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ABSTRACT: This study presents spatial models (i.e., thin-plate spatially continuous spline surfaces) of adjusted precip-

itation for Canada at daily, pentad (5 day), and monthly time scales from 1900 to 2015. The input data include manual

observations from 3346 stations that were adjusted previously to correct for snow water equivalent (SWE) conversion and

various gauge-related issues. In addition to the 42 331 models for daily total precipitation and 1392 monthly total precip-

itation models, 8395 pentad models were developed for the first time, depicting mean precipitation for 73 pentads annually.

For much of Canada, mapped precipitation values from this study were higher than those from the corresponding unad-

justedmodels (i.e., models fitted to the unadjusted data), reflecting predominantly the effects of the adjustments to the input

data. Error estimates compared favorably to the corresponding unadjusted models. For example, root generalized cross-

validation (GCV) estimate (a measure of predictive error) at the daily time scale was 3.6mm on average for the 1960–2003

period as compared with 3.7mm for the unadjusted models over the same period. There was a dry bias in the predictions

relative to recorded values of between 1%and 6.7%of the average precipitations amounts for all time scales.Mean absolute

predictive errors of the daily, pentad, and monthly models were 2.5mm (52.7%), 0.9mm (37.4%), and 11.2mm (19.3%),

respectively. In general, the model skill was closely tied to the density of the station network. The current adjusted models

are available in grid form at ;2–10-km resolutions.
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1. Introduction

Until 20 years ago, much of Canada’s historical precipitation

record had not been adjusted for documented shortcomings

related to undercatch, wetting losses, unrealistic snow water

equivalence conversion (Mekis and Brown 2010), and trace

amounts of precipitation (see, e.g., Chvíla et al. 2005). Since

then, multiple generations of adjusted precipitation datasets

have incorporated such corrections, thereby rehabilitating

Canadian precipitation datasets (Mekis and Hogg 1999; Mekis

and Vincent 2011; Vincent et al. 2015; Wang et al. 2017). These

studies suggest that the adjustments implemented to address

multiple measurement and gauge-related issues represent im-

portant improvements to the raw data. As outlined in Wang

et al. (2017), underestimates of more than 25% are present in

Canada’s archived historical total precipitation data for

stations in northeastern Canada and 10%–15% in much of

southern Canada.

The spatial models (thin-plate splines) presented in this

study were built using the Adjusted Daily Rainfall and

Snowfall dataset, version 2016 (AdjDlyRSv2016), which in-

cludes 3346 in situ observing stations with at least one year of

data over the 1840–2016 period (Wanget al. 2017).AdjDlyRSv2016

opens the door for new perspectives and analyses, including the

development of spatial models and gridded precipitation da-

tasets at multiple time scales including daily, pentad (5 day),

and monthly, which is the subject of the current study.

Spatial estimates of precipitation are critical for many users,

with optimal time scales often dependent on the type of ap-

plication. For instance, gridded precipitation datasets (derived

from fitted spatial models) are important inputs to water

budget/hydrological modeling (e.g., Akinremi et al. 1996;

Islam et al. 2019; Persaud et al. 2020), wildfire projections

(e.g., Ying et al. 2019), horticultural and plant hardiness

studies (e.g., Bloomfield et al. 2019; McKenney et al.

2014), conservation/species distribution mapping (e.g.,

Leclerc et al. 2019), among others (e.g., Rezsöhazy et al.

2020). While for some applications a monthly time scale is

suitable, point-location estimates or gridded data of daily

precipitation are typically required for applications such

as water budget models. However, a substantial number

of stations are required to grid daily precipitation for

reasons including the prevalence of zero values, difficul-

ties measuring snow, and short correlation length scales

(Hutchinson et al. 2009). For example, 8619 gauge loca-

tions were used to map precipitation extreme statistics

over Australia (Johnson et al. 2016). In Canada, the gauge

network is much more limited and often inadequate to

capture spatial precipitation patterns at shorter time scales,

particularly north of 558N where stations may be 500–700 km

apart (Wang and Lin 2015). Further challenges in Canada

exist in the form of station closures (noted in Mekis and

Vincent 2011). The Canadian weather/climate station

network peaked in 1990 with almost 900 (manual) stations

on average per day; this number decreased to 600 by 2001

and 300 by 2010. Although the current dataset is based

on manual stations only, future versions of the adjusted
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precipitation dataset will be augmented with automatic stations

(Wang et al. 2017) and/or other suitable station networks.

The purpose of this paper is to introduce new spatial models

and gridded datasets of adjusted total daily, mean pentad, and

monthly total precipitation for the period of 1900–2015. These

spatial models were developed using a 60 arc s (approximately

2 km) and 300 arc s (;10 km) digital elevation model (see

Lawrence et al. 2008). We compare metrics from this effort

with the models fitted previously to the unadjusted daily and

monthly precipitation data (Hutchinson et al. 2009; Hopkinson

et al. 2011; McKenney et al. 2006).

2. Data and methods

a. Adjusted precipitation data

For full details on the station data used for the current work

seeWang et al. (2017). In brief,AdjDlyRSv2016 contains adjusted

daily total precipitation (unit: mm) created using manual obser-

vations of daily rainfall and snowfall at 3346 stations as extracted

from the National Climate Data Archive of Environment and

Climate Change Canada (ECCC). AdjDlyRSv2016 expands

on previous efforts to adjust Canadian precipitation records.

Specifically, Mekis and Hogg (1999) released a dataset of ad-

justed precipitation records for 798 stations in which correc-

tions were implemented for wind undercatch and evaporation,

gauge-specific wetting losses, trace precipitation amounts, and

snow water equivalent (SWE) conversions. Subsequently,

Mekis and Brown (2010) used coincident Nipher gauge and

snow ruler measurements to develop a spatially varying SWE

ratio to replace the static 10:1 SWE ratio used to calculate total

precipitation in the ECCC archive. Further,Mekis andVincent

(2011) released a dataset that also incorporated the SWE ratio

map of Mekis and Brown (2010).

