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Abstract: Satellite forest inventories are the only feasible way to map Canada’s vast, remote forest
regions, such as those in the Northwest Territories (NWT). A method used to create such inventories is
the k-nearest neighbour (k-NN) algorithm, which spatially extends information from forest inventory
(FI) plots to the entire forest land base using wall-to-wall features typically derived from Landsat
data. However, the benefits of integrating L-band synthetic aperture radar (SAR) data, strongly
correlated to forest biomass, have not been assessed for Canadian northern boreal forests. Here we
describe an optimized multivariate k-NN implementation of a 151,700 km2 area in southern NWT
that included ca. 2007 Landsat and dual-polarized Phased Array type L-band SAR (PALSAR) data on
board the Advanced Land Observing Satellite (ALOS). Five forest attributes were mapped at 30 m
cells: stand height, crown closure, stand/total volume and aboveground biomass (AGB). We assessed
accuracy gains compared to Landsat-based maps. To circumvent the scarcity of FI plots, we used 3600
footprints from the Geoscience Laser Altimeter System (GLAS) as surrogate FI plots, where forest
attributes were estimated using Light Detection and Ranging (LiDAR) metrics as predictors. After
optimization, k-NN predicted forest attribute values for each pixel as the average of the 4 nearest
(k = 4) surrogate FI plots within the Euclidian space of 9 best features (selected among 6 PALSAR,
10 Landsat, and 6 environmental features). Accuracy comparisons were based on 31 National Forest
Inventory ground plots and over 1 million airborne LiDAR plots. Maps that included PALSAR HV
backscatter resulted in forest attribute predictions with higher goodness of fit (adj. R2), lower percent
mean error (ME%), and percent root mean square error (RMSE%), and lower underestimation for
larger attribute values. Predictions were most accurate for conifer stand height (RMSE% = 32.1%, adj.
R2 = 0.58) and AGB (RMSE% = 47.8%, adj. R2 = 0.74), which is much more abundant in the area than
mixedwood or broadleaf. Our study demonstrates that optimizing k-NN parameters and feature
space, including PALSAR, Landsat, and environmental variables, is a viable approach for inventory
mapping of the northern boreal forest regions of Canada.

Keywords: forest vegetation inventory; PALSAR; Landsat; LiDAR; GLAS; k-NN; boreal forest;
Northwest Territories

1. Introduction

Information on forest composition and structure is necessary to support forest ecosys-
tem management [1,2]. In Canada, this information is typically captured in the form of forest
inventory maps derived from the interpretation of aerial photographs [3,4]. In the North-
west Territories (NWT), Canada, however, it is impractical to undertake a conventional
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forest inventory over its vast, widely distributed ≈ 40 million ha of forest landscape [5].
As a result, there has been considerable interest in exploring the use of remote sensing at
various spatial scales in boreal forests of Canada, including the NWT [6–8].

The application of remote sensing for estimating and mapping forest inventory at-
tributes such as stand height, crown closure, timber volume, and aboveground biomass
(AGB) has evolved considerably. This is in part due to the rapid development of airborne
and satellite sensors operating at different spatial and temporal scales and their methods of
analysis, which can supplement or enhance forest inventory programs [2,9,10]. In particular,
small-footprint airborne light detection and ranging (LiDAR: also known as airborne laser
scanning, or ALS) has proven successful as a sampling tool to estimate and map vertically
distributed attributes such as canopy height [11–13]. However, ALS is usually not suitable
for mapping large areas because of challenges from large data volumes and acquisition
logistics [13]. The vintage of ALS data is also a consideration, as the timing of ALS aerial
survey and in-situ field measurements should be similar to ensure the data are suitable for
calibration and are representative of the forest landscape to be mapped [14].

Andersen et al. [15] first reported an approach to predict forest attributes based on a
multi-level spatial modelling framework. Such an approach, combining forest inventory (FI)
plots, ALS data, satellite imagery, and other spatial datasets, is particularly well suited for
inventories of remote regions where logistical difficulties and high costs limit the number
of FI plots that can be established [15,16]. It has also been applied to map large regions
within and across the circumboreal forest [8,17].

