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Abstract

Emerald ash borer (EAB), a wood‐boring insect na-

tive to Asia, was discovered near Detroit in 2002 and

has spread and killed millions of ash trees throughout

the eastern United States and Canada. EAB causes

severe damage in urban areas where it kills high‐
value ash trees that shade streets, homes, and

parks and costs homeowners and local governments

millions of dollars for treatment, removal, and re-

placement of infested trees. We present a multistage,

stochastic, mixed‐integer programming model to help

decision‐makers maximize the public benefits of

preserving healthy ash trees in an urban environ-

ment. The model allocates resources to surveillance

of the ash population and subsequent treatment and

removal of infested trees over time. We explore the

multistage dynamics of an EAB outbreak with a

dispersal mechanism and apply the optimization

model to explore surveillance, treatment, and re-

moval options to manage an EAB outbreak in

Winnipeg, a city of Manitoba, Canada.

Recommendation to Resource Managers

• Our approach demonstrates that timely detection

and early response are critical factors for max-

imizing the number of healthy trees in urban areas

affected by the pest outbreak.
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• Treatment of the infested trees is most effective

when done at the earliest stage of infestation.

Treating asymptomatic trees at the earliest stages of

infestation provides higher net benefits than tree

removal or no‐treatment options.

• Our analysis suggests the use of branch sampling

as a more accurate method than the use of sticky

traps to detect the infested asymptomatic trees,

which enables treating and removing more infested

trees at the early stages of infestation.

• Our results also emphasize the importance of al-

locating a sufficient budget for tree removal to

manage emerald ash borer infestations in urban

environments. Tree removal becomes a less useful

option in small‐budget solutions where the optimal

policy is to spend most of the budget on treatments.

KEYWORDS

Canada, emerald ash borer, mixed integer programming, stochastic

optimization, surveillance, uncertainty

1 | INTRODUCTION

Invasive species are plant, animal, or pest species that are nonnative to a location, and have the
tendency to overspread and cause possible damage to the environment, human health, and
economy (Ehrenfeld, 2010). The harmful effects of invasive species on agricultural, aquatic,
forests, and ecosystems have been studied extensively (DeSantis & Moser, 2013; Gallardo,
Clavero, Sánchez, & Vilà, 2016; Koenig, Liebhold, Bonter, Hochachka, & Dickinson, 2013; Paini
et al., 2016). The estimated total economic cost from invasive species in the United States alone
was expected to exceed $120 billion over 85 years (Pimentel, Zuniga, & Morrison, 2005). The
extent of the damage may be an underestimate because many losses caused by invasive species
(such as loss of biodiversity, indirect impacts on human health, and loss of ecosystem services)
are difficult to estimate in monetary terms (Pejchar & Mooney, 2009).

Management of invasive pests requires substantial resources to locate and control the estab-
lished pest populations. Once the invader is established in a novel ecosystem, two sets of decisions
need to be made on how to survey the area and how to manage the outbreak. By increasing
surveillance to detect invasive species, managers may increase their chances of finding a species
early at lower population sizes, lessening the extent of damages, and making subsequent control
potentially less expensive and more effective. However, detecting invasive species requires costly
surveillance, which limits the manager's options to control the infestation when budgets are
limited (Mehta, Haight, Homans, Polasky, & Venette, 2007). Optimization‐based methods have
been widely used to assist with cost‐effective resource allocation and address the trade‐offs
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between incurring the costs of damage from invasions versus the costs to manage the outbreaks
(Büyüktahtakın & Haight, 2018; Büyüktahtakın, des Bordes, & Kıbış, 2018; Büyüktahtakın, Feng,
Frisvold, Szidarovszky, & Olsson, 2011; Epanchin‐Niell, Haight, Berec, Kean, & Liebhold, 2012;
Hof, 1998; Kovacs, Haight, Mercader, & McCullough, 2014; Mehta et al., 2007; Onal, Akhundov,
Büyüktahtakın, Smith, & Houseman, 2019).

In this paper, we present a linear integer programming model that optimizes surveillance and
management decisions for controlling a pest outbreak in an urban environment. The model is
formulated as a multistage stochastic mixed‐integer programming problem (M‐SMIP) based on
the work of Kıbış et al. (2020). We applied the model to assess the options to manage the
infestation of emerald ash borer (EAB) in Winnipeg, a city of Manitoba, Canada. The insect poses
a significant threat to North American ash species (Haack & Petrice, 2003; Herms & McCul-
lough, 2014) and has already caused major damage to urban and natural forests in the eastern and
central United States and Canada (Kovacs et al., 2010, 2014; McKenney et al., 2012). Long‐distance
EAB spread has been associated with human activities, primarily with commercial and passenger
vehicles that could potentially move firewood or other infested materials (Haack, 2006; Haack,
Hérard, Sun, & Turgeon, 2010; Koch, Yemshanov, Colunga‐Garcia, Magarey, & Smith, 2011;
Kovacs et al., 2010; Yemshanov, Koch, & Ducey, 2015). There is also evidence that the pest can
hitchhike on vehicles (Buck & Marshall, 2008). Timely detection of new EAB infestations is
difficult because insect damage is not immediately visible, and as a result, new detections usually
indicate the presence of large, established populations that are difficult to control (McCullough,
Poland, Anulewicz, & Cappaert, 2009; Ryall, Fidgen, & Turgeon, 2011).

Major economic damage from EAB infestations occurs in cities and populated places where
high‐value ash trees grow along streets or in parks (Poland & McCullough, 2006). The total cost of
the EAB outbreak to property owners and local governments is estimated to be $10.7 billion in the
last decade in the United States (Kovacs et al., 2010) and $524 million over a 30‐year period in
Canada (McKenney et al., 2012). Since its discovery, much work has been done to develop
management strategies that reduce ash mortality from EAB infestations. Herms and McCullough
(2014) proposed various management activities, including surveillance to locate EAB populations
at early stages of infestation, treatment of trees with insecticide to protect high‐value trees and
reduce larval populations, and removal of infested ash trees to slow EAB spread.

Our objective is to determine the optimal location and intensity of ash surveillance, treatment,
and removal each year (period) over a 5‐year horizon. We consider a budget‐constrained problem that
maximizes the total benefits of maintaining healthy ash trees in an urban area over a 5‐year period
minus the penalty associated with the presence of the infested trees. We separate the landscape into
1 km2 management units (sites). For each unit, we know the number of ash trees and build a scenario
tree that depicts a set of possible surveillance and management decisions and accounts for the
uncertainty associated with EAB population growth and spread. The scenario tree includes two
decisions in each period. The first decision is whether or not surveillance is applied, and the second
decision is on the intensity of treatment and removal of the infested trees, depending on the outcome
of surveillance. The uncertainty about the tree status after surveillance is depicted with a set of
possible infestation outcomes and associated probabilities before a management decision is made. At
the beginning of the planning horizon, we describe the ash population in each unit by the number of
ash trees at different stages of infestation based on prior knowledge about the infestation. The model
then projects changes in the ash population each year based on assumptions about EAB spread
within and between units. If surveillance is undertaken, the model estimates the number of infested
trees and makes decisions to remove or treat the infested ash trees and then updates the probabilities
associated with the expected levels of infestation for the next period.
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1.1 | Literature review

Optimization models have been widely used to assist with the surveillance and management of
invasive species populations (Baxter & Possingham, 2011; Epanchin‐Niell et al., 2012; Mehta
et al., 2007). Several studies considered pest control measures that include the removal of
infested or susceptible host organisms and applying chemical or biological control treatments to
eradicate or slow the invasion (Büyüktahtakın & Haight, 2018; Büyüktahtakın et al., 2011;
Hof, 1998). Some studies addressed pest surveillance and control under the assumption of
uncertain spread (Horie, Haight, Homans, & Venette, 2013; Yemshanov et al., 2017). These
models considered a time domain with only two periods. Onal et al. (2019) present a multi-
period simulation‐optimization framework to find the optimal search path for locating and
controlling the infestation of a biological invader. Kıbış et al. (2020) addressed the problem of
joint optimization of surveillance and control decisions with a multistage stochastic mixed‐
integer programming (MSS‐MIP) formulation that extended the time horizon to five stages and
applied that model to the management of EAB in Burnsville, Minnesota, USA. MSS‐MIP
combines the complexity of stochastic programming with a mixed‐integer programming model
and represents an NP‐hard combinatorial problem. Recent developments of multistage MIP
solving techniques have been limited (Birge & Louveaux, 2011). Decomposition algorithms are
the mainstream methods to tackle two‐stage stochastic MIPs. The nonconvex region formed in
multistage MIP problems cannot be tackled using direct decomposition. Most solution ap-
proaches are based on stage‐wise (resource‐directive) or scenario‐based (price‐directive) de-
composition. Recent studies in the past decades integrated solution approaches of Stochastic
Programming (SP) with discrete optimization methods (IP). For example, Bender's decom-
position is applicable to a class of two‐stage stochastic problems where the first‐stage decisions
are mixed‐integer, and the recourse decisions are found by solving the linear programming (LP)
models (Sen, 2005). Most studies of MSS‐MIP problems decomposed them into multiple sce-
narios and treated each scenario as a separate problem. For example, the study of CarøE and
Schultz (1999) treated the solution of the Lagrangian dual as a lower bound of the original
problem by relaxing the nonanticipative constraints. Heuristic algorithms were used to provide
an upper bound on the dual solution, and branch and bound was used to find a feasible integer
solution. Scenario‐based decomposition approaches, such as Lagrangian and Dantzig‐Wolfe
have been shown to be effective in different multistage stochastic integer problems (Lulli &
Sen, 2004; Nowak & Römisch, 2000).

