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North american historical monthly 
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We present historical monthly spatial models of temperature and precipitation generated from the 
North american dataset version “j” from the National Oceanic and atmospheric administration’s 
(NOaa’s) National Centres for Environmental Information (NCEI). Monthly values of minimum/
maximum temperature and precipitation for 1901–2016 were modelled for continental United States 
and Canada. Compared to similar spatial models published in 2006 by Natural Resources Canada 
(NRCAN), the current models show less error. The Root Generalized Cross Validation (RTGCV), a 
measure of the predictive error of the surfaces akin to a spatially averaged standard predictive error 
estimate, averaged 0.94 °C for maximum temperature models, 1.3 °C for minimum temperature and 
25.2% for total precipitation. Mean prediction errors for the temperature variables were less than 
0.01 °C, using all stations. In comparison, precipitation models showed a dry bias (compared to recorded 
values) of 0.5 mm or 0.7% of the surface mean. Mean absolute predictive errors for all stations were 
0.7 °C for maximum temperature, 1.02 °C for minimum temperature, and 13.3 mm (19.3% of the surface 
mean) for monthly precipitation.

Background & Summary
Climate data in North America are collected through a system of weather stations distributed unevenly through-
out the continent. Practical uses often call for climate data far away from the meteorological stations. This need 
is filled by “spatially modelled” climate data that estimate climate values from historical weather observation 
networks. These spatial models are important in fields such as hydrology, horticulture, power generation and 
agriculture, among others. In particular, the monthly time step is highly useful. While for some applications, the 
daily timescale is preferable, monthly data sets typically have a lower prediction error, and can provide a useful 
alternative to researchers for whom daily data can quickly become computationally or otherwise unmanageable.

In this paper, we present updated historical monthly models of mean maximum and minimum temperature 
and total precipitation from 1901 to 2016, available at https://doi.org/10.26050/WDCC/CCH_38760851. The 
North American dataset (Northam version “j”)2 was downloaded from the National Oceanic and Atmospheric 
Administration’s (NOAA’s) National Centres for Environmental Information. These data are publicly distributed 
at https://data.nodc.noaa.gov/cgi-bin/iso?id = gov.noaa.ncdc:C00949. We utilized ANUSPLIN3 to produce thin 
plate smoothing spline models of North American historical monthly mean values of daily minimum/maximum 
temperature and total precipitation from 1901 to 2016. McKenney et al.4 published similar models of these var-
iables and ancillary bio-climate indices covering Canada and the United States (see also McKenney et al.5). We 
compare error estimates and surface diagnostics between the two sets of analyses, and report on features associ-
ated with the new models.

The current models are based on a greater number of stations compared to North American monthly histori-
cal spatial models published in 20064. For the 2006 models, relatively few stations were available in the first half of 
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the 20th century; 1,221 stations were available from the U.S. Historical Climatology Network6, with an additional 
46 stations for Alaska, and between 81 and 1742 stations from the Meteorological Service of Canada (from 1901 
to 1993). The number of U.S. stations available in 2006 increased from over 5,000 stations between 1951 to over 
7600 stations between 1971 and 2000.

The RTGCV, a measure of the predictive error akin to a spatially averaged standard predictive error estimate, 
averaged 0.94 °C for maximum temperature, 1.33 °C for minimum temperature, and 25.2% of the surface mean 
for precipitation from 1901 to 2016. RTGCVs for the current models were lower than those from 20064 for maxi-
mum temperature (1.03 °C) and precipitation (>30%), and similar for minimum temperature (1.3 °C). MAEs (all 
stations) averaged 0.71 °C (minimum temperature), 1.02 °C (minimum temperature), and 13.31 mm, or 19.3% of 
the surface mean (precipitation). While differences exist in methodologies between the 2006 and current models, 
MAEs for precipitation were typically more than 30% of observed precipitation for the 2006 models, considerably 
larger than those presented in this study (under 20%).

Much of the improvement in the current models is due to efforts by NOAA and other agencies to rescue and 
restore historical temperature and precipitation records, as well as improved quality control processes. Northam 
“j” records, which have been subjected to a homogenization process, identified observations failing one or more 
quality control tests. The models presented in this paper also benefited from more systematic anomaly detection 
using studentized residuals. Despite these improvements, there are regional variations in model predictive accu-
racy, with coastal (Pacific and Atlantic) stations having the highest levels of predictive error for precipitation, 
particularly in the winter.