Published studies have presented trend analyses using a

second-generation adjusted precipitation dataset (Vincent

et al. 2015), based on 464 station locations (Mekis and Vincent

2011). In this and earlier generation datasets, many stations

were not included because of challenges such as short periods

of record and the need to establish a baseline for anomaly

calculations. However, for producing spatial models, typically

more stations are better as in the case of the current study,

and each record is linked to the exact observation location.

Station joining is simply not needed for producing a gridded

dataset, although it is needed for studying the local trend

at that particular station location. Focusing on producing

gridded precipitation datasets, Wang et al. (2017) applied

similar correction procedures to those described above to all

stations with appropriate metadata, regardless of station re-

cord length. As a result, two versions of the adjusted daily

rainfall and snowfall (AdjDlyRS) dataset were produced:

versions 2007 and 2016 of AdjDlyRS (i.e., AdjDlyRSv2007 and

AdjDlyRSv2016). AdjDlyRSv2007 incorporated 2146 stations

and covered 1840–2007; it was used to produce a gridded

pentad precipitation dataset using blended gauge and satellite

data at 2.58 resolution (Wang and Lin 2015). AdjDlyRSv2016

was developed in the same way as AdjDlyRSv2007, except that

additional stations were incorporated.

AdjDlyRSv2016 includes 3346 stations of manual observa-

tions of precipitation over Canada, with 908 stations of more

than 40 years of data, and 975 stations of 21–40 years of data

(see Fig. 1 of Wang et al. 2017). Unlike the adjusted datasets

of Mekis and Vincent (2011) and Mekis and Hogg (1999),

AdjDlyRSv2016 station records were not joined, but instead

the exact new station coordinates for relocated stations were

used in the spatial modeling.

The current work makes use of daily total precipitation,

pentad mean precipitation, and monthly total precipitation

amounts derived from AdjDlyRSv2016. Note that, following

standard practice (Wang and Lin 2015), pentad mean precip-

itation (mmday21) was calculated from AdjDlyRsv2016, and

spatially modeled for each pentad period. In leap years, the

pentad beginning on 25 February is a 6-day average of daily

precipitation values, consistent with Weaver et al. (2009). The

difference in units has implications for the magnitude of errors

associated with these products (which are significantly lower

than would be expected if 5-day totals were being modeled).

When deriving the monthly data, the monthly total precip-

itation (mm) was set to missing if there was one or more

missing daily value in the month (zero tolerance for missing).

The same zero tolerance for missing observations was applied

in the calculation of the pentad average precipitation rates

(mmday21).

b. Spatial modeling

This analysis makes use of the Australian National University

Spline (ANUSPLIN) package, a widely used spatial modeling

tool for climate variables (e.g., Fick and Hijmans 2017; Kriticos

et al. 2012; New et al. 2002; McKenney et al. 2011) that has been

under development for close to three decades (see Hutchinson

and Xu 2013). Specifically, ANUSPLIN consists of a suite of

Fortran programs designed to fit thin-plate smoothing splines

to noisy climate station data and widely applied globally (e.g.,

Fick and Hijmans 2017; Kriticos et al. 2012; New et al. 2002).

Here we provide only a brief description of thin-plate splines;

readers are referred to Wahba (1990) for a mathematical

explanation. A typical work-flow process is described in

Hutchinson and Xu (2013).

ANUSPLIN employs a generalization of a multivariate

linear regression model in which the parametric model is

replaced by a nonparametric function. The fitted nonpara-

metric function provides a relationship between the de-

pendent and independent variables. The method optimizes

the amount of data smoothing to minimize the predictive

error, as measured in this case by the generalized cross vali-

dation (GCV). The model is robust to varying underlying

spatial statistical models of the data (Hutchinson 1993).

Further, the process is automated, making it well suited to

processing a large volume of data at the daily time scale. The

method has no underlying ‘‘range parameter,’’ makes use of all

available stations in the surface fitting, and can adjust auto-

matically to the uneven spatiotemporal density of the station

network employed here.

The ANUSPLIN software package produces model diag-

nostics that give insights into the predictive quality away from

the station locations. For our adjusted precipitation models,
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the amount of data smoothing was determined by minimizing

predictive error as measured by theGCVdiagnostic. TheGCV

is calculated for each value of the smoothing parameter r by

implicitly removing each data point and calculating the resid-

ual from the omitted data point of a surface fitted to all other

data points (Wahba 1990). The new version of the software

used in this study produces cross-validated estimates for each

and every station used in the modeling effort.

Hutchinson (1995) gives a general model for a thin-plate

spline function f fitted to n data values zi at position xi:

z
i
5 f (x

i
)1 «

i
i5 1 . . . ,n (1)

in which the xi refer to a vector of independent variables (in

this case, longitude, latitude, and elevation multiplied by a

factor of 100). Multiplying elevation by a factor of 100 reflects

the generally accepted relative scale of elevation with respect

to horizontal coordinates in atmospheric dynamics (Hutchinson

et al. 2009; Daley 1991). The «i are mean random errors that

represent bothmeasurement error as well as model deficiencies,

for example, reflecting local effects below the resolution of the

model and the source data. For instance, Hutchinson (1998b)

illustrated that the impact of slope diminishes at lower resolu-

tion, and therefore, to some extent the effects of slope are below

the 2- and 10-km resolution of the current models. In terms of

independent variables, Hutchinson (1998b) compared thin-plate

spline models with varying topographic dependencies, in-

cluding the inclusion of slope and aspect as predictors.

Other unpublished tests using the adjusted precipitation

data incorporating 30-yr precipitation averages as additional

predictors were unsuccessful due to insufficient station data on

which to calculate long-term averages. As a result, we based

the current models on predictors (latitude, longitude, and scaled

elevation), which are widely available and well tested.

We applied a square root transformation to the station

precipitation values, which has been reported to reduce in-

terpolation errors by about 10% (Hutchinson 1995, 1998a).

The square root transformation reduces the skewness of the

precipitation variable, making smoothing more consistent be-

tween small and large precipitation values (Hutchinson 1998b).

Tait et al. (2006) have confirmed that the square root trans-

formation can yield a significant reduction in daily precipita-

tion interpolation error.