In our multistage model, the number of variables, constraints, and scenarios increases
exponentially for each additional time period. Therefore, to improve on the solution time and
memory, we apply cutting planes and a preprocessing algorithm adapted from Kıbış et al.
(2020). These cutting planes helped improve the solution time by a factor of 10+ compared to
the standard approach without using cutting planes.

1.2 | Key contributions of the paper

We extend the MSS‐MIP formulation of Kıbış et al. (2020) to a study area covering 472 km2 in
the city of Winnipeg, MB, Canada. Our model accounts for the uncertainty about the infestation
levels at each site, which is partially resolved by the surveillance decisions.

Our model differs from the study of Kıbış et al. (2020) in the following ways. We depict the
temporal dynamics of the infested trees with four infestation levels compared to a five‐level
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model in Kıbış et al. (2020). The first level represents healthy trees, the second level includes
asymptomatic infested trees, the third level includes infested trees with visible signs of in-
festation, and the fourth level represents dead trees.

For each year of the planning horizon, we compute realization probabilities of possible ash
infestation outcomes that may be observed via surveillance. Compared to the formulation in
Kıbış et al. (2020) that used constant realization probabilities, our probabilities are time‐
dependent. We present a new heuristic algorithm that dynamically updates the probabilities of
the uncertain infestation outcomes based on the outcomes of the previous survey.

To account for EAB spread, we apply a distance‐dependent estimation of spread prob-
abilities at four 1‐km distance classes from the infested sites, as opposed to the 1‐level spread
considered in Kıbış et al. (2020). This spread model captures the short‐range spread of EAB in
urban environments, as suggested by records from previous EAB surveys in Twin Cities,
Minnesota (Osthus, 2017).

Based on the experiences from previous EAB survey campaigns, we assume that only a
fraction of the trees can be inspected at a site due to cost and personnel constraints. To account
for the incomplete survey, we used a surveillance efficiency parameter to depict the percentage
of infested trees detected after inspecting a proportion of host trees. The new surveillance‐
efficiency parameter introduced in our study compensates for the uncertainty of the surveil-
lance outcomes.

We also compared two standard EAB survey methods: applying branch sampling with
debarking to detect EAB galleries and placing sticky traps baited with EAB pheromone and ash
volatiles to capture EAB adults. We explore the trade‐off between the surveillance efficiency
and its cost for each survey method over a 5‐year planning period.

2 | OPTIMIZATION MODEL

In this section, we present a revised version of the multistage stochastic mixed‐integer for-
mulation originally proposed by Kıbış et al. (2020) for the optimal surveillance and control of
EAB. This modified formulation improves over the former one by addressing critical issues
regarding the surveillance uncertainty as well as the dynamic probabilities of uncertain sur-
veillance outcomes.

2.1 | Problem definition

We formulate the objective of the EAB surveillance and control problem as maximizing the
number of uninfested, healthy ash trees in a landscape at the end of the planning period
subject to an upper bound on the budget for surveillance and control. Delimiting surveys
typically divide the area of concern into a grid of survey sites where a sample of ash trees is
inspected at each site. The ash population in each site is divided into healthy trees that are
susceptible to infestation and infested trees belonging to three classes (levels): asympto-
matic trees, symptomatic trees, and dead trees. Infested trees are the source of EAB spread
to susceptible trees in the same site and surrounding sites. Each year, infested trees tran-
sition to the next, more severe infestation level, and susceptible trees may become infested
through EAB spread within and between neighboring sites. Asymptomatic trees represent
the lowest infestation level 1, followed by symptomatic trees with visible signs of infestation
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(level 2), and if no treatment or removal is applied, trees die (level 3) Figure 1. We assume
that decisions to treat the infested trees can be only effective when applied to asymptomatic
trees while symptomatic and dead trees may be removed. A time stage in this paper refers to
a time period in the stochastic programming model. We set each time period to 1 year
because EAB generally has a 1‐year life cycle, and ash trees may die after 3–4 years of heavy
infestation, although it is difficult to determine the time of first infestation (McCullough &
Katovich, 2004). The visual ash tree canopy condition assessment data collected by Flower,
Knight, Rebbeck, and Gonzalez‐Meler (2013) shows that ash trees progress from one level to
the next within 1 year on average. Recent evidence suggests that EAB may switch to a 2‐year
life cycle in a colder climate (Cappaert, McCullough, Poland, & Siegert, 2005) and in par-
ticular, in Winnipeg, so our current assumption depicts a pessimistic view of infestation
outcomes.

The number of healthy trees that may be infested at a survey site is uncertain, which
requires using a probabilistic depiction of spread. In our case, the number of newly infested
trees at a site is a random variable that depends on the number of EAB adults produced at a
given site and neighboring sites. Surveillance decisions are critical because they provide
information about the infestation, which allows making decisions about ash treatment and
removal. Due to the high cost of surveillance, pest surveys limit inspections to a small
sample of trees. A partial observation provides limited knowledge about the actual number
and location of the infested trees. Because only a portion of all trees is inspected, the actual
number of the infested trees after surveillance is unknown, and treatment and removal
measures are applied to both infested and healthy trees. We address this uncertainty with a
surveillance efficiency parameter that denotes the percentage of infested trees detected
after surveillance and serves as a multiplier to adjust the number of detected infested trees
that can be treated or removed and update the number of remaining infested trees at a
surveyed site.

The progression of tree infestation and an associated sequence of management deci-
sions is shown in Figure 2. In the first period, the actual level of infestation at a survey site
is unknown, and management decisions can only be made in the next period, after the site
is surveyed. If asymptomatic trees (infestation level 1) are treated in the second period,
they become immune to infestation and regain the susceptible tree status in period three.
Symptomatic and dead trees at infestation levels 2 and 3 can only be removed. In the third

FIGURE 1 Transitions between the infestation levels
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period, no surveillance is applied, and due to the uncertainty in infestation spread, the
numbers of susceptible trees and trees at infestation level 1 are expectations based on the
outcomes of the survey in the previous period. In period four, no survey is applied, and we
only have partial information from period three. In period five, surveillance is applied,
which provides an estimated number of trees at each infestation level and allows making
decisions on treatment and removal.

2.2 | Scenario tree

Our scenario tree depicts the sequences of possible surveillance decisions and the stochastic
infestation outcomes over time and is based on the model of Kıbış et al. (2020). Full details
are provided in Appendix A; here we provide only a general description. The scenario
tree starts in period one and at each branching progresses through time based on realiza-
tions of the uncertain levels of infestation (see example in Figure 3). Two types of nodes in
the scenario tree indicate the surveillance (black circles) and no surveillance conditions

FIGURE 2 An example transition diagram of the ash tree population with over a five‐period planning
horizon under a particular surveillance regime (i.e., surveys in years 2 and 5 and no surveillance in years 1, 3,
and 4). X‐axis denotes time periods and y‐axis represents tree infestation levels. Node S denotes the susceptible
trees, and nodes 1, 2, and 3 denote the infestation levels 1–3 (asymptomatic, symptomatic, and dead trees). In
each stage, uncolored nodes represent the infestation levels for which the actual number of infested trees is
unknown because no surveillance was made. Light shaded (green) nodes depict the detected susceptible trees;
dark‐shaded (red) nodes depict trees at infestation levels 1–3 after surveillance, and black nodes represent the
infested dead trees that must be removed. Dashed green lines show the number of treated trees that become
temporarily immune to an infestation and are moved to a pool of susceptible trees; dotted lines show the
transition in tree infestation level from one period to another; and bold arrows show infested dead trees that are
removed (Adapted from Kıbış et al., 2020)
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(empty circles). Square nodes represent treatment or removal decisions. Given the un-
certainty about EAB spread, each decision has two possible outcomes: high or low reali-
zation of the uncertain level of infestation. The outcome without surveillance (identified by
empty circles) yields the expected value of the uncertain infestation level. The notation on
each arc, pt

H , pt
L, and pt

M , stands for the probability of detecting the infestation at a high (H)
or low (L) levels, or the expected infestation level (M) in the absence of surveillance in
period t , producing 3t scenarios. We assume a medium infestation level as an expected
outcome without surveillance and use this level to update the number of infested trees at a
given site without surveillance. We obtain an expected level of infestation by explicitly
formulating a 4‐km radius spread of infestation and spread probabilities from the infested
site in the mathematical model. Thus, pt

M represents this expected infestation level, while
pt
H and pt

L represent an outcome of surveillance, which is higher or lower than the expected
value, respectively. Terms π π− t1 3 denote the conditional probabilities of a scenario
ω ω, [1, 2, …, 3 ]t∈ . This probability is calculated by multiplying the probability of each
realization through the whole scenario path and normalizing it over all scenarios, so the
sum of the probabilities over all scenarios is equal to 1. An example of a two‐stage scenario
tree is depicted in Appendix B.