Methods
Source data. We used the North American Dataset (“Northam”) from the National Oceanic and Atmospheric 
Administration’s (NOAA’s) National Centres for Environmental Information2. The Northam data are generated 
from the Global Historical Climate Network-Monthly (GHCN-M) dataset7. Northam has been the calibration 
dataset for the U.S. Historical Climate Network (USHCN) since version 2.

We downloaded version “j” of Northam. Northam version “j” values were subjected to a pairwise homogeni-
zation algorithm described in Menne and Williams8. The nature and quality of these homogenized data have been 
analysed in numerous published articles9–11. GHCN-M quality control procedures are documented in Lawrimore 
et al.7. Observations flagged by NOAA through this process as having one or more quality control issues7,12 were 
dropped from our analysis13. A description of the GHCN quality data flags (“QFLAG”s) is provided at https://
www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt.

Figure 1 is a map of temperature and precipitation stations used for the analysis (see also13). Figure 2 illustrates 
the number of stations by variable by country by year. The number of Canadian precipitation station records 
increased from 528 in 1901 to over 2,000 stations from 1971 to 1993. The number of Canadian station records 
then declined to under 1,000 stations by 2012. In contrast, U.S. records increased from just over 3,000 in 1901 to 
over 8,000 from 1950 onwards.

Spatial modeling. We used thin plate smoothing spline algorithms as implemented in ANUSPLIN3. 
ANUSPLIN is a suite of FORTRAN programs under development for more than 25 years for applying thin plate 
spline data smoothing techniques to multi-variate data. ANUSPLIN has been used by researchers around the 
world14–16. Here we only provide a brief description of thin plate splines. Readers are directed to Wahba17 for a 
more detailed description of thin plate splines. Hutchinson18 gives a general model for a thin plate spline function 
f fitted to n data values zi at position xi:

= + ε = …z f(x ) (i 1 n)i i i

in which the xi refer to the independent variables, in this case, longitude, latitude and elevation multiplied by a 
factor of 100. Multiplying elevation by a factor of 100, which reflects the relative horizontal and vertical scales of 
atmospheric dynamics19, has been shown to improve predictive performance as demonstrated by Hutchinson20 
and Johnson et al.15. The εi are mean random errors that represent both measurement error as well as model defi-
ciencies, reflecting localized effects below the resolution of the data network such as cold air drainage.

Precipitation values were subjected to a square root transformation prior to surface fitting. The square root 
transformation reduces skewness of the precipitation variable19, making the application of a fixed level of smooth-
ing more consistent between small and large precipitation values across the data network. Tait et al.21 have con-
firmed that the square root transformation can yield a significant reduction in daily precipitation interpolation 
error. This transformation also makes the detection of data errors more consistent between small and large pre-
cipitation values.

The model solution was obtained by minimizing the generalised cross validation (GCV)4. The GCV is calcu-
lated by implicitly removing each data point and summing a suitably weighted square of the difference of each 
omitted data point from a surface fitted to all remaining data points17.

For large datasets, ANUSPLIN uses a sample of stations, called knots, to construct the thin plate smoothing 
spline surfaces. The use of knots reduces the computational complexity while still making use of every data point 
to calculate the fitted surface3. In this case, approximately 40% of data points were selected as knots.

In the course of modeling, we reviewed the signal, which is a diagnostic metric produced by ANUSPLIN. The 
signal statistic ranges between zero and the number of knots. Hutchinson and Gessler22 suggest that the signal 
should generally be no greater than about half the number of selected data points. Models with a good signal 
provide a balance between data smoothing and exact interpolation, while models with signals approaching the 
number of data points result in a rougher surface that approaches an exact interpolation of the source data. Exact 
interpolations reflect a model that is less robust, particularly in regions with few stations.

https://doi.org/10.1038/s41597-020-00737-2
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During the course of model development, root generalized cross validation (RTGCV) values in the log files 
output by ANUSPLIN’s SPLINE program were also reviewed. The RTGCV, the square root of the GCV described 
above, is an estimate of predictive standard error. Of note, the RTGCV is a conservative measure of standard 
error, because it includes data error as estimated by the ANUSPLIN program3.