For daily models, a two-step process is used, in which both a

probability of occurrence and a positive precipitation estimate are

produced by ANUSPLIN, and then integrated to produce a final

interpolated result. The probability of occurrence is estimatedusing

precipitation presence or absence from the recorded station ob-

servations. If the probability of occurrence is less than or equal to

0.5, thefinal interpolatedprecipitation grid value is set to zero. If the

occurrence surface is estimated to be greater than 0.5, the final in-

terpolated value is taken from the positive precipitation estimate.

For large datasets, an approximate spline function is defined

in terms of a set of knots. Knots are a subset of stations chosen

to match the complexity of the fitted surface (Hutchinson and Xu

2013). Work by Johnson et al. (2016) iteratively increased the

number of knots from2040 to 3570 (of 8074 gauges),which resulted

in a steady reduction in error rates as the number/proportion of

knots was increased—particularly for surface residuals as

compared with cross-validation residuals. To investigate the

impact of knot selection on model errors, we tested the se-

lection of 40%, 80%, and 100% of 1) daily and 2) monthly

data points as knots. All knot-related testing was done on

data from 1990 to 1999; this decade was selected because of

the large number of daily observations during this time pe-

riod. PROC ANOVA in the SAS software, version 9.4, of

SAS System for Windows was used to conduct paired t tests

on absolute error rates for December–February (DJF) and

June–August (JJA) by knot option.

ANUSPLIN provides Studentized (i.e., normalized) resid-

uals, enhancing user ability to systematically detect outliers

(see Kutner et al. 2004). Station values flagged as having high

internally Studentized residuals (i.e., ‘‘NFLAGS’’) were re-

viewed as part of the quality control process. NFLAGS were

used to identify and resolve such problematic values. To assist

with evaluation of flagged values, residual lists were linked to

data from proximate stations.

Once knot testing was concluded, final models were con-

structed at the daily, pentad, and monthly time scales and then

resolved at 60 arc s or;2-km (monthly) and 300 arc s or;10-km

(daily, pentad) resolutions using a Canada-wide digital elevation

model (see Lawrence et al. 2008).

c. Model assessments

1) STATISTICS OF FITTED SURFACES

Model quality was evaluated initially via the root general-

ized cross validation (RTGCV), the square root of the GCV

described earlier. The RTGCV is an estimate of standard

predictive error, although it is a conservative one, because this

measure includes data error (Hutchinson and Xu 2013).

In the course of model development, we reviewed the

‘‘signal,’’ a diagnostic metric also produced by ANUSPLIN

that ranges between zero and the number of knots, as well as the

ratio of signal to number of knots (NK) (the S:NK ratio). The

signal is a measure of the complexity of the fitted surface that

ranges between a small positive integer and the number of stations

used to create the model (Wahba 1990). Models with signals ap-

proaching the number of knots suggest an overreliance on avail-

able data points. Exact interpolations could suggest a perfect

model fit but instead reflect a model that is less reliable, particu-

larly in regions with few stations because models based on fewer

data points may have too few stations to disprove estimates.

2) ASSESSMENT OF MODEL PREDICTIONS

The quality of model predictions was assessed for bias and

accuracy using the mean error (ME) and the mean absolute

error (MAE) of the individual cross-validated residuals (cal-

culated as the estimated value at the station location minus the

recorded value) at the station locations. ANUSPLIN outputs

the individual station cross-validation (CV) estimates as well as

their summaryME andMAE residual statistics to enable an in-

depth analysis of model errors.

The quality of final surfaces was evaluated using errors cal-

culated as the difference between the CV values and the

recorded station values at 60 ‘‘test’’ stations shown in Fig. 1.
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This sample was selected to better reflect the range in latitude,

longitude, and elevation across the country as compared with

the full set of stations, which tend to be concentrated in southern

Canada. The representative sample contained 10 stations in

British Columbia; 15 in the prairie provinces of Alberta,

Saskatchewan, andManitoba; 9 in Ontario; 8 inQuebec; 9 in the

territories (Yukon, Northwest, and Nunavut); and 9 in Atlantic

provinces (New Brunswick, Nova Scotia, Prince Edward Island,

and Newfoundland). We calculated MAEs and MEs for the

entire period from 1960 to 2015 for all time scales and expressed

these errors as a percentage of the long-term average precipi-

tation for each season over the same period. This time period is

consistent with the one selected for Hutchinson et al. (2009).

Accuracy of daily precipitation model predictions was

assessed in two stages; prediction of occurrence (all cases) and

positive precipitation (stations where precipitation is predicted

to occur). SAS version 9.4 was used to 1) implement a chi-

square test on the association between a false negative with

respect to the occurrence layer and daily precipitation amount

and 2) apply t tests to assess whether model biases were sig-

nificantly different from zero using alpha of 0.05.

To see the spatial pattern of uncertainty (prediction error) in

the ANUSPLIN gridded precipitation datasets, for each of the

3346 stations, the individual cross-validated ANUSPLIN pre-

dictions for each 5-yr period from 1900 to 2014 (e.g., 1900–04,

1905–09, . . . , 2010–14) were pooled together to calculate the

root-mean-square error (RMSE). The resulting RMSEs are

expressed as a percentage of the corresponding 5-yr average

observed precipitation amount, obtaining the relative RMSEs.

Root-mean-square errors (RMSEs) were calculated and mapped

at the daily and monthly time scales.

d. Seasonal analysis

For seasonal assessments, the winter season included DJF;

the spring season includedMarch, April, andMay (MAM); the

summer season included JJA; and the autumn season included

September, October, and November (SON). Note that, for the

winter season, December of the previous year (e.g., 2007) was

grouped with January and February of the following year (e.g.,

2008). Pentads 1–12 and 68–73 were classified as winter, pen-

tads 13–30 were grouped into ‘‘spring,’’ pentads 31–49 were

considered ‘‘summer,’’ and pentads 50–67 were defined as

‘‘autumn,’’ following Wang and Lin (2015)

e. Comparison with the previous (unadjusted)

ANUSPLIN-gridded data

Regional mean series of annual total precipitation (mm)

derived from the version 2009 [v2009, unadjusted developed by

Hutchinson et al. (2009)] were compared with version 2018

(v2018, adjusted) of ANUSPLIN-gridded daily precipitation

datasets over the period of 1950 to 2013. The regional means

were gridbox-area weighted. Long-term mean values and

Mann–Kendall trend estimates of the corresponding series

were also calculated and presented. The results are presented

and discussed in section 3e.