FIGURE 3 Multistage scenario tree. Terms pt
H and pt

L denote the realization probabilities of high (H) and
low (L) levels of infestation after surveillance; pt

M denotes a default realization of medium infestation level (M)
without surveillance. Black circles represent nodes with decisions after the surveillance; white circles depict
nodes without surveillance; arcs leaving black and white circles depict possible realizations of the estimated
beliefs about the number of susceptible and infested trees; red arrows depict realizations of high infestation
levels; green arrows depict realizations of low infestation levels; yellow arrows depict anticipated levels of
infestation without surveillance based on the initial belief. Squares Dt s, depict treatment and removal decisions
(Adapted from Kıbış et al., 2020)
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2.3 | Algorithm for scenario tree probability

We computed the expected values of the infestation probabilities for each period in the scenario
tree using the uncertain outcomes of spread. Given that the surveillance outcomes are un-
known, we assumed equal probabilities for realizations of high and low infestation levels in
time period one. We then updated the realization probabilities for future periods based on the
outcomes of the surveys done in previous periods. For each scenario in a multistage planning
problem, we have calculated the probabilities of infestation with a new heuristic algorithm. This
algorithm assigns higher probabilities to reoccurring events and assumes that realizations of
infestation outcomes are time‐dependent. For example, if a particular realization is observed in
time period t , the likelihood of having the same realization in time period t + 1 is higher.
Appendix C, Algorithm C1, describes the heuristic algorithm and shows a probability calcu-
lation example for the three‐stage scenario tree depicted in Figure 4.

FIGURE 4 Estimating the probabilities of the scenario occurrence for a 3‐period example using Algorithm
C1. Bold red lines show realizations of high infestation level, dashed green lines show realizations of low
infestation level after surveillance, and dotted black lines show realizations of the expected medium infestation
level without surveillance. The numbers between lines show the probabilities of a scenario realizations. π π− t1 3

depict the probabilities for each scenario ω
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2.4 | Notation

Sets and indices
Γ Set of all sites, Γ = {1, 2, …, Γ̄}

K Set of infestation levels, K = {1, 2, 3}

T Set of time periods, T T= {1, …, ¯}

Ω Set of scenarios in a scenario tree, Ω = {1, …, Ω̄}

χ Set of neighboring layers that a spread can happen from a site i; each layer represents a
distance dependent neighbor of site i with similar spread rates

i Index for site where i Γ∈

Θi
ι Set of neighboring sites of site i at layer ι

k Index for infestation level where k K∈

t Index for time period where t T∈

j Index for neighboring sites of site i at layer ι where j Θi
ι∈

ω Index for a scenario where ω Ω∈

ι Index for neighboring layer where ι χ∈

Parameters
πω Probability for scenario ω
c1 Cost of surveying (inspecting) a tree
c2 Cost of treatment
c3 Cost of removal
α Monetary value of an uninfested tree
ϑk Penalty value of each infested tree at infestation level k
rk Impact rate of each infested tree at infestation level k within a site i, that is, number of

new infestations per infested tree at level k
υ Surveillance efficiency, that is, percent of infested trees that are identified correctly
τ Discount rate
δt Discount factor at time t which is equal to

( )τ
1

1 +
t

Ψω Budget for scenario ω
θk
ι Infestation impact of kth‐level infested trees in neighboring layer ι belonging to site j

κ Maximum number of trees surveyed in each site i
γi Number of surveyed trees in site i under surveillance at time t , that is, γ min N κ= ( , )i iω

t

pj i
ι
→ Probability of infestation spread from site j to i at neighboring layer ι

βikω
t Percentage change in belief of infestation after surveillance for site i, infestation level k,

at time t , for scenario ω
N̄i Initial number of tree population at site i
Īik Initial number of infested tree population at each infestation level k, at site i

Binary decision parameters in decision scenario tree

x
t ω

=
1 if surveillance is applied at time , for scenario

0 otherwise
ω
t

⎧⎨⎩
Decision variables
Niω
t Total number of trees at site i, at time t , for scenario ω

Siω
t Number of susceptible trees at site i, at time t , for scenario ω
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Iikω
t͠ Believed number of infested trees at site i, at time t , for infestation level k, for scenario

ω before surveillance
I ⃜ikω
t Transition number of infested trees at site i, at time t , at infestation level k, for scenario

ω after surveillance without considering total tree population
Iikω
t Estimated number of infested trees at site i, at time t , at infestation level k, for scenario

ω after surveillance with considering total tree population
Vikω
t Number of treated trees at site i, at time t , at infestation level k, for scenario ω

Rikω
t Number of removed trees at site i, at time t , at infestation level k, for scenario ω

Hiω
t Number of trees surveyed at site i, at time t for scenario ω

Qikω
t Number of infested trees remaining after treatment and removal at site i, at time t , at

infestation level k, for scenario ω

Linearization variables

u
k i t

=
1, if transition population is assigned to infestation level , at site at time ,

0, otherwise.
ikω
t

⎧⎨⎩

2.5 | Mathematical model

Max π δ αS I− ϑ .
ω

ω

t T

t

i

iω
t

k

n

k ikω
t

Ω Γ =1

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟∑ ∑ ∑ ∑

∈ ∈ ∈

(1)

Subject to:
Initial total population

N N ω i= ¯ , .iω i
1 ∀ (2)

Initial belief of infestation

I I ω i k= ¯ , , .ikω ik
1

∀͠ (3)

Population constraint

N N V R ω i t= − − , , &, = 1,iω
t

iω
t

k

n

ikω
t

k

n

ikω
t+1

=1

−2

=1

∑ ∑ ∀ (4)

N N V R V ω i t T= − − + , , &, = 2… ¯ − 1.iω
t

iω
t

k

n

ikω
t

k

n

ikω
t

k

n

ikω
t+1

=1

−2

=1 =1

−2
−1∑ ∑ ∑ ∀ (5)

Transition infestation level

( )I I x β ω i t k⃛ = 1 + , , , .ikω
t

ikω
t

ω
t

ikω
t ∀͠ (6)

Susceptible (healthy) tree population
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S N I ω i t= − , , .iω
t

iω
t

k

n

ikω
t

=1

∑ ∀ (7)

Carrying capacity constraints

I N I ω i t k− , , , ,ikω
t

iω
t

d min k n

n

idω
t

= ( +1, )

∑≤ ∀ (8)

I I ω i t k⃜ , , , ,ikω
t

ikω
t

≤ ∀ (9)

( )I I N u ω i t k⃛ − ¯ 1 − , , , ,ikω
t

ikω
t

i ikω
t≤ ∀ (10)

N I I N u ω i t k− − ¯ , , , ,iω
t

d min k n

n

idω
t

ikω
t

i ikω
t

= ( +1, )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ≤ ∀ (11)

of treated and removed trees

V R I x ω i t k+ , , , = 1,ikω
t

ikω
t

ikω
t

a max t k

t

ω
a

= [ − +1,1]

∑≤ ∀ (12)

R I x ω i t k n n, , = − 1 & .ikω
t

ikω
t

a max t k

t

ω
a

= [ − +1,1]

∑≤ ∀ (13)

Believed (expected) number of infested trees

I Q r Q θ p ω i ι j t T= + , , , & = 1… ¯ − 1,i ω
t

g

n

igω
t

g

g

n

ι χ j

jgω
tι

k
ι

j i
l

1
+1

=1 =1 Θi
ι

∑ ∑∑∑ ∀͠

∈ ∈
→

(14)

Q
I υV υR g

I υR g n n
ω i t ι=

− − = 1

− = − 1 &
, , , ,igω

tι igω
tι

igω
tι

igω
tι

igω
tι

igω
tι

⎪
⎪

⎧
⎨
⎩

∀ (15)

I I υV υR ω i t T k= − − , , & = 1… ¯ − 1 & = 2,ikω
t

i k ω
t

i k ω
t

i k ω
t+1

( −1) ( −1) ( −1) ∀͠ (16)

( ) ( )I I υR I υR ω i t T k n= − + − , , & = 1… ¯ − 1 & = .ikω
t

i k ω
t

i k ω
t

ikω
t

ikω
t+1

( −1) ( −1) ∀͠ (17)

Budget constraint

c H c V c R ω i t k+ + Ψ , , , ,
t T i

iω
t

t T i k

n

ikω
t

t T i k

n

ikω
t

ω1

Γ

2

Γ =1

−2

3

Γ =1

∑∑ ∑∑∑ ∑∑∑ ≤ ∀
∈ ∈ ∈ ∈ ∈ ∈

(18)

H γ x ω i k and t T= , , , = 1, 2, …, ,iω
t

i ω
t ∀ (19)

( )γ min N κ ω i t= , , , .i iω
t ∀ (20)
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Nonnegativity and binary restrictions
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The objective function of our model, as can be seen in Equation (1), maximizes the expected
number of susceptible (healthy) trees in the managed area over the planning horizon minus the
penalty associated with the number of asymptomatic and symptomatic infested trees present in the
area over a set of plausible infestation scenarios. Equations (2) and (3) initialize the size of host
tree population and the expected infestation levels for each site i and scenario ω in the model at
time Period 1. Equations (4) and (5) estimate the total size of the ash tree population and its change
over time as more infested trees are removed and treated. Based on the expected infestation level
and decisions taken at the surveyed sites, we estimate the number of removed or treated trees,
which are infested, at a given site i from the total tree population at that site. The treated trees that
are removed from the infested tree population will be moved back to the infested population at later
periods once they become susceptible after a two‐year immunity period.

