly simulate forest dynamics over large areas (Seidl et al., 2011).
It generates more realistic growth forecasts, which are of great
interest in practical forestry, ecology and climate change mitiga-
tion activities (Ståhl et al., 2016). Nevertheless, the process of
simulating forest growth over large areas implies propagating
errors. Such uncertainties arise from the model and the sampling.
Model errors are a result of parameter estimation and the struc-
ture of the model, among others factors (Walker et al., 2003;
Refsgaard et al., 2007). Sampling errors are due to the upscaling
of forest variables to a higher level (Breidenbach et al., 2014).

Because large-area growth forecasts are based on both the
model and the sampling design (Ståhl et al., 2016), they
represent a typical case of what is known as hybrid inference
(Corona et al., 2014). This context of hybrid inference arises
when: (1) the variable of interest, such as growth, is not
observed but predicted using a model; and (2) the explanatory
variables of the model are observed in the sample only and not
throughout the entire population (McRoberts and Westfall,
2014; Fortin et al., 2016). This requires special estimators that
account for both sources of uncertainty (McRoberts and
Westfall, 2016). Hybrid estimators applied with forest growth
models propagate errors from the plot to the regional or
national level and they represent an implementation of an
upscaling method known as the direct extrapolation method
(Wu et al., 2006).
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Uncertainty assessment of forest growth forecasts has been
studied by many authors (Kangas, 1999; Xu and Gertner, 2008;
Horemans et al., 2016). In some cases, natural and anthropo-
genic disturbances were taken into account. However, to the
best of our knowledge, the uncertainty they induce in large-area
growth forecasts has not been fully addressed. In the very few
cases where the uncertainty due to the disturbances was
addressed, it was either for anthropogenic or natural distur-
bances, but not for both. Moreover, the uncertainty that
stemmed from the sampling was overlooked (Bergeron et al.,
2017). This conjecture motivated this study.

The impact of a particular type of disturbance on growth
forecast uncertainty can be assumed to be closely related to its
spatial and temporal patterns. Some authors who studied these
patterns with regard to population dynamics found that differ-
ent populations from the same species present a synchronicity
(Williams and Liebhold, 2000), i.e. one population is likely to
occur simultaneously with other populations. This correlated
population fluctuation has been detected in various taxa and
over many spatial scales (Liebhold et al., 2004). For insects act-
ing as a disturbance in forests, the synchronicity of outbreaks
can impact growth forecasts due to the coincident changes in

forest attributes. At the landscape level, the extent of these
changes can lead to variability.

Given the influence of disturbances on forests, our main
objective was to take them into consideration in large-area
growth forecasts and to estimate their contribution in terms of
uncertainty. To do this, we worked on a real-world case study:
the administrative region of Bas-Saint-Laurent, Quebec, Canada.
More specifically, we focused on spruce budworm outbreaks and
harvesting, which are the two major disturbances in that region.
As a natural component, spruce budworm outbreak is of con-
cern since it occurs on a large scale with return intervals of a
few decades, and has a great impact on forest productivity
(Boulanger et al., 2012). The region is presently facing a SBW
outbreak.

Motivated by the spatial synchrony theory, we first hypothe-
sized that spruce budworm outbreaks have a greater impact
than harvesting on the uncertainty of large-area growth fore-
casts. In the context of hybrid inference, the uncertainty related
to the predicted occurrence of natural and anthropogenic dis-
turbances belongs to the model part and not to the sampling.
In a previous study on large-area growth forecasts, Melo et al.
(2018) found that the model-related variance increased along
the projection length and could match that of the sampling in
the absence of disturbances. Given that the occurrence of nat-
ural disturbances is highly stochastic, our second hypothesis
was that disturbances induced more uncertainty than the sam-
pling in these large-area growth forecasts. Data from the provin-
cial network of permanent plots in Quebec, Canada, and the
ARTEMIS growth model (Fortin and Langevin, 2012) were used
to generate those large-area growth forecasts for the Bas-Saint-
Laurent region.