Mapping forest attributes over large areas requires a large reference dataset consisting
of numerous FI plots distributed throughout the area to be mapped. Such a dense network
of FI plots only exists in a few countries, such as Finland [18] and the United States [19].
When there is an insufficient number of FI plots, those available can be used to develop
models that relate field measurements to metrics generated from ALS datasets [12,20] and
further scaled to satellite waveform LiDAR, which has been shown to strongly correlate
with ALS data [21]. For example, global observations from the Geoscience Laser Altimeter
System (GLAS) [22] onboard the Ice, Cloud, and land Elevation Satellite (ICESat) were
used to estimate forest attributes such as canopy height and AGB [13,23,24]. Generating
multi-level models of forest attributes between FI plots and ALS, and then between ALS
and GLAS, offers the opportunity to create a reference dataset for spatial prediction that
is denser and more spatially distributed than datasets generated from FI plots or ALS
data alone.

In the NWT, the scarcity of ground FI plots and ALS data became the impetus to scale
relationships between these data to GLAS footprints, where the latter served as surrogate
FI plots that were later scaled up to the entire forest land base using Landsat and environ-
mental features [7]. While there are several algorithms suited for this task [2], we chose
the k-nearest neighbour (k-NN) machine learning algorithm because of its non-parametric
nature, ease of use and ability for simultaneous predictions of multiple dependent vari-
ables [25,26]. Its expanding use over the last decade has been documented for a wide
variety of forestry applications, including forest inventory mapping based on remotely
sensed data and FI plots [26–28].

This approach, presented in Mahoney et al. [7], is the foundation for the Multisource
Vegetation Inventory (MVI), a joint project of Natural Resources Canada, Canadian Forest
Service and the Forest Management Division of the Government of NWT [5]. One of
the recommendations from Mahoney et al. [7] was to evaluate the addition of Synthetic
Aperture Radar (SAR) data for improving spatial predictions of forest attributes. In par-
ticular, L-band SAR dual-polarized (HH, HV) backscatter datasets from the Phased Array
type L-band Synthetic Aperture Radar (PALSAR) on board the Advanced Land Observing
Satellite missions (ALOS-1 [29] and ALOS-2) has been found to strongly correlate to forest
biomass and related structural attributes across multiple forest biomes as summarized
in [30]. In particular, the HV-polarized backscatter from PALSAR has been found the best



Remote Sens. 2022, 14, 1181 3 of 28

predictor of biomass and volume in many forest biomes [30], including boreal forests in
Sweden, Alaska, and Siberia [31–33].

Over the last decade, numerous combinations of LiDAR, SAR, and multispectral satel-
lite imagery at various temporal and spatial resolutions have been investigated, mostly for
mapping aboveground biomass from regional to global scales, as summarized, for example,
by Rodríguez-Veiga et al. [34]. Recently, Coops et al. [35] reviewed approaches and trends in
extending LiDAR-based estimates of height, aboveground biomass, and volume over large
areas using multi-source satellite imagery, which often include PALSAR and/or Landsat
data. Studies that combined both sources with LiDAR-based estimates reported higher
prediction accuracy than using PALSAR or Landsat alone, consistent with results reported
for various biomes across the Americas [15,36–38]. To our knowledge, however, the benefits
of combining LiDAR surrogate FI plots, L-band SAR, and multispectral satellite imagery
have not been fully evaluated for inventorying the boreal forests of North America [15,16].
In eastern boreal Canada, Luther et al. [16] used ALS-based estimates, Sentinel-2, and
PALSAR data to scale up attributes over a 5600 km2 area of Newfoundland and Labrador.
However, they did not quantify the improvement in predictive performance when L-band
PALSAR was combined with Sentinel-2 data in the modelling variable dataset. In the
present study, we aimed to test this improvement at more northerly latitudes and over
much larger areas than in previous work.