Equation (6) computes the realizations of infestation scenarios at each level k after the
surveillance decisions. We assume that after surveillance, the estimated number of infested
trees for each infestation level k is known. Term Iikω

t͠ represents the believed expected number of
trees infested at a particular level k. If surveillance is applied, the parameter xω

t will take a value
of 1, and the value of Iikω

t͠ will change by βikω
t , which defines the percent change in the expected

level of infestation after the surveillance is performed. Thus Equation (6) estimates the number
of infested trees for each infestation level k after surveillance where I ⃜ikω

t denotes the transition
number of the infested trees at each infestation level k, which represents the estimate number
without considering the total tree population in a site i.

Equation (7) calculates the number of susceptible (i.e., uninfested and treated) trees. The
total population in constraint (7) with Equation (5) also ensure that treated trees are moved
back to the infested tree population after their immunization period ends.

We also need an equation to calculate the estimated number of infested trees in a tree
population because the number of new infestations is limited by the maximum susceptible tree
population that could be infested, that is

I min N I I= − , ⃜ .kω
t

iω
t

d min k n

n

idω
t

ikω
t

= ( +1, )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ (23)

Equation (23) defines the estimated number of infested trees at a survey site i, for each
scenario ω, time period t , at infestation level k and implied that the estimated number of
infested trees at an infestation level k cannot exceed the total number of healthy trees minus
the infested trees at higher infestation levels k n( + 1, …, ) at a site i. If the remaining size of the
healthy tree population exceeds the number of infested trees calculated with Equation (6), the
estimated number of trees is set equivalent to the transition number of infested trees that gives

BUSHAJ ET AL. Natural Resource Modeling | 13 of 36



the estimated number of trees based on infestation growth equations and realization of the
uncertain infestation outcomes after surveillance. Equations (8)–(11) provide an equivalent
linearization of the nonlinear carrying capacity constraint (23). Equations (8) and (9) set an
upper bound on the estimated number of infested trees and Equations (10) and (11) set a lower
bound by using an auxiliary binary decision variable uikω

t .
Equations (12) and (13) define the upper bound on the number of treated and removed

trees. As the infestation spreads, more susceptible trees could become infested. When the
budget is too small to treat or remove all detected infested trees immediately, the infestation
spreads to other trees in a given site and neighboring sites j Θi

ι∈ .
Equation (14) defines the expected number of newly infested trees at level k = 1 in time

period t + 1. The term,Qigω
t , denotes the number of untreated or unremoved trees in time period

t in site i and is defined in Equation (15). The parameter υ defines the surveillance efficiency in
Equation (15) which is the proportion of infested trees that are detected at a site after sur-
veillance. Term pj i

ι
→ in Equation (14) defines the probability of infestation spreading from site j

to site i located at the ith distance class from j. To calculate the infestation spread to a site i we
used four distance‐dependent spread layers, ι, which cover a 4‐km radius from the infested site
with 1‐km distance intervals. TermΘi

ι defines the spread rate from the neighboring sites at each
distance class ι to a given site i.

Inspecting a small sample of trees allows detecting only a portion of the infested trees and
leads to the failure to treat or remove all the infested trees at a survey site. This issue is handled
by Equations (16) and (17). The constraint (16) ensures that trees at higher infestation levels
k( > 1), if not removed or treated, transition to the next infestation level, k + 1 at the next time
period. Coefficient υ in Equation (16) adjusts the number of removed and treated trees to
compensate for the uncertainty of the surveillance outcomes.

Equation (17) states that trees that reach the highest infestation level k n= are considered
dead and remain at this level until the end of the planning horizon. We assume that dead trees
do not pose an infestation threat but should be removed due to hazard and liability concerns if
the budget allows.

The medium extent (M) represents the expected level of infestation in the absence of
surveillance based on prior information about the invasion and is calculated in the model using
Equations (14)–(17). Because the surveillance selection binary parameter xω

t in Equation (6)
becomes 0 under no surveillance, the expected infestation level will not change. When sur-
veillance occurs, the x = 1ω

t , and so the expected infestation level will change by βikω
t , (i.e., by

+0.4 or −0.2 in realizations of (H) or low (L) infestation levels, respectively).
Equation (18) sets an upper bound on the available budget over the planning horizon in a

scenario ω. Treatment and removal decisions depend on the infestation level k. Term Hiω
t

denotes the number of inspected trees and is defined in Equation (19). We assume that only a
sample of maximum κ trees is inspected at each surveyed site. In Equation (20) γi defines
the number of surveyed trees, which is the minimum of the total number of trees in site i
and sample size κ. Terms Vikω

t and Rikω
t denote the number of treated and removed trees,

respectively.
Equation (21) lists the nonanticipativity constraints, which ensure that the scenarios with

the same history up to a given stage t share the same decisions until that stage. For example, if
two scenarios ω′ and ω have the same history of infestation and surveillance decisions until
period t , that is ω ω= ′t t , all decision variables up to stage t should be equal to each other.
Finally, Equation (22) defines the nonnegativity constraints on the decision variables and a
binary status of the linearization variable, uikω

t .
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3 | MODEL APPLICATION AND DATA

We applied our MSS‐MIP model to assess the surveillance and management options for EAB
infestation in Winnipeg, MB, Canada. The study area was divided into 1 × 1‐km survey
units. We estimated the ash density at each survey site from a municipal tree inventory
(Daudet, 2018), which provided information about tree species, ownership, and size (Figure 5).
All $ values presented in the case study represent Canadian Dollars (CAD).

We estimated the probabilities of EAB spread from historical records of urban EAB
infestation in Twin Cities, Minnesota (Osthus, 2017). As with Winnipeg, we divided the
Twin Cities area into a grid of 1 × 1‐km potential survey sites. For each 1‐km2 site j, we
estimated the distance to the nearest infested site in a particular year and, based on that

FIGURE 5 Host tree density map for a case study area in Winnipeg, Canada. Square outline delineates the
neighborhood area around the current Emerald Ash Borer infestations
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distance, estimated the infestation likelihood for a corresponding distance 1‐km class. Using
a set of distance‐dependent infestation probabilities and the locations of the infested sites,
we then generated the likelihood of EAB spread for potential survey sites in Winnipeg.
When calculating the likelihood of new infestations at a site, we also have taken into
account the chance of the infestation spread from the surrounding sites. For each survey
site, the model tracked the potential spread of EAB from the neighboring sites at four 1‐km
distance classes each 1, 2, 3, and 4 km away from the infested site. Distance‐dependent
probabilities of spread originating from symptomatic infested ash trees were estimated as
0.34 at the infested site, 0.21, 0.12, and 0.05 at the neighboring sites at 2, 3, and 4‐km
distance while those originating from infested asymptomatic ash trees in 1, 2, 3, and 4‐km
neighboring sites are 0.2, 0.15, 0.08, and 0.03, respectively. We estimated two sets of
distance‐dependent probabilities of spread for asymptomatic and symptomatic infested
trees. Symptomatic trees have typically more EAB galleries than asymptomatic trees, hence
their threat to other susceptible trees was assumed to be higher (Knight et al., 2012). We
assumed that dead trees do not produce propagules and have no impact on other susceptible
trees. To address the uncertainty about EAB spread, we modeled changes in the anticipated
levels of infestation once the surveillance is completed. We assumed that the manager
anticipates changes in the infestation levels after surveillance by −20% or +40% from its
current level. Each of these two realizations occurs with the probability 0.5 in the first
period and then updated dynamically for all other periods using Algorithm C1 as shown in
Appendix C. When no surveillance is applied, trees progress to the next infestation level
based on the default assumption about the infestation level.