Material and methods
ARTEMIS growth model
We worked with the distance-independent individual-based growth
model, ARTEMIS (Fortin and Langevin, 2010, 2012). The first version of
the model was designed in 2009. Since then, it has been regularly
updated. The model was fitted using the network of permanent plots of
the Quebec provincial forest inventory (MFFP, 2009, 2015). Briefly,
ARTEMIS is composed of seven sub-models, with five of them being
dynamic and the other two static (Figure 1). The dynamic sub-models
predict the harvest probability, the mortality probability, the diameter
increment, the number of recruits and the diameter of these recruits,
respectively. The two static sub-models make it possible to predict tree
height and commercial volume based on other characteristics of the
trees and the plot. All these sub-models were fitted using mixed-effects
models or covariance structures in order to account for serial and spatial
dependence at the plot, interval and tree levels. More details are avail-
able in Fortin and Langevin (2010, 2012).

The model uses 10-year growth steps. The output of a given step is
re-inserted in the model in order to obtain forecasts over longer time
periods. Users may run growth simulations in a deterministic or stochas-
tic fashion. The stochastic mode relies on the Monte Carlo technique
(Rubinstein and Kroese, 2007). In such a mode, three types of errors are
simulated: the errors in the parameter estimates, the plot or interval
random effects and the residual errors. The model provides tree-level
predictions. Plot-level predictions are obtained through the aggregation
of the predictions at the tree level.

ARTEMIS relies on a large array of explanatory variables. At the plot
and tree levels, the model considers the tree species, harvest occurrence
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Figure 1 Flowchart of ARTEMIS-2009 considering its iterative process.
Dark gray boxes represent the dynamic sub-models. Dotted light gray
boxes are the static sub-models.
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(yes/no), stem density (tree ha−1) and basal area (m2 ha−1), which is the
sum of the cross-section areas at 1.3m in height. These aforementioned
variables are considered as endogenous variables, i.e. influenced by fac-
tors within the system (Rao and Toutenburg, 1995). ARTEMIS also con-
siders the potential vegetation. The potential vegetation refers to the
composition at a late successional stage (Grondin et al., 2009). Thirty-
two potential types of vegetation exist in the province of Quebec
(Saucier et al., 2015) and ARTEMIS was designed to work with the 25
most frequent ones. Each potential vegetation type was modelled indi-
vidually, thus resulting in 25 versions of the model (Fortin and Langevin,
2010).

Finally, mean annual precipitation (mm) and temperature (°C) are
predictors in ARTEMIS. They are both entries in the mortality and recruit-
ment sub-models. The diameter increment sub-model considers only
precipitation, whereas the sub-models predicting recruit diameter and
tree height consider only the mean temperature. These variables are
estimated using BioSIM, a software program that predicts climate vari-
ables for a particular geographical location based on the data of the
nearest climate stations (Régnière et al., 2010).

Considering that disturbances are the focus of this study, the way
they are taken into account in ARTEMIS is further described in the next
lines. The harvest module works in two steps. It first yields a 10-year
harvest occurrence prediction for a particular plot considering some
plot-level variables (e.g. slope inclination) and the annual allowable cut
volume (AAC) (MFFP, 2003). This AAC volume is estimated by a govern-
mental agency for a particular territory and it represents the maximum
volume that can be sustainably harvested. In our simulations, we
assumed that this AAC volume remained constant over time, even
though it is re-estimated every 5 years in practice. Whenever a plot is
harvested, the second part of the sub-model predicts a harvest probabil-
ity for each tree of this plot given a management regime (Fortin, 2014).
Readers are referred to Melo et al. (2017) and to Fortin (2014) for add-
itional details about the harvest sub-model.

ARTEMIS also takes the impact of spruce budworm defoliation into
account. A recurrence of outbreaks must be specified by the user. An
outbreak is here defined as at least 4 consecutive years of moderate to
severe defoliation on all the host species at the regional level. According
to Pothier et al. (2005), this 4-year period can be considered as a thresh-
old beyond which the mortality rates of the host species significantly
increase. For the recurrence R, the annual probability of occurrence can
be derived as the inverse of the recurrence, i.e. 1/R. The probability that
no outbreak occurs during a 10-year growth step is based on the bal-
ance of probability: ( − )R1 1/ 10. The probability that at least one out-
break occurs is then − ( − )R1 1 1/ 10. We assumed that all the plots were
affected by the outbreak when it occurred.

The impact of SBW outbreaks was statistically tested in the mortality
sub-model and it was included as a dummy variable (Fortin and
Langevin, 2010, 2012). This variable takes the value of 1 whenever an
outbreak occurs during a particular 10-year growth step. This induces an
increase in the predicted probabilities of mortality for spruce (Picea spp.)
and balsam fir (Abies balsamea (L.) Mill.).