Further, the differences between the v2018 (adjusted) and

v2009 (unadjusted) gridded values for each grid cell were

summed over each day from 1960 to 2010 for each season and

then divided by the total unadjusted precipitation over the

same period. The percentage differences between the gridded

adjusted and unadjusted precipitation were summed, mapped,

and discussed in section 3e.

3. Results and discussion

a. Knot testing

We completed knot testing on 3558 Canadian stations at the

monthly time scale between 1990 and 1999 inclusive (10 years).

Because of the large number of values for the daily time scale,

we tested the effects of knot selection from 1990 to 1999 but

assessedmodel predictions for one year only.We chose 1993 as

the study year for daily because the number of stations was at

its approximate peak at this time. Reviewing model diagnos-

tics, we found the S:NK ratio to be problematic (i.e., .0.8

or ,0.2; Hutchinson and Xu 2013) for 11.6% of monthly

models using 100%knots. An S:NK ratio in this range indicates

lower prediction skill for areas with limited station data. No

problematic surfaces were identified for the other knot selections.

Because of the number of problematic surfaces using 100%knots,

we dropped this option from further consideration.

At the daily time scale, the predicted number of precipita-

tion occurrences was virtually the same for the various knot

selections (Table 1, columns for 1993). Knot density did not

affect the quality of the occurrence layer. This is consistent

with the greater spatial coherence of the occurrence layer

relative to positive daily precipitation noted by Hutchinson

et al. (2009).

We also examined daily prediction errors by recorded pre-

cipitation thresholds (Fig. 2). Our analysis indicated that on

average, the prediction error was greater for the model with

40% positive precipitation knots, particularly for large pre-

cipitation amounts. The bias was different depending on the

precipitation amount, with positive (wet) biases associated

FIG. 1. Locations of the 60 stations used for testing model

predictions.
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with precipitation amounts less than 5mm and negative (dry)

biases associated with larger amounts. Statistical testing of the

differences in monthly MAEs revealed statistically smaller errors

for the models based on 80% knots as compared with 40% knots

(testing of DJF and JJA from 1990 to 1999; see Table 1). Because

of its greater predictive ability relative to 40% knots, we chose

80% knots for the final full model parameterization.

b. Full model development: Anomaly detection

Asdescribed in themethods section, the quality control process

included an analysis of observations flagged by ANUSPLIN as

outliers. This process helps to identify spatially anomalous

observations. Table 2 provides the number of flagged values at

each time scale from 1900 to 2015, along with the accompa-

nying flag threshold specifying the probability of exceeding

such a value in a normal distribution. Of 39 388 715 daily pre-

cipitation occurrence values from 1900 to 2015, there were

some 36 288 (0.09%) values flagged as anomalous relative to

values at neighboring stations. From 1950 to 2015, there were

27 852 688 daily precipitation values, of which 30 831 (0.11%)

were flagged. The higher percentage of anomalous values in

the later time period does not imply that records during the

later years are necessarily worse but rather that, with a lower

density of observations, fewer neighboring stations were available

withwhich to detect spatial anomalies. For instance, therewere no

flagged cases for the pentad time scale from 1900 to 1910, but this

is due to the sparsity of observations during this time period.

Also shown in Table 2, a total of 2604 (0.04%) pentad values

were flagged of 6 485 591 observations in total. At a monthly

time scale, 805 (0.06%) adjusted precipitation values of 1 273 788

observations over the 1900 to 2015 period were flagged as

having a high Studentized residual. Following a review of the

list of NFLAGS, we removed station values with Studentized

residuals of 3.719 or greater from the modeling process but

retained flagged values in testing the quality of model predic-

tions with the set of 60 stations.

c. Number of models

Following a review of flagged values, we developed 42 331

daily precipitation occurrence surfaces and the same number of

positive precipitation surfaces for 116 years from 1900 to 2015. In

comparison, 8395 pentad and 1392 monthly surfaces were gen-

erated over the same period. Figure 3 gives the number of climate

stations that were available by year over this period.

d. Model diagnostics

As shown in Table 3, root GCVs were highest at the daily

time scale (69.7% of the surface mean) as compared with

pentad (49.9%), and monthly (26.5%) models. Root GCVs

were lowest in the autumn across all time scales, consistent

with the large well-organized synoptic systems that prevail in

this season. In comparison, rootGCVswere generally higher in

summer months, reflecting greater spatial complexity of con-

vective rainfall compared to frontal precipitation occurring in

winter months. However, root GCVs were also elevated at the

monthly time scale in winter as a result of high residuals at

coastal stations linked to winter storms.

At the daily time scale, root GCVs varied through time,

averaging 3.83mm for models over the 1950 to 2015 period

(Table 3, Fig. 4a), or 69.7%of the average surfacemean. Errors

were highest in the summer (4.43mm, or 77.5%). The root

GCVs at the daily time scale are comparable to statistics pre-

sented by Hutchinson et al. (2009), who reported a root GCV

of 3.7mm for the 1961–2003 period. Over this same period, the

current daily models exhibit an average root GCV of 3.6mm.

That there is an improvement, even a slight one, is perhaps

surprising given that the current study includes only manual

observations with enough metadata to make adjustments, com-

pared to the Hutchinson et al. (2009) study, which included all

Canadian stations (different manual and automated gauges)

without any adjustments for the observation type or gauge spe-

cific biases. This may be due to the data preparation phase and

the exclusion of possibly anomalous data via Studentized resid-

uals from the model construction phase.