The purpose of this paper is to report enhancements to the k-NN implementation
described by Mahoney et al. [7] and to assess accuracy gains relative to Landsat-based
map products for the same area and year that did not include L-band PALSAR data. These
enhancements include expanding the number of forest attributes estimated (i.e., from stand
height and crown closure to also include stand volume, total volume, and AGB), changing
the response variable prediction from univariate to multivariate (i.e., from one response
variable at a time to all response variables simultaneously), utilizing a more robust model
optimization and diagnostics process [27,39], and including L-band PALSAR data [29] in
the k-NN input feature dataset.

2. Materials and Methods
2.1. Study Area

For this paper, the mapping area (Figure 1, red outline), also known within the MVI
project [5] as Phase 1, has 2007 as reference year and a 151,700 km2 extent. Phase 1 is
mostly located within the High and Mid-Boreal Ecoregions of the Taiga Plains Ecozone [40]
(Figure 1), which contains the more productive forests of NWT. From the 1970s to 2010,
only 24% of the study area was mapped by conventional forest inventory. According to a ca.
2007 Landsat-based landcover map (Section 2.2.3, Figure 1) detailed in Castilla et al. [5] that
was used in this study to stratify the mapping area by forest cover types, about 65% of the
study area is covered by forested lands largely dominated by upland conifer stands (open:
42% of the forested area, dense: 18%, sparse: 11%), upland mixedwood stands (dense: 10%,
open: 1%) and coniferous wetland treed areas (12%), with a few areas dominated by upland
broadleaf stands (dense: 4%, open: 2%) (Figure 2). The main needle leaf species are black
spruce (Picea mariana (Mill.) Britton, Sterns and Poggenb.), jack pine (Pinus banksiana Lamb.),
white spruce (Picea glauca (Moench) Voss) and tamarack (Larix laricina (Du Roi) K. Koch)
whereas the dominant broadleaf species are trembling aspen (Populus tremuloides Michx.)
and balsam poplar (Populus balsamifera L.). The topography is generally gently rolling
except in a small western part of the area located within the Boreal Cordillera Ecozone that
has high reliefs and steep slopes.
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Figure 1. MVI phase 1 study area (red outline) within a broader area across 2 provinces and 2 terri-
tories (separated by thin black outline) that has as a backdrop a ca. 2007 landcover map that includes 
forest cover types (C: conifer; M: mixedwood; B: broadleaf) with 3 density classes (sparse, open, 
dense) along with the Geoscience Laser Altimeter System (GLAS) reference dataset of surrogate 
forest inventory (FI) plots and 2 validation sample sets. The top right zoomed-in inset shows a single 
GLAS FI plot surrounded by BT−ALS plots in a 500 m by 500 m area corresponding to an intersection 
between the BT−ALS transect and an ICESat track. Map is in Albers equal area conic projection. 

 
Figure 2. Percent occurrence of forest cover types (WT: wetland treed; C: conifer; M: mixedwood; B: 
broadleaf) with cover density classes (sparse, open, dense) across all forested pixels of the study 
area and the initial and final GLAS samples of surrogate forest inventory FI plots, respectively, ac-
cording to the ca. 2007 landcover map (Figure 1). 

2.2. Datasets 
Input datasets (upper row of Figure 3) required in our k-NN workflow to produce 

the ca. 2007 raster maps of forest attributes (also known within the MVI project [5] as the 
Satellite Vegetation Inventory, SVI) consist of: (i) point dataset of response variables (i.e., 
forest attributes to be mapped) modelled from GLAS, (ii) wall-to-wall datasets of feature 
variables from remote sensing and other sources, (iii) ancillary data, (iv) independent val-
idation datasets, and (v) Landsat-based maps. 