The efficiency of surveillance depends on the choice of the method to detect the signs of
EAB attack. In Canada, two common inspection methods used in precious survey campaigns
include sampling host tree branches and installing sticky traps (Hopkin, de Groot, & Turgeon,
2004; Ryall et al., 2011, 2013; Turgeon, Fidgen, Ryall, & Scarr, 2016). Sampling branches and
peeling their bark to inspect for EAB galleries is the most reliable method to detect EAB (Ryall
et al., 2011; Turgeon et al., 2016). The application of sticky traps includes hanging the traps
baited with plant volatile and EAB pheromone, followed by one‐two checkup visits
(Ryall, 2015). Based on the previous EAB survey study (Yemshanov et al., 2019), the detection
rate for branch sampling was set to 0.7, based on a typical sample of two mid‐crown branches
from a medium‐sized tree (Ryall, 2015). The likelihood of a single sticky trap detecting the
presence of an EAB population on a tree was set to 0.5. The specified detection rates were
determined for urban EAB populations in southern Ontario, Canada, but should be applicable
for Winnipeg given its tree size distribution is typical of other urban areas in Canada. Based on
the experiences from past EAB surveys in Ontario, typical sampling rates for branch sampling
and trapping rarely exceeded 5–10 trees‐km−1 due to the high cost of inspections. Hence we
consider the scenarios using a fixed sampling rate κ = 5 trees‐site−1. We used the survey cost
estimates from Yemshanov et al. (2019): $87 for installing a sticky trap and $124 to inspect a tree
via branch sampling. The monetary value of services provided by a host tree was estimated at
$72 (Kıbış et al., 2020). The cost of treating asymptomatic infested trees was estimated at $180,
and the cost of removing an infested tree was estimated at $800 (Yemshanov et al., 2019). In the
objective function equation, a penalty is assigned to each infested and dead trees. Specifically,
the treatment cost is set as the penalty value per each asymptomatic and symptomatic tree,
while the removal cost is assigned as the penalty value for each dead tree. We explored the
scenarios with the budget limits ranging from $1M to $2M over a 5‐year planning horizon. The
social discount rate was set to 2%.
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4 | RESULTS

Our results reported below describe the general model behavior and present outputs that have
practical utility for decision‐making, including general indication where and when treatments
and or tree removal may be feasible, differences between using trapping and branch sampling
methods, and the impacts of survey timing and management actions.

4.1 | Optimal management

4.1.1 | Cost of surveillance, treatment, and removal

We illustrate the general model behavior by showing the solutions for a small area surrounding
the infested sites—a 5 × 5 subset of survey sites under a budget of $2M (red outline in Figure 5).
Since each scenario of the scenario tree has a different combination of the infestation prob-
abilities, management decisions, and budget allocations for surveillance, treatment, and tree
removal, we present examples of optimal solutions for four distinct scenarios. For each sce-
nario, we assign an identifier that lists the occurrence of surveillance events and the extent of
the detected infestation over a 5‐year planning horizon. For example, after surveillance is done,
a possible outcome of the survey is the detection of high (H) or low (L) levels of infestation. In
the absence of surveys, the expected state of the infestation is a medium extent (M). Our
scenarios depict different levels of infestation and the distinct timing of surveillance. For ex-
ample, a scenario H‐H‐H‐H‐H implies that surveillance is done each year, and a high infestation
level is detected. Meanwhile, scenario 126 with realization L‐L‐M‐H‐H implies that in the first
2 years, surveillance is done, and a low infestation level is detected. Note that H and L only
occur under surveillance, and M only occurs under no surveillance. Thus we do not need to
provide a specific notation for surveillance decisions to represent scenarios. In the third year, no
surveillance is done, so M means we remain truthful to the expected infestation growth cal-
culated by the mathematical model based on the initial belief of the infestation of the manager.
Furthermore, in the last 2 years, surveillance is done, and a high realization is encountered. In
our case, the scenario with the highest net benefits is scenario 161, which only surveys in the
first stage of the problem and has a low infestation realization in the initial stage, as denoted by
L‐M‐M‐M‐M.

In Figure 6 scenarios H‐H‐H‐H‐H and L‐L‐L‐L‐L assume the detection of correspondingly
high and low infestation levels in all time periods. Scenario H‐H‐H‐L‐L assumes the detection of
high infestation levels in Periods 1–3 and low infestation levels in Periods 4 and 5, and scenario
L‐L‐L‐H‐H depicts the opposite survey outcome when low infestation levels are detected in
Periods 1–3 and high levels in Periods 4 and 5. The total cost in each scenario varies due to
different streams of treatment and removal decisions. Given that the surveys occur every time
period, the cost of surveillance is the same for all scenarios. However, the cost of treatment and
tree removal depends on the level of the detected infestation. For example, scenario L‐L‐L‐L‐L
had the lowest total cost because the infestation was detected at a low level and required less
treatment and removal efforts. The level of infestation detected early has a higher impact on
management actions and their total cost. More budget was allocated in the scenario with the
detected high level of infestation in the first two periods than in the scenario with the detected
low infestation level in Periods 1–2 (cf. the costs of scenario H‐H‐H‐L‐L and scenario L‐L‐L‐H‐H
in Figure 6).
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4.1.2 | Where to survey, treat, and remove

Most of the applied survey and management actions in optimal solutions have occurred in close
proximity to the infested sites; hence we illustrate the model behavior using a 5x5 site area
proximate to the infested sites (big red rectangle in Figure 5). Figure 7 shows the number and
spatial location of infested, treated, and removed trees for time Periods 1–4 (I–IV) under the
worst‐case scenario with the high level of infestation detected in all periods (H‐H‐H‐H‐H).
Specifically, each column corresponds to a time period in increasing order from left to right,
while row 1 block represents the number and location of infested trees that are neither treated
nor removed (No Action); row 2 block represents the number and location of infested trees that
remain after the optimal treatment and removal action (Action); row 3 block represents the
number and location of trees that are treated under the optimal action (Treated); and row 4
block represents the number and location of trees that are removed under the optimal action
(Removed). When no action is taken, more trees get infested in close proximity to the infested
sites, which increases the local rate of spread and the number of infested trees. Timely treat-
ment and tree removal actions help reduce the number of infested trees in close proximity to
the infested sites. Most of the treatment occurred in the sites with the detected infested trees in
the first two periods (when treatment is the most effective). Tree removal was prescribed
roughly in the same selected locations but occurred over Periods 1–4. All treatments and tree
removals in Period 1 occurred in the sites with the original infestations. Imperfect detection in
the first period required a more aggressive treatment and removal in the following periods to
compensate for poor detection accuracy. Our results show that detecting and treating the
infested trees as early as possible is the most cost‐effective approach but imperfect detection
necessitates a larger‐scale treatment and tree removal campaign in the following periods.

Figure 8 reports similar results but for scenario L‐L‐L‐L‐L when the surveillance detects the
low infestation level in each time period. Compared to the worst‐case scenario, the detection of

FIGURE 6 Treatment, removal, and surveillance cost for low and high realizations over 5 years for four
different scenarios. Scenario 0 is H‐H‐H‐H‐H, scenario 4 is H‐H‐H‐L‐L, scenario 117 is L‐L‐L‐H‐H, and lastly,
scenario 121 is L‐L‐L‐L‐L, where L and H stand for low and high realization, respectively
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the infested trees occurred at shorter distances from the infested sites. Treatment and removal
mostly occurred in the currently known infested sites.

We have also compared the impacts of taking no action in four different scenarios, H‐H‐H‐
H‐H, H‐H‐L‐L‐L, L‐L‐H‐H‐H, and L‐L‐L‐L‐L (1). We define the net benefit summary metric as a
difference between the objective function value (which is the total value of healthy and treated
trees in a landscape) and the cost of surveillance, treatment, and removal.

The difference between net benefit values for “Action” and “No‐Action” scenarios is pre-
sented in the fourth column of Table 1, named “Incentive to Act.” As Table 1 suggests, optimal
management solutions with treatment and tree removal have higher benefits than no‐action
solutions under all scenarios considered. This result indicates that active treatment and removal
options remain cost‐effective despite the incurred high survey costs; and taking timely

FIGURE 7 Total number of infested trees under no action (No Action), infested trees under optimal action
(Action), treated (Treated) and removed (Removed) trees for each period for scenario H‐H‐H‐H‐H (high
infestation level detected in all periods) over planning Periods 1–4 (I–IV)
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FIGURE 8 Total number of infested trees under no action, infested trees under optimal action, treated, and
removed trees for each period for scenario L‐L‐L‐L‐L (low infestation level detected in all periods) over planning
Periods 1–4 (I–IV)

TABLE 1 Net benefits in the optimal management (action) and no‐action solutions for scenario H‐H‐H‐H‐
H, H‐H‐L‐L‐L, L‐L‐H‐H‐H, and L‐L‐L‐L‐L

Scenario Action No Action Incentive to Act

H‐H‐H‐H‐H $122,258,000 $121,803,800 $454,200

H‐H‐L‐L‐L $122,261,590 $121,841,800 $419,790

L‐L‐H‐H‐H $122,399,610 $122,121,800 $277,810

L‐L‐L‐L‐L $122,400,000 $122,147,800 $252,200

Note: The net benefit is calculated by subtracting the total cost of each scenario from the objective function value of the
respective scenario
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management actions is thus well justified. “Incentive to Act” is higher under the all‐high case
(H‐H‐H‐H‐H) than under the all‐low case (L‐L‐L‐L‐L). Interestingly, the incentive to act is also
much higher under a scenario that starts with a high infestation followed by a low infestation
(H‐H‐L‐L‐L) than a scenario which starts with a low infestation followed by a high infestation
(L‐L‐L‐H‐H). This result implies that it is particularly crucial to act in a case where we observe
an initially aggressive spread.