The average pentad root GCV was 1.27mm from 1950 to

2015 (Table 3, Fig. 4c), or 49.9% of the average pentad surface

TABLE 1. Number of precipitation occurrences predicted for 40% and 80%knot selection options for 1993, andmonthlyMAEs by knot

option using DJF and JJA from 1990 to 1999, with t statistics and accompanying p values for specified paired tests comparing theMAE for

the 40% vs 80% knots option.

Knot option

1993 DJF JJA

No precipitation Precipitation MAE (mm) t statistic (probability) MAE (mm) t statistic (probability)

40% 411 699 341 296 17.93 15.60

80% 411 863 341 132 16.54 21.12 (p , 0.0001) 14.80 30.75 (p , 0.0001)

FIG. 2. Daily MEs by knot option (40% vs 80% of data points se-

lected as knots) for 1993.
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mean. Errors were relatively balanced between the seasons,

with an average root GCV for the summer of 1.37mm (or

55.0%) as compared with 1.38mm (49.5%) for the winter.

Lower root GCVs were evident in the autumn seasons (1.23mm,

or 44.4%).

At a monthly time scale, the average root GCVwas 20.6mm

(or 26.5% of the surface mean) from 1950 to 2015 (Table 3,

Fig. 4e). Errors were highest in winter (23.6mm or 28.2%) and

lowest in spring (18.1mm or 26.9%). Previously published

studies of historical monthly precipitation (unadjusted) re-

ported an average root GCV of 27% based on data from 1950

to 2000 (McKenney et al. 2006). This previous study was based

on automated as well as manual stations for North America,

whereas the current study represents only Canadian manual

gauges.Whenwe limit our assessment to the 1950–2000 period,

the period of greater station numbers, the average root GCVs

for the adjusted monthly surfaces averaged 19.6mm (25.8%),

slightly smaller than that of McKenney et al. (2006).

The S:NK ratios for positive daily precipitation ranged from

0.02 to 0.99 (Fig. 4b), with 462 (1.9%) daily positive precipi-

tation models from 1950 to 2015 exceeding 0.8 and 948 (3.9%)

daily models less than 0.2. These problematic cases were as-

sociated with days with a smaller number of station records: the

mean number of station records associated with models with a

ratio of greater than 0.8 or less than 0.2 was 296, as compared

with an average of 524 station records on days with favorable

S:NK values. Notably, Fig. 4b shows an increase in the range of

S:NK ratios in 2010 and 2015; 169 of 1825 pentad surfaces had

problematic S:NK ratios over this time period (9.3%) as

compared with less than 1.0% from 1950 to 2015. Models with

S:NK ratios less than 0.2 and greater than 0.8 should be used

with caution. In contrast to daily models, the pentad and

monthly time scales produced very few problematic surfaces.

The S:NK ratio ranged from 0.17 to 0.86 at the pentad time

scale (Fig. 4d), as compared with 0.30–0.86 for the monthly

time scale (Fig. 4f).

e. Quality of model predictions using 60 test stations

1) TEMPORAL QUALITY ASSESSMENT

The set of 60 test stations generated 1 240 695 daily obser-

vations from 1950 to 2015 (14% of possible daily observations

over 66 years were missing). Of these cases, there were

716 084 days with recorded precipitation of greater than zero

(57.7%). Of the 524 611 days with zero recorded precipitation,

ANUSPLIN correctly predicted no precipitation 85.2% of the

time (Table 4). For stations with positive recorded daily pre-

cipitation of less than 1mm, ANUSPLIN correctly predicted

the presence of precipitation 51.7% of the time. The high rate

of false negatives (i.e., 48.3%) could be partly due to inter-

station differences with respect to recording practices for small

amounts of precipitation, but also underlines the difficulty in

correctly distinguishing no precipitation from very small amounts

of precipitation. Work is under way to test the value of trace

flags assigned through reanalysis. In comparison, daily pre-

cipitation from 1 to less than 5mm was correctly identified by

ANUSPLIN as having positive precipitation 82.8%of the time.

For daily precipitation of 5mm or greater, ANUSPLIN cor-

rectly predicted positive precipitation 95.1% of the time. Cases

in which ANUSPLIN predicted no precipitation on days for

which significant precipitation amounts were recorded may

reflect highly localized precipitation events or even observer

errors related to the magnitude and/or timing of the precipi-

tation event (e.g., recorded on the wrong day). Across all daily

precipitation amounts, models correctly predicted the occur-

rence of precipitation 77.2% of the time. The probability of a

TABLE 2. Distribution of NFLAGS fromANUSPLIN by time scale and by approximate Studentized residual threshold. The number of

observations exceeding the Studentized residual threshold (count) is provided, as well as the percent of the number of cases. Station values

with Studentized residuals of greater than 3.719 were excluded from spatial modeling but retained in the assessment of model results.

Approximate Studentized

residual threshold

Daily 1900–2015 Daily 1950–2015 Pentad Monthly

Count % Count % Count % Count %

3.090 20 376 0.05% 17 010 0.06% 1576 0.02% 388 0.03%

3.290 8606 0.02% 7326 0.03% 602 0.01% 210 0.02%

3.481 3867 0.01% 3390 0.01% 244 0.004% 113 0.01%

3.719 3439 0.01% 3105 0.01% 182 0.003% 94 0.01%

Total flags 36 288 0.09% 30 831 0.11% 2604 0.04% 805 0.06%

Cases 39 388 715 27 852 688 6 485 591 1 273 788

FIG. 3. Number of manual climate stations in Canada available

for the current spatial modeling at the daily time scale for the 1900–

2015 period. Symbols show themedian (center line), quartile (box),

and minimum/maximum (whiskers) values for each 5-yr interval

(shown at the start of the 5-yr period).
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false negative was statistically significantly associated with the

amount of daily precipitation (x2 5 122 371; p , 0.0001).