Uncertainty estimation
A key step in our study is to estimate uncertainty in the predicted
volumes in the context of hybrid inference, that is, inference relying on
both the model and the sampling design (Corona et al., 2014). To do
this, we used a hybrid variance estimator based on the bootstrap meth-
od (Fortin et al., 2018). The mathematical developments behind the esti-
mator are presented in the Supplementary Material 1.

If we consider a design of simple random sampling without replace-
ment with even inclusion probabilities, an unbiased estimator of the
population mean is the sample mean:

∑μ̂ = ( )
∈n
y

1
1

i s
i

where s is the sample, yi is the variable of interest in plot i and n is the
sample size.

The variance of this estimator is, in turn, estimated as follows:
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where N is the number of units in the population.
When yi is not available, a model can be used to obtain a prediction

that is denoted as ŷi. Substituting ŷi for yi in Eq. (1) still yields an
unbiased estimator of the mean provided that the model has no lack of
fit. However, the adaptation of the variance estimator requires further
developments, namely propagating errors from different sources within
the model. This error propagation can be carried out using the Monte
Carlo technique (Rubinstein and Kroese, 2007). The technique consists of
drawing random deviates to account for the errors in the parameter
estimates, the random effects and the residual errors. A single simula-
tion based on a particular set of deviates provides a realization of the
estimated mean and the estimated variance shown in Eqs. (1) and (2).
After a great number of realizations, the bootstrap estimator of the
mean is as follows:

∑μ μˆ = ˆ ( )
=B

1
3

b

B

bBS
1

where μ̂b is the sample mean obtained from realization b, and B is the
total number of realizations.

Consistent with Fortin et al. (2018), an unbiased bootstrap variance
estimator is as follows:
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where μˆ ( ˆ )¯ y can be obtained by substituting ¯ = ∑ =yi b
B y

B1
i b, and μ̂BS for yi

and μ̂, respectively, in the variance estimator found in Eq. (2). The sam-
pling contribution to the total variance is obtained through μˆ ( ˆ )¯ y , while
the model contribution is calculated as μ μˆ ( ˆ ) − ˆ ( ˆ )¯  yBS .

Study area and dataset
The inventory data were a subset of the provincial network of perman-
ent plots of Quebec’s Ministry of Forests, Wildlife and Parks (MFWP). We
limited our analysis to the regional level. Thus, our dataset included only
the plot measurements from the Bas-Saint-Laurent administrative
region. Covering a surface of 22 185 km2, the forest composition is rep-
resentative of broadleaved, mixed and coniferous vegetation. The dom-
inant species in this region are sugar maple (Acer saccharum Marsh.),
yellow birch (Betula alleghaniensis Britton), balsam fir, white spruce
(Picea glauca Voss) and black spruce (Picea mariana Britton). The plots
are located in five different ecological regions, the result of a classifica-
tion established by the MFWP to characterize the composition and
dynamics of the vegetation (MFFP, 2016). The plot distribution in the dif-
ferent ecological regions is shown in Figure 2.

Historically, the Bas-Saint-Laurent region has been subject to
anthropogenic and natural disturbances. The region was affected by
severe SBW outbreaks during the last century, which, as a consequence,
triggered salvage cutting (Boulanger and Arseneault, 2004). Moreover,
silvicultural practices have deeply transformed forest composition
(Boucher et al., 2009). The current regional forest planning guidelines
prescribe silvicultural practices adapted to the different forest types
(Gagnon et al., 2015): selection cutting in shade-tolerant broadleaved
forests; irregular and regular shelterwood cutting in mixed stands; and
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harvest with protection of regeneration and soils for most coniferous
forests and some mixed stands.

Our dataset consisted of 393 permanent plots located in the Bas-
Saint-Laurent region, each one with an area of 400 m2. In these

plots measured in 2003, all trees with diameter at breast height
(DBH, 1.3 m in height) equal to or greater than 9.1 cm were tagged
for individual monitoring. A summary of the dataset is provided in
Table 1.
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Figure 2 Distribution of the 393 permanent plots in Bas-Saint-Laurent. The plots are located in the ecological regions classified according to the
MFWP: Appalachian Hills (4f); Baie des Chaleurs Coastline (4g); Gaspé Coastline (4h); Mountains of Gaspé Peninsula (5h); Highlands of Gaspé
Peninsula (5i).