Figure 1. MVI phase 1 study area (red outline) within a broader area across 2 provinces and 2 territo-
ries (separated by thin black outline) that has as a backdrop a ca. 2007 landcover map that includes
forest cover types (C: conifer; M: mixedwood; B: broadleaf) with 3 density classes (sparse, open,
dense) along with the Geoscience Laser Altimeter System (GLAS) reference dataset of surrogate forest
inventory (FI) plots and 2 validation sample sets. The top right zoomed-in inset shows a single GLAS
FI plot surrounded by BT−ALS plots in a 500 m by 500 m area corresponding to an intersection
between the BT−ALS transect and an ICESat track. Map is in Albers equal area conic projection.
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Figure 2. Percent occurrence of forest cover types (WT: wetland treed; C: conifer; M: mixedwood;
B: broadleaf) with cover density classes (sparse, open, dense) across all forested pixels of the study
area and the initial and final GLAS samples of surrogate forest inventory FI plots, respectively,
according to the ca. 2007 landcover map (Figure 1).
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2.2. Datasets

Input datasets (upper row of Figure 3) required in our k-NN workflow to produce
the ca. 2007 raster maps of forest attributes (also known within the MVI project [5] as the
Satellite Vegetation Inventory, SVI) consist of: (i) point dataset of response variables (i.e.,
forest attributes to be mapped) modelled from GLAS, (ii) wall-to-wall datasets of feature
variables from remote sensing and other sources, (iii) ancillary data, (iv) independent
validation datasets, and (v) Landsat-based maps.
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Figure 3. k-NN optimization and mapping workflow to generate the Satellite Vegetation Inventory
(SVI) raster maps of five forest attributes and SVI map comparative accuracy assessment using
Landsat-based map version (SVI_L) and published (PUB) maps. Numbers in brackets refer to related
sections in the article.

2.2.1. Response Variables

The following five forest attributes were used as response variables in the k-NN algorithm:

1. Stand height (Ht, m): average height of dominant and codominant live trees, i.e., with
height ≥ average Lorey’s height, where Lorey’s height is the average height of all
trees with diameter at breast height (DBH) ≥5 cm and taller than 1.3 m) weighted by
stem cross-section;

2. Crown closure (CC, %): percent tree cover;
3. Stand volume (Vs, m3·ha−1): sum of volume inside bark of the boles of live trees with

height ≥ Lorey’s height;
4. Total volume (Vt, m3·ha−1): sum of volume inside bark of the boles of all live trees

with DBH ≥ 5 cm;
5. Total aboveground biomass (AGB, t·ha−1): total dry mass per unit area of whole live

trees with DBH > 5 cm, including branches and leaves and excluding roots based on
models reported in [41,42].

These forest attributes were estimated for the reference dataset of surrogate FI plots
using ALS and GLAS LiDAR models as previously reported in [5,7] and as summarized in
Methods (Section 2.3.1).



Remote Sens. 2022, 14, 1181 6 of 28

2.2.2. Feature Variables from Remote Sensing and Other Sources

On the basis of similar studies in Canada [7,8,16,43], we considered a number of
feature variables with the following criteria: (i) known correlation to forest attributes,
(ii) publicly available as wall-to-wall geospatial layers, (iii) native spatial resolution deemed
sufficient (25–100 m) for mapping attributes with a 30 m pixel size, and (iv) for satellite
imagery, orthorectified and calibrated radiometry with acquisition within plus or minus
1 year relative to the reference mapping year of 2007. By this standard, we gathered across
the study area, satellite imagery from both Landsat 5 Thematic Mapper (TM) and ALOS-
1/PALSAR, and environmental datasets, both biotic and abiotic, obtained from several
sources (Table 1).

Table 1. Description of categorized candidate feature variables for k-NN prediction and mapping.
Labels with an * indicate feature variables selected as input to the k-NN mapping.