For positive daily precipitation events (716 084) recorded at

the 60 test stations from 1950 to 2015, the average prediction

bias was dry by 0.06mm, which represents 21.3% of the av-

erage daily precipitation (Table 5). For the 1950–2015 period,

MAE values averaged 2.5mm, or 52.7% expressed as a per-

centage of the average annual daily precipitation over the same

period. Thehighest errors occurred in the summer at 3.3mmday21,

or 62.9% of the average daily summer precipitation, with

similar percentage errors in autumn (2.5mmday21, or 51.3%),

spring (2.3mm, or 51.6%), and winter (2.2mm, or 49.9%). All

of these biases were statistically significant, as detailed in

Table 5. Despite the improvement in the RTGCV for the daily

models compared to unadjusted models, the analysis of model

errors identifies significant challenges in modeling precipita-

tion at the daily time scale. As a result, where it is feasible, it

may be advantageous to consider the pentad models, which are

also expressed in millimeters per day.

The direction of the bias, similar to that reported in Fig. 2,

depended on the amount of daily precipitation. Specifically,

there was a positive (wet) bias of approximately 1.2mm for

daily precipitation amounts less than 1mm and a wet bias of

0.7mm for daily precipitation amounts ranging from 1 to 5mm.

In contrast, there was a dry bias of 2.1mm for daily precipitation

amounts of greater than 5mm. The bias for small precipitation

amounts may reflect recording errors, particularly in cases

where a large disparity between the modeled and recorded

values are evident. Recorded values with a high Studentized

residual were removed from modeling, so the possible effect

of measurement errors in ameliorated. However, all recorded

values were retained in testing model accuracy. Because these

high-disparity cases have a disproportionate effect on error

rates, further review of these cases for the next version of the

dataset is advisable.

At the pentad time scale, there were 3504 observations

generated from the 60 test stations over the 1950–2015 period.

The averageMAEwas 0.87mmday21 annually, which represents

37% of the average pentad adjusted precipitation. The highest

errors were in the summer (1.07mmday21 or 42.2%; Table 6).

The average annual bias at the pentad scale was20.16mmday21

(or 6.7%), indicating that pentadmodel predictions were dry by

approximately seven percent compared to the recorded value.

All biases reported in Table 6 at the pentad time scale were

statistically significantly different from zero.

At the monthly time scale, there were 3447 observations

assessed over the 1950–2015 period. In this case, the average

MAE value was 11.2mm (19.3%) annually (Table 6), with

seasonal errors ranging from 12.9mm (23.0%) in winter to

9.8mm (20.4%) in spring. Model predictions were again slightly

dry at the 60 test stations (21.8mm or 22.6%), with greatest

bias in winter (22.9mm or24.1%) and smallest bias in autumn

(20.5mm or 20.7%). Seasonal biases were significantly differ-

ent from zero, with the exception of autumn.

2) SPATIAL QUALITY ASSESSMENT

Monthly errors were highest on the Pacific and Atlantic coasts.

For example, station 1026270 (Port Hardy, British Columbia, onT
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Vancouver Island, one of the 60 test stations) had over 200mm of

monthly precipitation recorded in winter on average, with an

absolute cross-validation error of over 50mm, which is approxi-

mately 25%. Previous studies have noted that higher error is re-

lated to higher precipitation amounts during winter storms along

the Pacific and Atlantic coasts and limited station numbers

(McKenney et al. 2006). However, note also that, even with the

aforementioned adjustments (Wang et al. 2017), some measure-

ment errors can remain and impact the quality of precipitation

data particularly in windy conditions (Mahmood et al. 2017).

TABLE 4. ANUSPLIN predictive accuracy of daily precipitation occurrence by amount of recorded adjusted daily precipitation

(1950–2015, using 60 test stations).

Recorded precipitation

amount (mmday21) Correct predictions (%) False positives (%) False negatives (%) N

0 446 867 (85.2%) 77 744 (14.8%) — 524 611

.0–1 171 362 (51.7%) — 160 053 (48.3%) 331 415

.1–5 180 122 (82.8%) — 37 337 (17.2%) 217 459

.5 158 943 (95.1%) — 8267 (4.9%) 167 210

Total 957 294 (77.2%) 77 744 (6.3%) 205 657 (16.6%) 1 240 695

FIG. 4. Root GCV and S:NK ratio for 5-yr intervals over the 1900–2015 period at the (a),(b) daily, (c),(d, pentad,

and (e),(f) monthly time scales (shown at the start of the 5-yr period).
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Figure 5 shows the relative RMSEs in the ANUSPLIN

models for two 5-yr time periods (including 1985–89, the period

of the highest number of stations). Clearly, the uncertainty is

much lower for the monthly models than for the corresponding

daily models and is much lower in the south than in the north for

the same time scale (Figs. 5b,d,f). Particularly, there is a high

degree of uncertainty in the north, including a complete lack of

stations in this region during the early part of the twentieth

century. As shown in Fig. 6, there is a clear negative relationship

between the relative RMSEs and the number of stations with

observed data: the higher the number of stations is, the smaller is

the model prediction error. Such a relationship can also be seen

in the corresponding RMSEs (not shown). The regional average

uncertainty (RMSEs and relative RMSEs) is much higher in the

early period; it reached the lowest level around 1970 and stayed

at the lowest level during 1970–2005 when the total number

of stations over Canada is over 1000, with over 100 stations in

the north (Figs. 6a,c). Because of a decrease in station numbers,

the uncertainty in the recent decade is comparable to that of the

1950s (Fig. 6c). The uncertainty is also higher in the cold seasons

(DJF and MAM) than in the warm seasons, especially in the

north (Fig. 6a). The regional averages of the relative RMSEs

of the daily models (not shown) lead to similar conclusions.

Because of the complete lack of stations in this region during the

early part of the twentieth century, we have not released gridded

precipitation estimates for the region north of 558Nprior to 1935

and for the region north of 708N prior to 1950.

f. Results of comparison of adjusted and unadjusted
gridded values

As shown in Fig. 7, v2009 (unadjusted) has lower total pre-

cipitation amount and slower increasing trends than v2018

(adjusted). The long-term mean annual total precipitation

averaged over Canada, north Canada, and south Canada is

72.9mm (12.2%), 67.1mm (16.4%), and 81.3mm (9.3%) lower

in v2009 than in v2018, respectively. The 1950–2013 trend of

the regional mean series for Canada, north Canada, and south

Canada is estimated to be 0.33, 0.57, and 0.15mmyr21 in v2009,

respectively, and 1.20, 1.30, and 0.90mmyr21 in v2018.