Table 1 Summary of 393 plots in the dataset. Attributes were broken down for the most abundant species. The minimum and maximum values are
shown in parentheses. n, number of trees.

Plot-level Basal area (m2 ha−1) Stem density (trees ha−1) Volume (m3 ha−1)

Sugar Maple 2.5 (0–29.7) 68 (0––1266) 73.3 (0.48–226.94)
Red Maple 1.2 (0–13.7) 57 (0–900) 19.55 (0.40–120.81)
Balsam fir 5.1 (0–42.6) 256 (0–2350) 42.01 (0.25–162.73)
White spruce 1.5 (0–28.2) 61 (0–1850) 22.38 (0.19–143.39)
Black spruce 0.7 (0–21.5) 48 (0–1800) 17.24 (0.27–111.12)
White birch 1.6 (0–18.5) 95 (0–875) 23.92 (0.26–156.76)
All species 17.8 (0–61.2) 778 (25–2550) 53.7 (0.06–221.04)

Tree-level n DBH (cm) Height (m)

Sugar Maple 1 124 20.4 (9.1–78.3) 17.5 (7.2–27.1)
Red Maple 901 14.9 (9.1–68.3) 14.6 (9.2–24.1)
Balsam fir 4 072 15.1 (9.1–49.3) 13.3 (3.8–24.5)
White spruce 983 17.0 (9.1–54.5) 13.0 (5.0–24.5)
Black spruce 762 13.3 (9.1–32.5) 10.7 (5.2–21.0)
White birch 1 492 14.2 (9.1–42.8) 13.2 (6.5–19.8)
All species 12 451 16.2 (9.1–98.8) 14.5 (3.8–27.7)
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Forecasting
We built a framework to predict forest growth for the Bas-Saint-Laurent
region, taking harvest and SBW outbreak effects into account. These pro-
jections were carried out for a period of 100 years (2003–2103), consid-
ering a 2°C temperature increase and a 5 per cent precipitation increase
over the 21st century, which roughly corresponds to the representative
concentration pathway (RCP) 4.5 provided by the IPCC (2013, p. 1335).
Since the initial year of our forecasts was 2003, the observed disturb-
ance history up to 2018 is known. We first configured the forecasts to
update the plot status, i.e. to take the management of the first two dec-
ades (2003–2023) and the SBW outbreak initiated in 2013 into account.
Once this initial condition was established, we then tested four scen-
arios: (i) a baseline scenario with no disturbances; (ii) a harvest scenario,
in which plots were harvested according to the current level of annual
cut volume allowance and the prescribed treatments for each forest
type; (iii) a SBW scenario, in which we considered an average outbreak
recurrence of once every 35 years, according to Boulanger and
Arseneault (2004); and (iv) a scenario including both harvest and SBW
outbreaks, structured as in the second and third scenarios but acting
simultaneously here. The simulations were run on the CAPSIS platform
(Dufour-Kowalski et al., 2012). We ran a total of 10 000 Monte Carlo rea-
lizations to account for the variability induced by disturbances for each
scenario. It is worth mentioning that the forecasts include stochasticity
from disturbances, as well as from the parameter estimates, the ran-
dom effects and the residual errors.

ARTEMIS provides tree-level predictions. The individual predicted
volumes were aggregated at the plot level. The hybrid bootstrap estima-
tors shown in Eqs. (3) and (4) were then used to perform the upscaling
to the regional level, as proposed in the direct extrapolation method
(Wu et al., 2006).

Results
Long-term volume forecasts for the Bas-Saint-Laurent region
are shown with their confidence intervals in Figure 3. The base-
line scenario, in which no disturbance was considered, resulted
in an increasing volume that reached 220m3 ha−1 in 2103
(Figure 3a). When the disturbances were taken into account,

similar growth patterns were observed but predicted volumes
were smaller. More precisely, when SBW outbreaks were included
in the forecasts, the volume in 2103 was 20m3 ha−1 lower than
that of the baseline (Figure 3b). When considering harvest occur-
rence only, volume for the same period was 45m3 ha−1 lower
compared to the baseline (Figure 3a). For the scenario in which
harvest and spruce budworm outbreaks occurred simultaneously,
predicted volumes for 2103 were 60m3 ha−1 smaller than the
baseline (Figure 3b).