4.2 | Effect of surveillance timing on net benefits

Surveillance is crucial in our model, as no action can be taken without surveillance. When no
surveillance is performed in a particular time period the infestation continues to spread and
causes larger damage. We illustrate the importance of maintaining the surveillance regime by
analyzing the optimal solutions with a distinct timing of survey actions. We compare four
scenarios, H‐M‐M‐M‐M, M‐H‐M‐M‐M, M‐M‐H‐M‐M, and M‐M‐M‐H‐M, which apply the
surveys only in time Periods 1, 2, 3, or 4. All scenarios have the same surveillance costs (i.e.,
1 year of surveys only). Table 2 indicates that the scenarios with the earliest survey actions have
the lowest total treatment and removal cost. This is because early detection leads to a more
effective treatment or removal when the infestation is at an early stage. When the surveillance is
delayed infestation is allowed to spread to further distances, and more trees get infested and will
require treatment or removal. In particular, the efficacy of tree removal action is affected by the
timing of surveillance. The sooner the infestation is detected, the less it will cost to remove the
infested trees.

The scenario with no survey‐delays (H‐M‐M‐M‐M) also had the highest net benefits.
Overall, the delay in surveillance allows the infestation to spread to a larger area and will
necessitate costlier tree removal and treatment actions; hence it is always beneficial to survey
and treat the sites as early as possible.

4.3 | Budget allocation and priority of actions

We have solved the problem for the range of budget levels, including $1.45M, $1.5M, $1.55M,
and $1.6M. The budget values were set to ensure that they are sufficiently large to cover the
high cost of surveillance and apply treatment and removal with the remaining funds from

TABLE 2 Costs of surveillance, treatment, and removal for the scenarios with different timing of the survey
actions

Scenario
Survey
period

Surveillance
cost

Treatment
cost

Removal
cost Total cost Net benefits*

H‐M‐M‐M‐M 1 (no‐delay) $286,440 $12,100 $94,520 $393,059 $123,990,000

M‐H‐M‐M‐M 2 $286,440 $5,640 $134,000 $462,082 $123,130,000

M‐M‐H‐M‐M 3 $286,440 $6,340 $160,680 $453,457 $123,170,000

M‐M‐M‐H‐M 4 $286,440 $3,620 $175,660 $465,724 $123,030,000

*The net benefit value is calculated as a difference between the objective value and the total cost of surveys, treatment and tree
removal.
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surveillance. We also slightly increased a budget from $1.45 to $1.6M to show the impact of the
budget increases on the optimal treatment and removal when the number of infested trees was
initially low. Here, we present optimal solutions for treatment and removal decisions in the
worst‐case scenario, H‐H‐H‐H‐H, with the detected high levels of infestation and the surveil-
lance done in every time period. Figure 9 shows the surveillance, treatment, and removal costs
for the worst‐case scenario at different budget levels. As expected, we observe an increase in the
budget spent on both treatment and removal as we increase the available budget from $1.45M to
$1.60M. The increase in the budget spent on removal costs is higher than the cost of treatment
due to the high cost of removing trees. At the lowest budget, $1.45M, only a portion of the
infested trees in closest proximity to the infested sites can be treated, and also a small number of
symptomatic trees can be removed in Period 1. Since the budget is too small to treat or remove
all detected infested trees, the infestation continues to spread. At the budget level of $1.6M,
more funds are available for the treatment of asymptomatic trees and the removal of sympto-
matic and dead trees. Given a small extent of the current EAB infestation in Winnipeg, all the
detected infested trees in close proximity to the infested trees can be treated, but only a small
portion is feasible to remove due to the high cost of tree removal. The best strategy is to treat the
detected infested asymptomatic trees, and if funds permit, remove a portion of symptomatic
infested and dead trees in closest proximity to the infested sites.

The budget level affects the timing and the extent of tree removal and treatment actions.
Figures 10a,b show the total number of infested, treated, and removed trees over a planning
horizon for budget allocations of $1.5M and $2M, respectively. In both solutions, treatments of
asymptomatic infested trees and removal of symptomatic infested trees help minimize the
impact of infestation on a host tree population. Treatments of healthy and asymptomatic trees
prevent them from transitioning to a more severe infestation level and so helps reduce the local
spread rate in the next time period. Removal of symptomatic infested trees has a higher priority
than the removal of dead trees because it reduces the chances of EAB to spread to nearby trees
in close proximity to the infested nuclei.

FIGURE 9 Surveillance, treatment, and removal costs for different budget levels under the worst‐case
scenario H‐H‐H‐H‐H with a continuous surveillance over the planning horizon and the detected high level of
infestation
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For example, in the scenario with a $1.5M budget, insufficient budget level limited the scope
of tree removal actions to a few symptomatic infested trees (Figure 10). Note that the removal of
dead trees may be mandatory in an urban setting in some circumstances due to liability or
safety concerns, and therefore, may require additional funds to be allocated for mandatory tree
removal. Given a small extent of the current EAB infestation in Winnipeg, we did not include
mandatory tree removal options, but this could be a focus of future work if the EAB infestation
causes widespread tree mortality (like in previous urban EAB outbreaks in Ontario and
Michigan). Treatments of asymptomatic trees are only effective in the first three time periods
when the infestation is in its early stage. Removal of symptomatic trees becomes most effective
in period two and essentially is a more preferred action than the treatment as the number of
symptomatic trees increase. Removing dead trees is feasible in Periods 2 and 3 only when there
the budget is sufficient to treat the detected asymptomatic and remove the symptomatic trees.
No management action is taken for Periods 4 and 5 under a budget of $1.5M because all budget
was already spent during time Periods 1, 2, and 3.

4.4 | Is treatment a choice?

We also illustrate the impact of applying the treatments of asymptomatic trees using four
distinct scenarios with different infestation level sequences of management decisions. Table 3

FIGURE 10 Total number of infested, treated, and removed trees over time under scenario 0 with $1.5M
(a) and $2M (b) budget
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shows differences in net benefit values between the solutions with and without treatments in
the scenarios having different levels of infestation. The scenarios show distinct infestation
profiles with the surveillance done in all time periods. In general, treatments increased the net
benefit value in all infestation scenarios.

4.5 | Impact of surveillance efficiency

Surveillance efficiency has a direct impact on the total cost, therefore, also affecting the total net
benefits. Here we discuss the trade‐off of the surveillance cost and surveillance efficiency.

We have compared the optimal solutions using branch sampling versus the detection with
sticky traps in a high‐infestation scenario H‐H‐H‐H‐H with the surveillance done in all time
Periods 1–5. Figure 11 shows that branch sampling yields a higher objective value than using
sticky traps because it has a higher detection accuracy and so enables finding and treating more
infested asymptomatic trees at early stages. However, branch sampling is a more costly option;
hence the total cost portion spent on surveillance is higher (Figure 12). Comparatively, the
solutions with sticky traps spend more on treatment and significantly more on removal because
sticky traps cannot detect the infestation at early stages. We have also compared the optimal
timing of treatment and tree removal actions for the solutions using branch sampling and sticky
traps in high‐infestation scenario H‐H‐H‐H‐H under $2M budget limit. Figure 13 shows the
number of infested, treated, and removed trees over time for each of the detection methods.
Both methods show a similar number of removed and treated trees in Period 1, but the solutions
with branch sampling show that a lower number of trees required treatment and removal in
Periods 2 and 3. This is because the higher accuracy of the branch sampling method allows
detecting more infested trees at the earliest possible time (Period 1), and so fewer infested trees
will need treatment or removal in the following periods. Also, the solutions using sticky traps
required more periods of surveys to detect the bulk of the infestation than the solutions with
using branch sampling. This is because sticky traps have lower surveillance efficiency. De-
tecting and subsequently treating or removing fewer trees in a current period leads to a higher
infestation rate in the following periods. Our results indicate that while branch sampling has a
higher cost, its higher efficiency makes up for the increased cost in terms of reducing the
number of trees infested with EAB.

In terms of the net benefits, the surveillance via sticky traps costs less than using branch
sampling. However, branch sampling has higher objective value; that is, it enables keeping
more uninfested trees in the managed area. The difference in net benefit values is bigger in
small‐budget solutions than in large‐budget solutions (Table 4) because small budgets are

TABLE 3 Net benefit values in optimal treatment vs. no‐treatment under various scenarios

Scenario Scenario description No‐treatment net benefits Optimal treatment net benefits

H‐H‐H‐H‐H 1 (no‐delay) $121,994,000 $122,258,000

H‐H‐L‐L‐L 2 $122,184,000 $122,262,000

L‐L‐H‐H‐H 3 $122,328,000 $122,400,000

L‐L‐L‐L‐L 4 $122,335,000 $122,400,000

Note: The net benefit value is calculated as a difference between the objective value and the total cost of surveys, treatment, and
tree removal.

24 of 36 | Natural Resource Modeling BUSHAJ ET AL.



insufficient to treat and remove all the detected trees, which essentially renders the survey
efforts ineffective.