Maps of long-term (1960–2010) fractional mean differences

between adjusted and unadjusted gridded daily precipitation

amounts for each season are shown in Fig. 8. The overall effect

of the adjustments was to increase precipitation amounts, with

the exception of the snow water equivalent adjustments, which

caused slightly negative net adjustments in some areas of

British Columbia and Alberta. These effects are consistent

with the effect of previously adjusted datasets (e.g., Mekis and

Vincent 2011). In percentage terms, the effect of the adjust-

ments relative to unadjusted gridded values is greatest in

northern Canada, where the effect of the adjustments in winter

was to double the climatological (1960–2010) mean values of

the gridded daily precipitation amounts compared to earlier

unadjusted precipitation grids.

Importantly, these findings reflect those of Wang et al.

(2017), who also reported that the greatest relative increases

due to precipitation adjustments were found in northern

Canada. The comparisons in Wang et al. (2017) present net

effects of greater than 25% in northern Canada and 5%–25%

at most stations in southern Canada. Wang et al. (2017) also

noted that the adjustments resulted in decreased precipitation

totals for some stations in the Rocky Mountains. Our analysis

differs from that ofWang et al. (2017) in that we are comparing

gridded estimates rather than values at specific station loca-

tions and we used the unadjusted daily precipitation grids of

TABLE 5. Seasonal and annual summaries of prediction errors from1950 to 2015 for daily precipitation recorded at the 60 test stations shown in

Fig. 1. The N denotes the number of daily precipitation values; bias denotes the mean difference between the modeled surface values and

observed values, calculated as CV estimate less recorded; and t-statistic values reflect a test of whether the bias is statistically different from zero.

Season N

Avg recorded

precipitation (mmday21) Bias: mmday21 (%)

t statistic for

H0Bias 5 0 (p value) MAE: mmday21 (%)

Spring 166 608 4.46 20.07 (21.6%) 26.4 (,0.0001) 2.3 (51.6%)

Summer 162 410 5.25 20.19 (23.6%) 212.8 (,0.0001) 3.3 (62.9%)

Autumn 179 133 4.88 20.04 (20.8%) 23.6 (,0.0004) 2.5 (51.3%)

Winter 207 933 4.41 0.03 (0.7%) 2.9 (,0.004) 2.2 (49.9%)

Annual 716 084 4.75 20.06 (21.3%) 210.6 (,0.0001) 2.5 (52.7%)

TABLE 6. Seasonal and annual summaries of prediction errors for pentad and monthly precipitation surfaces among a set of 60 test

stations from 1950 to 2015. The N denotes the number of daily precipitation values, bias denotes the mean difference between surface

values and observed values, and t statistics and p values for the null hypothesis denote that the bias equaled zero. The annual value is a

mean of the four seasonal values.

Pentad Monthly

Season N

Bias:

mmday21 (%)

t statistic

(p value)

MAE:

mmday21 (%) N Bias: mm (%)

t statistics

(p value) MAE: mm (%)

Spring 3462 20.16 (28.1%) 217.11 (,0.0001) 0.73 (37.4%) 3454 22.1 (23.6%) 28.04 (,0.0001) 9.8 (20.4%)

Summer 3446 20.19 (27.4%) 221.34 (,0.0001) 1.07 (42.2%) 3439 21.7 (22.1%) 26.32 (,0.0001) 11.2 (17.3%)

Autumn 3446 20.11 (24.5%) 211.23 (,0.0001) 0.84 (33.9%) 3444 20.5 (20.7%) 21.82 (0.07) 10.7 (16.6%)

Winter 3460 20.17 (27.4%) 213.9 (,0.0001) 0.84 (35.7%) 3452 22.9 (24.1%) 28.07 (,0.0001) 12.9 (23.0%)

Annual 3504 20.16 (26.7%) 220.904 (,0.0001) 0.87 (37.4%) 3447 21.8 (22.6%) 27.95 (,0.0001) 11.2 (19.3%)
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FIG. 5. Relative RMSEs (in percentage of the average observed amount over the indicated period) of the (a),(b) monthly; (c),(d)

pentad; and (e),(f) daily precipitation models at the individual stations for (left) 1925–29 and (right) 1985–89. Note the different plotting

scales for monthly, pentad, and daily models.
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Hutchinson et al. (2009; see alsoHopkinson et al. (2011), which

involved both automated and manual stations and thus more

stations than those in the Wang et al. (2017) study.

In summary, the differences between v2009 and v2018 are

primarily results of the adjustments for known problems as

discussed by Wang et al. (2017), although different versions of

ANUSPLIN modeling process may have resulted in small

differences in the results.

4. Usage notes

The current spatial models and gridded datasets can be used

as inputs to a wide variety of ecological, agricultural, hydrological,

and economic applications. Other potential applications include

comparison with precipitation estimates from satellite data (Lin

andWang 2011). Of note is that users typically interested in daily

models may want to consider the possible utility of the pentad

time scale given its higher predictive accuracy.

Other considerations for users could include that unlike

other publicly available gridded adjusted precipitation datasets

(as described in Vincent et al. 2015), our station data have not

been homogenized for the purposes of trend analysis. ECCC’s

Canadian Gridded Temperature and Precipitation Anomalies

(CANGRD) dataset of gridded precipitation anomalies is built

for broadscale trend analysis using around 460 long-term series

of adjusted precipitation records from manual stations (with

station joining). However, ECCC could no longer update this

dataset due to the closure or automation of the majority of

these stations. Currently, ECCC is working on joining manual

and automated station data records to develop a long-term

adjusted and homogenized precipitation dataset for Canada,

which will be used as input to produce a new version of the

CANGRD dataset. ECCC is also working on comparison of

FIG. 6. Time series of regional averages of relative RMSEs of the

ANUSPLIN monthly precipitation models (solid lines; left axis)

and the total number of manual stations with observations (dashed

lines; right axis) for the indicated seasons (ANN for annual).