The confidence intervals provide an assessment as to how
future growth can vary in the Bas-Saint-Laurent region under
disturbances. Considering the predicted lower limit of the inter-
val for the scenario considering both SBW outbreaks and har-
vesting (Figure 3b), it is very unlikely that the mean volume per
hectare at the end of the 21st century will be smaller than what
it was in 2003.

Growth forecasts were characterized by a total variance that
increased over time (Figure 4). The magnitude of the increase
was dependent on the scenario. The increase was steep for
these scenarios including SBW (Figure 4c and d). At the end of
the time horizon, the variances of these two scenarios were
>100m6 ha−2, whereas the variances of the scenarios without
SBW were smaller than 50m6 ha−2.

The scenarios including harvesting were characterized by
smaller total variances. The total variance in the scenario con-
sidering harvesting only reached 30m6 ha−2 in 2103, whereas it
was estimated at 43m6 ha−2 for the baseline scenario (Figure
4a,b). Likewise, in the scenario including simultaneously harvest
and SBW, total variance was estimated at 138m6 ha−2, com-
pared with 199m6 ha−2 in the scenario with SBW only (Figure
4c,d).

The sampling-related variances showed the same pattern
across the scenarios. The variance slightly decreased in the first
two decades and then remained stable or slowly increased over
time. Model-related variances increased over time. Our results
revealed two main trends. In the first case, for the baseline and
harvest scenarios, the model-related variances increased steadily

Without SBW With SBW
(a) (b)

Figure 3 Mean predicted volumes (m3 ha−1) and their 0.95 confidence intervals for the Bas-Saint-Laurent region. The confidence intervals rely on
the assumption of a normal distribution. The solid line represents the scenarios without harvesting, while the dashed line represents the scenario
including harvesting.
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(Figure 4a,b). The second case was related to the inclusion of SBW
outbreaks, which already greatly inflated the model-related vari-
ance on the short-term (Figure 4c,d). In both cases, the model-
related variance mainly explained the patterns observed in the
total variance. The absolute and relative variances related to all
four scenarios are presented in Table 2.

Discussion
This study focused on the uncertainty of large-area volume
forecasts under the effect of harvesting and SBW outbreaks. It
turns out that both disturbance types affect the volume yield in
predictions and their variances. It is obvious that omitting dis-
turbances leads to overestimating growth (Valle et al., 2006).
In our study, we managed to estimate this bias. Harvesting is
accounted for in most simulations, while natural disturbances are
often omitted due to their stochastic nature. In the Bas-Saint-
Laurent region, omitting SBW outbreaks caused an overestimation
of 7.4 per cent in volume at the end of the 21st century (Figure 3).

Uncertainty estimation was performed in the context of
hybrid inference at the regional scale. This was possible because:
(1) a hybrid bootstrap variance estimator was available and
(2) the model benefited from a full stochastic implementation,
which is a requirement for the use of the estimator (Fortin et al.,
2018). Using this framework, we reproduced the variance pat-
terns arising from the model and the sampling, and checked
how they were affected by SBW outbreaks and harvest activ-
ities. Such a comprehensive consideration for the different
sources of uncertainty in growth forecasts contributes to the ori-
ginality of our study compared to past efforts.

Our first hypothesis was that SBW outbreaks induced more
uncertainty in volume forecasts than harvesting. The scenarios
including SBW outbreaks led to a variance that was three to six
times greater than those in the scenarios without outbreaks
(Figure 4). In our forecasts, enabling the occurrence of SBW out-
breaks generated some realizations where all plots that con-
tained host species were suddenly affected by greater mortality
rates, whereas the other realizations were only subject to regu-
lar mortality. In contrast, harvesting affected all realizations,
and in each of them, only a few plots were harvested while the
others were left untouched. The clear consequence is a greater
variability from the model in the scenarios including SBW
outbreaks.