ANUSPLIN flags data values that exceed a user-set threshold for studentized residuals, greatly improving the 
analyst’s ability to systematically detect anomalous recorded values and potential errors. For the current analysis, 
we examined flagged cases with a studentized residual of greater than 3.71. The probability of exceedance corre-
sponds to a student’s t distribution23. Following a comparison of flagged values against observations from neigh-
bouring stations, we removed cases with studentized residuals exceeding 3.71; 0.05% of stations for minimum 
temperature, 0.15% for maximum temperature, and 0.17% for precipitation13. While these observations were not 
used to develop the gridded estimates, they were still retained to assess the quality of model predictions.

The CV estimates taken from SPLINE’s output point cross validation file were used to calculate the mean error 
(ME) statistics presented in this study, calculated as the cross-validation estimate less recorded station values. 
In addition, the mean absolute error (MAE) was calculated for a set of 160 stations13 for January, April, July, and 
October at 5-year intervals from 1905 to 2015. This set of stations was selected to reflect a representative and high 
quality sample compared to using all stations, which would under-represent northern stations. Please see https://
www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt for a list of all GHCN stations (including those 
outside of North America) and their metadata.

a)

b)

Fig. 1 Map of Northam “j” temperature (a) and precipitation (b) stations used for the current models (Mexican 
stations were not covered by the digital elevation model).
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As a final summary, MEs and MAEs were calculated for all stations by season (winter: December, January, and 
February; spring: March, April, and May; summer: June, July, and August; and autumn: September, October, and 
November). SAS software, Version 9.4 of the SAS System for Windows, was used to calculate differences between 
the predicted and recorded values, as well as to conduct correlation (PROC CORR) analyses on MEs and MAEs 
for the set of 160 test stations. Error maps were created in ArcGIS24.

Data Records
Monthly grids of mean maximum/minimum temperature, and total precipitation were generated between 1901 
and 2016 using a 60 arc-second (approximately 2 km) Digital Elevation Model covering the continental US and 
Canada are archived at the World Data Center for Climate (WDCC) at DKRZ1. Post- 2016 grids are regularly 
published to the same DOI, and may also be obtained by contacting the corresponding author.

These monthly historical spatial models cover the geographic area from −168° to −52° longitude, and from 
25° to 85° latitude from 1950 to 2016. Because of the small number of northern weather stations from 1901 to 
1949, monthly historical models over this time cover a reduced area (−168° to −52° longitude, and from 25° to 
60° latitude).

Technical Validation
Table 1 summarizes RTGCV statistics output from ANUSPLIN’s log files for monthly mean maximum/minimum 
temperature and total precipitation for current models as well as for those published in 20064. RTGCVs for the 
current models are smaller for maximum temperature (0.94 °C) and precipitation (25.2% of the surface mean) 
compared to the 2006 models (1.03 °C and >30% respectively). The RTGCV for minimum temperature averaged 
1.3 °C, similar to the 2006 models.
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Fig. 2 Number of temperature and precipitation stations by year in Canada and in the United States.

Month

Northam “j” Models 2006 Models Northam “j” Models 2006 Models Northam “j” Models 2006 Models

Maximum temperature (°C) Minimum temperature (°C) Precipitation (% of surface mean)

January 0.96 1.01 1.40 1.41 25.7% 29.7%

February 0.93 1.00 1.37 1.40 26.3% 30.5%

March 0.91 0.99 1.25 1.24 24.9% 29.5%

April 0.92 1.00 1.19 1.15 24.8% 29.3%

May 0.95 1.04 1.22 1.17 25.0% 30.2%

June 0.99 1.11 1.29 1.21 26.9% 33.1%

July 1.03 1.14 1.36 1.27 29.3% 36.8%

August 1.00 1.12 1.40 1.32 29.7% 37.0%

September 0.94 1.05 1.43 1.37 27.9% 33.6%

October 0.88 0.96 1.40 1.40 26.1% 31.3%

November 0.89 0.93 1.34 1.34 24.7% 29.1%

December 0.93 0.97 1.36 1.36 24.9% 29.2%

Total 0.94 1.03 1.33 1.30 25.2% 31.6%

Table 1. Average RT GCV for monthly historical models by month based on Northam “j” (1901–2016) 
compared to 2006 models (McKenney et al., 2006; 1901–2000).