Values are shown at the middle of the 5-yr period.

FIG. 7. Comparison of regional mean series of annual total pre-

cipitation (mm) derived fromv2009 (unadjusted) and v2018 (adjusted)

of ANUSPLIN-gridded daily precipitation datasets over the common

period 1950–2013 for (a) Canada, (b) north Canada—north of

558N, and (c) south Canada—south of 558N. The regional means

are gridbox-area weighted. The numbers in the parentheses are the

long-term mean values and Mann–Kendall trend estimates of the

corresponding series.
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the CANGRD method with other gridding methods and will

report the results in a separate study. That said, the current

models will be of interest to users that desire 1) actual adjusted

precipitation estimates as opposed to anomalies, 2) precipita-

tion estimates for any location desired, and 3) gridded data at

finer resolutions (2–10 km vs CANGRD’s 50-km resolution).

5. Conclusions

The spatial models of adjusted precipitation reported here

represent a significant improvement over previous products,

making them more appropriate for applications such as water

balance and runoff modeling. The adjustments reflect sub-

stantial effort over the past 20 years to reduce inconsistencies

and inhomogeneity and reduce bias for time series analysis

(Mekis and Hogg 1999; Mekis and Vincent 2011; Wang et al.

2017). More specifically, the adjustments diminish significant

underestimation of the precipitation amount and of the long-term

trend therein (Fig. 7). The adjustment is particularly significant in

the Canadian Arctic, where frequent trace occurrences are com-

mon, which ‘‘makes the accumulation of these miniscule amounts

significant to the annual total precipitation and the water balance

of the region’’ (Mekis and Hogg 1999, p. 60).

Studies prior to Wang et al. (2017) also found that adjust-

ments tended to cause an increase in gauge-measured precip-

itation. Yang et al. (2005) reported an increase of 80%–120%

due to adjustments in winter precipitation. Mekis and Vincent

(2011) concluded that the impact of their adjustments was

largest in the far north where the frequency of trace mea-

surements was greatest. For example, the cumulative impact

of all adjustments was a 48.8% increase at Resolute, Nunavut

(Mekis and Vincent 2011). However, similar to our findings,

Mekis and Vincent (2011) reported adjustment-related pre-

cipitation reductions in western mountainous regions, which

they attributed to the lower adjustment required for snowfall

in this area.

For the most part, these spatial models exhibited error rates

that were in the range of previous studies (e.g., Hutchinson

et al. 2009; McKenney et al. 2006). The performance of the

current daily models compares favorably to those developed

by Hutchinson et al. (2009), which is perhaps surprising given

that the current study includes only manual observations

with enough metadata to make adjustments, compared to

theHutchinson et al. (2009) study, which included all Canadian

stations (automated and manual). We have put considerable

effort into describing model quality. Even though the current

FIG. 8. Maps of long-term (1960–2010) fractional mean differences between adjusted and unadjusted gridded

precipitation amounts for (a) winter, (b) spring, (c) summer, and (d) autumn. The differences were calculated as

(adjusted 2 unadjusted)/unadjusted. Seasonal precipitation values (adjusted and unadjusted) were obtained by

summing daily values.
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adjustments address important measurement issues, measure-

ment error is a source of noise in the spatial models, which

ultimately affects model performance (Mahmood et al. 2017).

The current models exhibit a slight dry bias. With respect to

daily precipitation occurrence, daily models were more likely

to predict an absence of precipitation on days with small amounts

of precipitation. For positive precipitation, the direction of the

bias in positive precipitation surfaces is related to the recorded

precipitation amounts, with wet biases for small precipitation

amounts, and dry biases for recorded precipitation of greater

than 5mm. At the monthly time scale, there is a slight dry bias

as well, particularly for the winter months (average ME

of 24.1%). The bias is greater for large precipitation amounts

in part because neighboring stations not on the coast have

highly variable precipitation amounts particularly during win-

ter storms, making estimates from neighboring stations chal-

lenging. The largest monthly errors occurred in the winter for

stations on the Pacific and Atlantic coasts, suggesting that

adding ocean proximity or distance to large water bodies as an

independent variable could improve estimates. This is a con-

sideration for future research although previous (unpublished)

efforts suggest that station numbers will again be a limiting

challenge.

While these models are now available, users should be

cognizant of the accuracy of spatial models/surfaces for their

particular applications. Mekis and Hogg (1999) suggest 25% as

an upper limit for monthly precipitation error rates. Seasonally

and annually summarized error rates are below this limit and

root GCVs average 25% for monthly models from 1950 to

2015. Greater model errors post 2000 reflect the declining

number of in situ stations (particularly manual stations). The

magnitude of errors was clearly tied to the density of the station

network and ongoing efforts are aimed at adjusting automated

station records in order to increase the number of available

stations. While the current dataset does include some station

networks other than those that have data in the ECCC digital

archive, additional efforts to assess and incorporate other sta-

tion networks (such as agricultural or fire weather monitoring

networks) may also be beneficial—despite the fact that these

networks may not operate during all seasons and may have

different operating standards.

Future work is planned to produce adjusted North American

precipitation gridded datasets. Precipitation station values from

the United States have not been adjusted due to shortcomings

as considered here. As a result, our previous efforts to incor-

porate stations from the United States produced a distinct

border effect. Current work is focused on collaborations to

incorporate adjustments into U.S. station values. Future work

could also focus on integration of satellite data (e.g., Lin and

Wang 2011; Wang and Lin 2015). Successful incorporation of

satellite data requires appropriate calibration from gauges,

including the nontrivial task of generating totals or aggregate

amounts over the desired time scale (e.g., daily, pentad,

monthly). For this reason, Bisselink et al. (2016) conclude that

it is difficult to construct hydrological models in ungauged or

inadequately gauged areas. Another area for future work is

adding appropriately adjusted automatic gauge data to the

input dataset, which will improve station coverage in locations

where manual gauges were replaced with automatic ones. In

the interim, testing will be undertaken on the usefulness of the

pentad time scales for hydrological models.
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