A surprising result was that the scenario including harvest
was slightly less uncertain than the baseline scenario. Although
unexpected, it can be reasonably assumed that the endogen-
ous nature of the harvest sub-model implies less variability. In
ARTEMIS, harvest probabilities are based on some plot-level
variables that are predicted by the model. For instance, the lar-
ger the basal area is, the greater the probability of harvest will
be (Melo et al., 2017). Regardless of the realizations, plots with
greater basal areas are then more prone to be harvested. As
a consequence, there are fewer plots with large basal areas,
and the population tends to be more homogeneous than in
the baseline scenario. As outlined in Kneeshaw et al. (2011),
harvest activities are likely to produce similar structural for-
ests when compared with others natural disturbances such
as spruce budworm outbreaks. Given this homogenizing effect
of the harvesting, we cannot entirely validate our second
hypothesis, which was that disturbances were expected to
induce a greater deal of uncertainty in the forecasts than the

(a) Baseline (b) Harvest

(c) SBW (d) SBW and Harvest
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Figure 4 Model, sampling and total variances illustrated per growth scenario. Model contribution: gray dashed line; Sampling contribution: dark gray
dotted line; Total variance: black solid line.
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sampling. This was true for SBW outbreaks, but not for har-
vesting activities.

The sampling-related variance did not show a decreasing
trend in long-term predictions as it did in the study of Melo et al.
(2018). It must be stressed that the sampling-related variance
as estimated through the hybrid estimator of Fortin et al. (2018)
is actually the variance of the mean plot-level predicted values.

As the projection length increases, these plot-level predicted
values tend to be similar due to model convergence. As reported
in Melo et al. (2018), the population variance cannot be estimated
from this sampling variance because it overlooks the increasing
contribution of the residual errors. In other words, the flat trends
we observed for the sampling-related variances cannot be inter-
preted as a constant degree of heterogeneity between the plots

Table 2 Model and sampling-related variance contribution (m6 ha−2), as well as the total variance estimated for each one of the four scenarios. The
percentage contribution appears in parentheses.

Scenarios Year Model-related Sampling-related Total variance

Baseline 2003 0.12 (0.6%) 20.59 (99.4%) 20.70
2013 0.86 (5.3%) 15.61 (94.7%) 16.47
2023 1.34 (9.3%) 12.98 (90.7%) 14.32
2033 1.99 (12.1%) 14.39 (87.9%) 16.38
2043 3.09 (16.8%) 15.31 (83.2%) 18.40
2053 4.77 (23.1%) 15.89 (76.9%) 20.66
2063 7.05 (30.1%) 16.41 (69.9%) 23.46
2073 10.14 (37.4%) 17.00 (62.6%) 27.14
2083 13.82 (43.8%) 17.72 (56.2%) 31.54
2093 18.76 (50.2%) 18.59 (49.8%) 37.35
2103 23.86 (54.8%) 19.62 (45.2%) 43.48

Harvest 2003 0.11 (0.5%) 20.58 (99.5%) 20.70
2013 0.87 (5.3%) 15.63 (94.7%) 16.50
2023 1.61 (11.0%) 12.99 (89.0%) 14.61
2033 2.78 (17.5%) 13.15 (82.5%) 15.93
2043 4.47 (25.6%) 13.00 (74.4%) 17.48
2053 6.26 (32.9%) 12.73 (67.1%) 18.99
2063 8.10 (39.3%) 12.53 (60.7%) 20.63
2073 10.43 (45.7%) 12.39 (54.3%) 22.82
2083 12.96 (51.4%) 12.28 (48.6%) 25.24
2093 15.98 (56.7%) 12.19 (43.3%) 28.17
2103 18.53 (60.4%) 12.13 (39.6%) 30.66

Harvest and SBW 2003 0.13 (0.6%) 20.59 (99.4%) 20.72
2013 0.80 (4.8%) 15.61 (95.2%) 16.41
2023 1.47 (10.1%) 12.98 (89.9%) 14.45
2033 49.77 (79.2%) 13.04 (20.8%) 62.81
2043 84.78 (86.8%) 12.94 (13.2%) 97.71
2053 106.72(89.3%) 12.72 (10.7%) 119.54
2063 118.23 (90.5%) 12.46 (9.5%) 130.70
2073 127.34 (91.3%) 12.21 (8.7%) 139.54
2083 125.08 (91.3%) 11.94 (8.7%) 137.02
2093 125.00 (91.4%) 11.69 (8.6%) 136.70
2103 127.03 (91.7%) 11.51 (8.3%) 138.54

SBW 2003 0.13 (0.6%) 20.58 (99.4%) 20.71
2013 0.77 (4.7%) 15.61 (95.3%) 16.38
2023 1.53 (10.5%) 12.99 (89.5%) 14.52
2033 55.24 (79.4%) 14.28 (20.6%) 69.52
2043 102.84 (87.1%) 15.27 (12.9%) 118.11
2053 138.14 (89.6%) 15.99 (10.4%) 154.13
2063 162.35 (90.7%) 16.56 (9.3%) 178.91
2073 175.46 (91.1%) 17.07 (8.9%) 192.53
2083 176.47 (90.9%) 15.59 (9.1%) 194.06
2093 178.45 (90.8%) 18.14 (9.2%) 196.59
2103 180.48 (90.6%) 18.80 (9.4%) 199.28
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all along the projection. This plot-to-plot heterogeneity actually
increases because of the model residual errors.