https://doi.org/10.1038/s41597-020-00737-2
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The average RTGCV was 0.94 °C for maximum temperature, lower than that for minimum temperature 
(1.33 °C). The larger errors for minimum temperature are consistent with previous work and reflect shorter length 
scales and larger observational/representativeness errors for this variable compared to maximum temperatures. 
As noted by Hutchinson et al.18, maximum temperature patterns are strongly controlled by ground elevation 
intersecting linear atmospheric lapse rates but minimum temperature patterns are controlled by additional pro-
cesses, including cold air drainage which inverts local lapse rates, particularly in winter months25,26. Errors for 
maximum temperature are slightly larger in mid-summer, reflecting the greater variability of the higher temper-
ature values19.

RTGCVs for minimum temperature ranged from 1.19 °C in April to 1.4 °C in October. RTGCVs for maximum 
temperature were largest in July (1.03 °C) and lowest in October (0.88 °C). For precipitation, the RTGCVs were 
largest in the summer (July and August), similar to the pattern reported by McKenney et al.4 This pattern reflects 
greater spatial complexity of convective rainfall compared to frontal precipitation occurring in winter months. 
Consistent with Hutchinson et al.19, we found lowest predictive errors in autumn for maximum temperature and 
precipitation, “consistent with the large well-organized synoptic systems that prevail in this season” (p. 725).

Fig. 3 Spatial variation in errors at 160 weather stations for maximum temperature (°C). MEs were calculated 
by subtracting actual recorded values from estimates from 1950 to 2015 (every five years) for (a) January and (b) 
July.

https://doi.org/10.1038/s41597-020-00737-2


6Scientific Data |           (2020) 7:411  | https://doi.org/10.1038/s41597-020-00737-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

The signal to number of knots ratio for the current models ranged between 47.0% and 64.7% for minimum 
temperature, and 39.5% to 60.0% for maximum temperature. For total monthly precipitation, the signal to knots 
ratio showed a wider range from 26.4% to 62.9%, but no problematic surfaces, as defined by Hutchinson & 
Gessler13,22.

Figures 3 to 5 illustrate the MEs (Estimated less Recorded) and MAEs for January, April, July and October for 
160 test stations every five years from 1905 to 2015. Maximum temperature model errors were typically between 
–3.0° and 3.0 °C (Fig. 3). Minimum temperature predictive errors were larger than those for maximum temper-
ature (Fig. 4). Model errors for total monthly precipitation (Fig. 5) were largest at the coasts in January. July pre-
cipitation errors were substantially smaller, falling mostly between ±10 mm as compared to ±50 mm for January 
precipitation errors. Larger model errors were evident along the Pacific and Atlantic coasts for January precipita-
tion, linked to heavy and highly variable winter precipitation events.

Across the entire dataset, the MAE for maximum temperature was 0.71 °C, compared to 1.02 °C for minimum 
temperature. MAEs were largest in summer for maximum temperature, and in winter for minimum temperature 
as shown in Table 2. MAEs for precipitation were largest in the summer (21% of the surface mean) compared to 

Fig. 4 Spatial variation in errors at 160 weather stations for minimum temperature (°C). MEs were calculated 
by subtracting actual recorded values from estimates from 1950 to 2015 (every five years) for (a) January and (b) 
July.

https://doi.org/10.1038/s41597-020-00737-2
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spring (17.9%). The spatial models exhibited a negative (or dry) bias relative to recorded values for precipitation 
of 0.5 mm or 0.7% of the surface mean. In comparison, MEs for temperature variables were less than 0.01 °C.