5 | DISCUSSION AND CONCLUSIONS

Managing pest outbreaks often requires allocating scarce resources between surveillance and
control actions (e.g., Epanchin‐Niell et al., 2012). Surveillance strategies are usually applied in
environments under continual invasion pressure where the number, size, and location of
established populations are unknown before detection and change over time depending on
population growth, detection, and management. Previous studies simplify this dynamic
optimization problem by solving for the optimal long‐term equilibrium surveillance effort
(Epanchin‐Niell et al., 2012) or by considering a time domain with only two periods (Horie
et al., 2013; Yemshanov et al., 2017). Kıbış et al. (2020) was the first to address the multiperiod,

FIGURE 11 Objective function values for scenario
0 (H‐H‐H‐H‐H) using branch sampling and sticky trap
methods with a $2M budget

FIGURE 12 Surveillance, treatment, and removal cost comparison between branch sampling and sticky
trap methods for scenario 0 (H‐H‐H‐H‐H) with $2M budget
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spatial optimization of pest surveillance and control while accounting for stochastic pest dy-
namics. They formulated and solved a MSS‐MIP model with a five‐stage time horizon and
applied that model to the management of EAB in Burnsville, Minnesota, USA We modified this
MSS‐MIP model to evaluate surveillance and control strategies for an EAB infestation in
Winnipeg, Canada. The model applies surveillance to inform decisions on optional treatment
and removal of the infested trees under a limited budget. The sequences of scenario decisions
and associated infestation outcomes are integrated into a scenario tree where, for each scenario,
the probability of infestation in a given time period is calculated dynamically.

FIGURE 13 Total number of infested, treated, and removed trees over time for scenario 0 with budget
$2M: (a) using branch sampling; (b) using sticky traps

TABLE 4 Net benefit values in the solutions using branch sampling and sticky traps

Surveillance method $1.45M $1.5M $1.75M $2M

Branch sampling $121,913,000 $122,055,000 $122,257,000 $122,258,000

Sticky traps $122,652,000 $122,652,000 $122,655,370 $122,658,020

Note: Net benefits of high‐infestation scenario (H‐H‐H‐H‐H) with the surveillance applied every period is shown.
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Our approach helps address this challenge and demonstrates how accounting for key as-
sumptions about the infestation severity, cost, and spatial patterns of the infestation may affect
the scope and timing of control decisions. Our results demonstrate that timely detection and
early response actions are key factors in successful control of a pest invasion and a max-
imization of net benefits of the urban ash trees. This result is consistent with the long‐held view
that early detection of pests lessens the extent of damage and makes subsequent control less
expensive and more effective (see Büyüktahtakın & Haight, 2018, for review). For example
(Epanchin‐Niell, Brockerhoff, Kean, & Turner, 2014), find that an intensive surveillance pro-
gram designed to detect invasive wood borers and bark beetles in New Zealand leads to earlier
detection, higher likelihood of successful eradication, and lower costs of control and damage,
with substantially higher net benefits compared with a program with no surveillance.

The findings also emphasize the importance of treatments of ash trees as early as possible.
Treating asymptomatic trees at the earliest stages of invasion provides higher net benefits than
tree removal or no‐treatment options. However, we show that treatment of the infested trees is
only effective when done at the earliest stage of infestation. When the surveillance is delayed,
tree removal becomes a more preferred option but would require significantly higher cost to
achieve the same level of control. Deterministic models of EAB management in urban land-
scapes reach similar conclusions. McCullough and Mercader (2012) simulate the effects of
treatment and removal strategies and find that annual insecticide treatment of 20% of the ash
population can protect 99% of trees after 10 years, and the cumulative costs of treatment are
substantially lower than costs of removing dead or severely declining ash trees. Using a spatial‐
dynamic optimization model, Kovacs et al. (2014) find that strategies with insecticide treatment
are superior to ones with only pre‐emptive removal because they reduce the number of sus-
ceptible trees at a lower cost and protect the benefits of healthy trees.

Our results also provide new insights about the preferred use of trapping versus branch
sampling techniques for EAB detection. We found that, in multiyear EAB surveys, the use of
branch sampling is advised because it yields better accuracy of detecting the infested asymp-
tomatic trees, and so, when implemented at early stages of infestation, enables treating and
removing more infested trees which may help reduce the local rate of spread. Similarly, in an
analysis of single‐season EAB surveys, Yemshanov et al. (2019) found that branch sampling was
preferred over trapping; however, the choice of survey methods depended on the relative
detection rates. On average, branch sampling was preferred over trapping when its detection
rate of branch sampling was 1.45 times greater than the detection rate of traps.

Another valuable insight from our work is that the level of available budget essentially
controls the decisions on treatment or removal of the infested trees. Since tree removal is costly,
the extent of tree removal actions depends on the level of the budget available after the sur-
veillance. Our results emphasize the importance of allocating a sufficient budget for tree re-
moval to slow the spread of EAB. Tree removal becomes less important in small‐budget
solutions where the optimal policy is to spend most of the budget on treatments.

There was no historical data available to parameterize the probabilities of the surveillance
outcomes and the possibility of surveillance decisions. In our model, we assume that surveil-
lance is a binary decision variable (not a random variable), which is parametrized in the
scenario tree as one if surveillance takes place and zero otherwise. In theory, this assumption
could influence the optimal management decisions if the probability of surveillance decisions
vary from location to location or over time (which was not assumed in our model).

In our model, only surveyed trees were removed or treated. We have not considered the
preventive removal of all trees at a survey site, which is applied in practice to avoid the need to
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monitor all trees because this strategy has been shown to provide worse solutions compared to
the optimization model in the study of Kıbış et al. (2020). Specifically, Kıbış et al. (2020) have
performed a comparative analysis of a previous version of our multistage stochastic optimiza-
tion model with stage removal and monitor‐and‐remove strategies currently employed by the
cities of Minneapolis and Saint Paul for the management of EAB. Their results show that
significant benefits are obtained by using the complex multistage stochastic programming
model as opposed to the simple approaches currently employed, including preventative removal
without surveillance and prophylactic removal of some ash tree population after surveillance.

An ash tree is an invaluable commodity that we should do whatever we can to keep them alive.
The expected life span of a white ash tree is 260 years, while it is 120 years for a green ash tree
(Home Guides, 2018a). It takes from 16 to 60 years for an ash tree to grow to its full size, depending
on species and environmental conditions (Home Guides, 2018b). Thus, the replacement of an ash
tree could take tens of years, and its complete removal and replacement are deemed too costly.

Our current model formulation addresses a common situation in managing the established
urban pest populations when municipalities strive to keep as many live trees as possible because
trees continue to provide numerous social, economic, and ecological benefits (such as providing
a habitat for many bird and insect species, producing oxygen, improving soil quality and
landscape aesthetic, increasing property values, and reducing noise and pollution (The Tree
Council, 2018), which have not been taken into account in this study. For example, in Torbay,
England, 95,000 ash trees store 11,400 tons of CO2 worth $2.8 million per year. Incorporating
such long‐term benefits of a healthy ash tree into our model will further justify the need to keep
trees alive as long as possible. Thus, unless we have a perfect surveillance with close‐to‐100%
detection rates and the invader is detected in very early stages in a confined area, a preventative
removal would be suboptimal, given an objective of maximizing healthy tree population.

The model in its current formulation is not intended to assist decisions on slowing‐the‐spread or
preventive removal of all trees at a survey site, which is applied in practice to avoid the need to
monitor all trees. Potentially the model can be reformulated to include the preventive tree removal
as an optional strategy by minimizing the total number of infested trees in the area. Preventive host
removal can be effective when managers aim to slow the spread of infestation and do not need to
protect live trees (as opposed to our formulation), or when the pest can be detected early and
reliably and eradicated at moderate costs (such as in the programs aimed to eradicate the infestation
of Asian Longhorned Beetle (ALB) in Toronto, Canada (Turgeon, Orr, Grant, Wu, & Gasman, 2015;
Yemshanov et al., 2017). The preventive host removal may not be suitable for treatments in urban
environments where trees are highly valued, and the city planners strive to keep as many live trees
in the city area as possible.

Other potential model applications include cases when a sizable part of the managed area is
already infested (and so the preventive eradication is no longer an option) or cases when the
pest is detected in a host organism after it is too late to do large‐scale preventive measures
(which is what we usually observe in the case of an aggressive invader) and management
decisions focus on reactive measures, such as treatment of asymptomatic host trees (to keep
them alive for a certain period), or removal of the infested trees.

5.1 | Future work

In urban environments, trees perform multiple ecological and social functions and provide various
economic and social benefits, which prompts the city planners to maintain and expand the tree
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population in the urban area. Thus, in our model, the objective function follows the aspiration to
keep as many high‐valued live trees as possible in the area and maximizes the net health benefits
from susceptible trees while penalizing infested and dead trees. Alternatively, some other penalty
terms could be considered and the objective reformulated as an invasion control problem that aims
to slow the spread or minimize the expected damage from infestation (analogously to problems
presented in Büyüktahtakın et al., 2011, Epanchin‐Niell et al., 2012, Horie et al., 2013, Rout, Moore,
and McCarthy, 2014, Yemshanov et al., 2017). In this case, the goal of treatment and host removal
would be to reduce the propagule pressure (or likelihood of spread) from the infested sites to other
locations. This would require including the likelihood of spread (or other propagule pressure
metric) in the objective function equation. In this case, the amount of the infested and healthy trees
at the survey site would influence the likelihood of pest's spread from that site to other locations.
Adding the new penalty terms might change the model behavior towards prioritizing preventive
measures, which help reduce the rate of spread, such as preventive tree removal over the survey‐
and‐treatment options (similarly to the model behavior described in Yemshanov et al., 2017). Ex-
ploring the new objective function formulations aimed to slow or contain the invasion spread could
be the focus of future efforts.