In the study of Melo et al. (2018), model- and sampling-
related variances of basal area predictions were reported per
ecotype for the Bas-Saint-Laurent region. To check if the differ-
ent patterns in the sampling-related variances were a matter of
ecotype, we also estimated model- and sampling-related var-
iances of volume predictions per ecotype. We obtained trends
similar to those observed by Melo et al. (2018), even if we were
working with volumes, which allowed us to rule out any variable
representation effect. This led us to consider the implications of
an ecotype stratification on the sampling variance. The differ-
ences observed in the behaviour of sampling uncertainty herein
and in Melo et al. (2018) could probably be due to inter-ecotype
variance. Further details about these additional results can be
found in the Supplementary Material 2.

Melo et al. (2018) also outlined the impact of sample size in
sampling variance. Despite the greater sample size in this study,
the estimated sampling variances were still large. Again, the
inter-ecotype variance could be an explanation for this trend
that we observed in our simulations.

It is known that a stratified sampling design can decrease
the variance of the estimates. The decrease in the variance is
linked to the homogeneity within the strata (Gregoire and
Valentine, 2008, p. 127). In forestry, McRoberts et al. (2012)
demonstrated that a stratification based on LiDAR data reduced
the variance of mean volume estimates of growing stock.
McRoberts and Westfall (2016) also obtained smaller variance
estimates when using a stratified estimator in the context of
individual tree volume. Building on this, we can reasonably
assume that our sampling variance would decrease if we used
a stratification based on the ecotypes, for example. The original
version of the bootstrap estimator developed by Fortin et al.
(2018) relies on the Horvitz–Thompson estimator (Horvitz and
Thompson, 1952) which easily adapts to stratified sampling
designs (Gregoire and Valentine, 2008, p. 135). However, the
gain in precision under a stratified sampling design remains to
be tested.

Finally, in our simulations, we observed that there is uncer-
tainty related to sampling, but more importantly, there is great-
er uncertainty in modelling growth when SBW outbreaks are
included. Previous studies (Breidenbach et al., 2014; Ståhl et al.,
2014) concluded that the efforts to reduce sampling uncertainty
were justified because it was the greatest source of uncertainty.
In our study, priority should be given to reducing the uncertain-
ties that stemmed from SBW outbreaks when forecasting
growth. We do not advocate that sampling uncertainty should
not be considered at all, but it clearly is smaller than the uncer-
tainty from SBW outbreaks.

Existing research in growth forecast uncertainties under SBW
is limited. The recent studies that are available support our find-
ings. Boulanger et al. (2016) argued that model-specification
uncertainty should be the focus of research assessing future
pest outbreak dynamics. Gray (2017) suggested that future out-
break forecasts could be improved by building models with
more precise data.

In this respect, an obvious question arises as to whether or
not other exogenous disturbances such as fire and wind have
the same effect on growth forecasts as those we observed for
SBW. Introducing exogenous disturbances is subject to high

levels of uncertainty (Artés et al., 2013; Cencerrado et al., 2015).
Relying on the spatial synchrony theory (Williams and Liebhold,
2000), it is reasonable to assume that large forest fires and
severe windstorms would greatly impact some realizations,
while others would remain untouched. In the study of Bergeron
et al. (2017), in which forest age classes were assessed in rela-
tion to fire and harvest activities, the scenarios with the greatest
variability were those that considered fire occurrence. In add-
ition, Pichancourt et al. (2018) also reported an increase in the
variance of carbon predictions when considering windstorms.

However, the comparison between the three types of distur-
bances – fire, storms and insect outbreaks – in terms of uncer-
tainty contribution is not so simple and remains to be tested.
The vulnerability of forest stands is dependent on the type of
disturbances. For example, forest fires are more likely to occur in
old boreal stands (Bernier et al., 2016). When windstorms occur,
the tallest trees are more prone to damage than the smaller
ones (Schmidt et al., 2010). For insect outbreaks, the number of
host species is often limited and, for this reason, the damage is
highly dependent on the species composition. In the case of
SBW outbreaks, the host-tree species are: balsam fir, black
spruce, white spruce and red spruce (Gray, 2017).