Figure 6 illustrates the MEs (Estimated minus Recorded) and MAEs for January, April, July and October for 
160 test stations every five years from 1905 to 2015. The MEs for maximum temperature models ranged between 
0.0° and 0.3 °C (Fig. 5a), and from −0.3° to 0.1 °C for minimum temperature (Fig. 5b). The MAEs varied by year 
from 0.9° to 1.2 °C for minimum temperature, and from 0.5° to 0.9 °C for maximum temperature. MAEs showed a 
significant declining trend over time for April (maximum temperature), July (minimum temperature, maximum 
temperature), and October (maximum temperature), as shown in Table 3, suggesting an improvement in the 
quality of predictions over time. Temperature MEs were not significantly related to year (Table 4).
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Fig. 5 Spatial variation in errors at 160 weather stations for total precipitation (mm). MEs were calculated by 
subtracting actual recorded values from estimates from 1950 to 2015 (every five years) for (a) January and (b) 
July.
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For precipitation, the MEs depicted in Fig. 6 ranged between −7.8 mm and 2.4 mm, or 9.7% to 19.0% of the 
precipitation surface mean. Precipitation MAEs (expressed as a percentage of the recorded value) were not signif-
icantly correlated with year (Table 3; see also https://doi.org/10.17605/OSF.IO/2DAK5). Precipitation MEs were 

Season

Maximum temperature Minimum temperature Precipitation

Number of 
Observations

ME 
(°C)

MAE 
(°C)

Number of 
Observations ME (°C)

MAE 
(°C)

Number of 
Observations ME (mm)

MAE in mm 
(%)

Spring 5,606,375 0.007 0.71 5,548,625 0.0002 0.94 7,562,559 −0.44 (−0.6%) 12.57 (17.9%)

Summer 5,610,784 0.005 0.75 5,549,952 −0.003 1.01 7,572,416 −0.51 (−0.7%) 15.67 (21.0%)

Autumn 5,610,312 0.005 0.68 5,554,608 −0.004 1.05 7,570,562 −0.54 (−0.8%) 12.85 (19.3%)

Winter 5,602,647 0.002 0.74 5,548,834 −0.003 1.07 7,556,832 −0.52 (−0.8%) 12.04 (18.6%)

Total 22,430,118 0.005 0.72 22,202,019 −0.002 1.02 30,262,369 −0.50 (−0.7%) 13.31 (19.3%)

Table 2. Average cross-validation MAEs and MEs for the entire dataset by season and overall. Average MAEs/
MEs were calculated by year and then averaged from 1901–2016. Total number of observations represents the 
sum of observations in each season or year (total).
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Fig. 6 Temporal variation in mean absolute error (left axis: upper set of curves on each graph) and bias (right 
axis; lower set of curves on each graph) for a set of 160 stations for (a) maximum temperature, (b) minimum 
temperature, and (c) precipitation. Error rates for January, April, July and October at five year intervals from 
1905 to 2015 are plotted separately.
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not significantly correlated with year (Table 4), with the exception of July MEs which showed a significant declin-
ing trend over time. Cross-validation estimates and recorded values for the 160 test stations (every five years from 
1905 to 2015) can be obtained from MacDonald13.

McKenney et al.4 assessed the 2006 models using a representative withheld sample of between 100 and 200 
stations (increasing over the course of the century), which were not used in the creation of the spatial models. By 
comparison, the current study compared CV estimates to recorded values for 160 stations selected to be more 
representative than the full sample. We used a leave-one-out approach as opposed to withholding a set of stations 
simultaneously. We therefore urge some caution in directly comparing the MEs and MAEs between the two stud-
ies due to these methodological differences.

Usage Notes
The monthly historical spatial models presented in this manuscript will be of interest to researchers and prac-
titioners that need historical estimates of temperature or precipitation variables for points or regions in North 
America. These temperature and precipitation estimates are central inputs to species richness27, plant hardiness28, 
forest productivity29, forest cover change30, carbon31,32, water budget33, and species distribution models34, as well 
as in determining representativeness of different locations for conservation research35. Further, models based on 
gauge data are also used as inputs to satellite-based precipitation estimates36.

We note there are regional limitations associated with spatial models, especially for precipitation-related var-
iables. Model predictions of precipitation along the coast were associated with larger errors, suggesting that a 
distance to coast independent variable might improve these estimates. For applications that exclusively include 
coastal areas of North America, more specialized gridded products may be more appropriate. However we note 
the paucity of station observations in some regions to develop/calibrate such models is especially problematic in 
Canada.

Code availability
SAS code used for data preparation and analysis has been published at Open Science Framework under the 
same name as the publication (https://doi.org/10.17605/OSF.IO/2DAK5)37. SAS code and output for the residual 
analysis can be accessed from this DOI.
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