Our problem formulation considered multiple time steps when decisions on surveillance and
treatment can be reconsidered after decisions made in the previous time step. One possible extension
of our model is to add a two‐step surveillance before treatment: an initial rapid survey to determine
whether any infested trees exist on the site, and a subsequent more detailed survey to find all infested
trees in sites with at least one confirmed detection. Introducing the second surveillance stage at each
time step to confirm initial detection would require adding another decision step conditional on
detecting the pest in the first survey step. This would require complex linearizations (see, e.g., Kıbış&
Büyüktahtakın, 2017) to handle decisions conditional on detection and drastically increase the size of
the scenario tree, which would make the problem intractable. For example, currently, we have 243
(3 )5 scenarios, but a two‐step surveillance strategy would increase the number of scenarios to 3,125
(5 )5 and further complicate the problem formulation. To keep the size of the two‐step survey problem
manageable, some other model features are likely to be dropped (such as accounting for distance‐
dependent dispersal from the infested sites, which is an important model capacity). Adding the
second survey stage with decisions conditional on first detection could be the focus of future work.

Slowing the invasion spread is an important strategy to fight against aggressive invaders,
such as the EAB. Generic strategies include the removal of small satellite infestations (“nascent
foci”), as described by Moody and Mack (1988), and “barrier zone” involving removal of
infestations at/near the invasion front (Büyüktahtakın, Feng, & Szidarovszky, 2014, 2015;
Sharov & Liebhold, 1998). Although our original model formulation did not consider the slow‐
the‐spread or invasion containment strategies, it can be adapted to plan the response measures
aimed to slow or contain the spread of pest invasions. In our model, the impacts of management
actions on the rate of spread can be factored in by making the probability of infestation, pji from
site j to other sites i in a distance‐dependent spatial layer l a function of the total number of
infested trees remaining in site j after treatment and host removal.

The objective function can be modified to prioritize the treatment and host removal that is aimed
to minimize the rate of long‐distance spread (i.e., the spread to the outermost spatial layers l around
the infested site j). In this case, the management actions would prioritize the treatments of the
infested sites, which could send propagules to farthest distances. For instance, slowing the long‐
distance spread could be modeled via prioritizing the treatments of sites that send the propagules with
the highest probabilities of spread pji to the outermost distance layers l in a set χ (i.e., the farthest
distances from a given site j).
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It is also possible to change the model objective to contain the infestation within a desig-
nated area, however, this objective may not be attainable if the pest has a strong capacity for
long‐distance spread or the budget is insufficient to apply sufficient treatments which stop the
spread within a designated area. We have investigated the option of “focused surveillance,”
which applies surveillance only to a limited area, to reduce the large costs of surveying all sites.
This strategy could be further studied for controlling the slow‐moving invasive species that does
not exhibit significant long‐distance dispersal. Reducing the amount of suitable host trees
decreases the potential number of individuals that can emerge and spread from a given location
to other sites and so controlling the infested, or highly susceptible host density could potentially
be to slow the spread of invasion.

In our model, we assumed a fixed tree sampling rate across all surveyed sites. Potentially,
the problem could be modified by allowing an optimal selection from a set of predefined
sampling rates via an introduction of auxiliary binary variables which select a particular
sampling rate value at a survey site (and a linked set of surveillance efficiencies). Selecting an
optimal sampling rate at the surveyed sites opens a possibility of incorporating other factors that
influence the sampling rate decisions. These factors include the spatial variation of host density,
the detection rate for a particular inspection method, and the likelihood of the pest present at a
surveyed site. The size and spatial locations of individual host trees may also influence the
likelihood of detection and the optimal sampling rate value. Incorporating these aspects will
require developing the appropriate data depicting the spatial variation of these factors in urban
environments, which could be a future extension of this study.

We acknowledge the risk of failed detection at the infested sites as another potential factor
that may affect the optimal sampling decisions. This problem will require making all host
treatment and removal decisions conditional on the failure to detect the invasion at the sur-
veyed sites (i.e., failing to detect one or more infested trees after inspecting a sample of trees at a
survey site). In Equations (15)–(17), we have incorporated the impact of imperfect detection
using a parameter which limits the number of infested trees that are successfully treated or
removed based on the detection rate. Another possibility to incorporate the impact of failed
detection into the MIP model is to use the techniques from quality control theory, such as
estimating the expected slippage value, which in our circumstances denotes the expected
number of infested trees in surveyed sites where inspections did not find the signs of infestation
although they are actually infested (see, e.g., Chen, Epanchin‐Niell, & Haight, 2018 and
Yemshanov et al., 2019). However, such a formulation is nonlinear and will require complex
linearizations to make them work in a linear programming model, which could be a focus of
future efforts.

Further refinements also include an account for long‐distance spread assumptions for dis-
tances beyond 4 km. These modifications are expected to significantly increase the problem size
and its combinatorial complexity and will require new approaches to solve the model for
practical cases. Another future direction includes the introduction of coherent risk measures to
capture the variability of the random variables in the upcoming stages of the model, enabling
the risk‐averse decision making of the manager. This will be the focus of our future work.
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APPENDIX A: GLOSSARY

⊳ Infestation layer: Surrounding neighbors with the same distance from a site

⊳ Infestation level: Classification of the severity of host infestation

⊳ Realization: A specific outcome regarding the degree of uncertain infestation after surveillance

⊳ Scenario: A combination of realizations for each time period and surveillance decisions

⊳ Site: A 1‐km2 area populated by ash trees

⊳ Surveillance
Efficiency:

The proportion of infested trees that are identified after surveillance

⊳ Stage: A time period in the stochastic scenario tree

⊳ Transition: Change of the host infestation levels from one time period into another

⊳ Transition
Population:

Estimated population of host trees without taking the maximum host population
into account

APPENDIX B: TWO ‐STAGE EXAMPLE OF POSSIBLE SCENARIOS
Table B1 presents all possible scenarios for a 2‐stage problem. As an example of a two‐stage
problem, at period t = 1, we can decide whether to survey or not. If the site is surveyed, two
possible infestation levels can be uncovered—a higher than expected (H) or lower than ex-
pected infestation (L). If no survey is applied, we assume a default medium infestation level (M)
and use this value to compute the probabilities of spread. Thus, at period t = 1, three possible
realizations are possible, as demonstrated by red, green, and yellow arcs (Table 3). In Period 2,
each square node generated at the end of the first period depicts the decisions to survey a site in
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that period. Similarly, if the site is surveyed, high or low infestation levels can be detected. If no
surveillance is performed, we assume a default medium infestation level and use this value to
update the probabilities of infestation at the next time period and so on.

APPENDIX C: SCENARIO PROBABILITY ALGORITHM
Algorithm C1 dynamically updates infestation realization probabilities in each period. We start
by defining scnProb, which is an array that will hold the probability of encountering a certain
infestation realization for a scenario ω at time t , where pH holding the probability of en-
countering a high infestation realization and pL representing a low infestation realization
probability. Each realization will be represented by the variable Real, which is either equal to
High(H) or Low(L) or Medium(M). We keep track of the probabilities for different infestation
realizations at each time stage using variables pH and pL. We assign an equal probability for
both high and low infestation realizations in the initial time stage. We update the probabilities
as we traverse through all the time periods under each scenario. Whenever we encounter a
pattern of repeating realizations, we update the probabilities of uncertain outcomes in favor of
the repeating event. At the end of the procedure, we obtain a two‐dimensional set that lists the
occurrence probabilities of infestation realizations at time t for each scenario ω (a scnProb

array). We then use the functionmultiplyList ω( )i to multiply all probabilities in array ωi, which
gives the realizations of the infestation for each time t under a specific scenario ω with index
i = 1, …, 3t. Therefore, after we multiply the probabilities in ωi returning only one probability
value for each scenario ω, we use the normalizeProb ω( )i method to normalize the probability of
each scenario ω.

TABLE B1 All possible scenarios for a 2‐stage formulation

Scenario number Realization Surveillance regime

1 H‐H Survey‐Survey

2 H‐L Survey‐Survey

3 H‐M Survey‐Do Not Survey

4 L‐H Survey‐Survey

5 L‐L Survey‐Survey

6 L‐M Survey‐Do Not Survey

7 M‐H Do Not Survey‐Survey

8 M‐L Do Not Survey‐Survey

9 M‐M Do Not Survey‐Do Not Survey

Note: Note each scenario is represented as a combination of the realization and the surveillance regime. Realizations and
surveillance decisions are given for each stage consecutively under each scenario.
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