The variance of large-area forecasts is closely related to the
severity of the damage when the disturbance occurs. In our
case study, the damage of SBW was severe because the host
species were abundant at the regional level. The three host spe-
cies represented 30 per cent of the basal area of Bas-Saint-
Laurent forests, with balsam fir alone representing 20.5 per cent
of the basal area at the regional level (Table 1).

Bergeron et al. (2017) assumed that all stands had an equal
probability to be burned, regardless of their age or changes in
vegetation composition. Likewise, in our study, we assumed
that SBW outbreaks had equal probabilities of occurrence over
time. In other words, the probability that a SBW outbreak occurs
is not impacted by previous outbreaks. This can have an effect
on the estimated variance. As a matter of fact, the probabilities
of SBW outbreak occurrence are probably not independent of
previous outbreaks. Candau and Fleming (2005) modelled SBW
outbreak occurrences, and reported that the frequency and
defoliations exhibited a spatial pattern that is influenced by cli-
mate and forest composition. This is a more complete approach
in modelling, and using it would probably reduce the estimated
variances we obtained in our study.

Estimating uncertainty arising from disturbances can provide
important insights. In past studies, the focus was generally on
model development or model uncertainty, while the perspective
of hybrid inference was missing. In terms of approach, we chose
to run the model at the plot level and to then scale the predic-
tions up to a greater spatial level. This approach is known as the
direct extrapolation method and is recommended to reduce
errors arising from nonlinearity, such as Jensen’s inequality (Wu
et al., 2006). Furthermore, variance estimates based on the
Monte Carlo technique, like those in this study, are preferred to
analytical methods since they apply to complex and nonlinear
models (Wilson and Smith, 2013), such as ARTEMIS.

The scenario in which harvest and SBW outbreaks could
occur simultaneously resulted in smaller volume forecasts. In
reality, the estimates in this particular scenario can be underes-
timated. In the event of an outbreak, salvage cuttings normally
take place (Boulanger and Arseneault, 2004). However, ARTEMIS
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does not consider this possibility, which means that some plots
that are harvested by the model are actually spared. Moreover,
a major driver of the harvest model is the AAC volume, that is
estimated by a government agency. In our simulation, this AAC
volume is constant, whereas in practice, it is re-estimated every
5 years.

Even if harvest activities did not have the greatest contribu-
tion to the forecast variance, some authors reported the
impacts of uncertainties related to harvest in forest planning.
For example, Pasalodos-Tato et al. (2013) observed economic
losses on harvest scheduling due to errors in forest inventory.
Makinen et al. (2012) also found that errors on growth predic-
tions and forest inventory had a critical impact on harvest
scheduling planning problems. As recommended by Robinson
et al. (2016) and Daniel et al. (2017), efforts to assess uncertain-
ties in harvest activity should be done with respect to manage-
ment planning. Recent developments integrated uncertainties
into forest management planning. Non probabilistic methods,
such as programming analysis, were developed in Eyvindson
and Kangas (2016) and Eyvindson and Kangas (2017). This issue
of management planning is beyond the scope of this paper, but
our framework may serve as a basis to facilitate the implemen-
tation of these methods.

Conclusions
Estimating uncertainties in forest growth forecasts under distur-
bances can provide insights to decision-makers. Volume fore-
casts for the Bas-Saint-Laurent region are more uncertain when
including SBW outbreaks. This natural disturbance proved to be
the most important source of uncertainty against harvest and
sampling variance. We therefore suggest that forest manage-
ment would be more realistic if it accounted for the uncertain-
ties that stem from natural disturbances.

In order to reduce the uncertainty of large-area growth fore-
casts in the Bas-Saint-Laurent region, the understanding and
prediction of SBW dynamics is a crucial issue. An essential step
would be to take the relationships between the variables that
explain the occurrence of disturbance events into account.
Along with what was proposed by Gray (2017), we also suggest
that efforts should be made to gather reliable datasets that
could be used to create or improve existing models of SBW
dynamics.

Supplementary data
Supplementary data are available at Forestry online.
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