Feature Category Description Label Units Year Pixel Size

Landsat TM spectral
bands, indices and

texture
(LANDSAT)

Blue band TOA a reflectance B1 -

2006–2008 30 m

Green band TOA reflectance B2 -

Red band TOA reflectance B3 * -

Near-infrared band TOA reflectance B4 * -

Short-wave infrared band TOA reflectance B5 -

Short-wave infrared band TOA reflectance B7 * -

Normalized Difference Vegetation Index
(B4 − B3)/(B4 + B3) NDVI -

Reduced Simple Ratio
(B4/B3) ∗ (B5max − B5)/(B5range) RSR * -

Normalized Difference Moisture Index
(B4 − B5)/(B4 + B5) NDMI -

Texture: 3 × 3 variance of
near-infrared band B4_TEX -

PALSAR
dual-polarized
backscatter and

texture
(PALSAR)

HH-polarized L-band backscatter intensity HH -

2007 25 m

HV-polarized L-band backscatter intensity HV * -

HV/HH backscatter intensity ratio HVHH -

Texture: HH 9 × 9 CV b HH_ TEX -

Texture: HV 9 × 9 CV HV_TEX -

Texture: HV/HH 9 × 9 CV HVHH_TEX -

Environmental c

2000 percent tree cover map updated to 2007 TC * % 2007 30 m

Terrain elevation from CDED d ELEV * m variable 90 m

Terrain slope from CDED SLOPE * deg variable 90 m

Compound Topographic Index from CDED CTI - variable 90 m

Average Soil Moisture Index SMI * mm 2001–2010 100 m

Average Climatic Moisture Index CMI cm 2001–2010 100 m
a Top-of-atmosphere. b Coefficient of variation. c Includes biotic and abiotic features. d Canadian digital
elevation data.

For Landsat imagery, we downloaded (https://earthexplorer.usgs.gov/, accessed:
7 August 2009) 8 orthorectified 30 m resolution Landsat 5 TM scenes (183 km by 170 km) in
level L1G at-sensor radiance format for spectral bands 1 to 5 and band 7 from years 2006 to
2008, each acquired within the growing season (mid-June to end of August). Scenes within
±1 year of the 2007 reference year had to be collected for some portions of the study area
to generate the best possible cloud and haze-free imagery.

https://earthexplorer.usgs.gov/
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For PALSAR imagery, we downloaded 49 1◦ × 1◦ tiles for the year 2007 from the
global 25 m resolution PALSAR mosaic (2007–2010)—version 1 (https://www.eorc.jaxa.jp/
ALOS/en/dataset/fnf/fnf_palsar20140116_e.htm, accessed: 1 November 2015). These tiles
provided orthorectified L-band dual-polarized SAR mosaics at 25 m pixels, namely 16 bit
HH- and HV-polarized terrain-corrected backscatter (gamma-naught) amplitude [44].

As an environmental biotic feature, we used the global percent tree cover product
(TC) for the year 2000 at 30 m pixel size derived from Landsat data [45]. For abiotic envi-
ronmental features, topography was characterized using the Canadian Digital Elevation
Data (CDED) [46] at 90 m pixels. Finally, we considered 2 climatic features: the climate
moisture index (CMI) [47] and the soil moisture index (SMI) [48] at 100 m pixels. Topo-
graphic and climatic features are commonly used to improve wall-to-wall forest attribute
estimation [26,49]. Processing of all above datasets, required prior to their usage in k-NN
mapping, is described in Methods (Section 2.3.2).

2.2.3. Ancillary Data

We used the ca. 2007 Landsat-based landcover map at 30 m pixels produced by the
MVI project (see details in [5,50]). The study area includes 8 out of 10 possible forest classes
combining 3 forest cover types (conifer, mixedwood and broadleaf) with 3 density classes
(sparse, open, dense), plus a wetland treed class (map in Figure 1, histogram of forest
classes in Figure 2). This landcover map was used to define target forest pixels for k-NN
predictions and mapping and assess prediction accuracy across forest types.

We also used the Landsat-based yearly tree cover loss product (2000–2015) with 30 m
pixels [45] (http://earthenginepartners.appspot.com/science-2013-global-forest, accessed:
8 september 2015) that we filtered to remove isolated change pixels using a 3 × 3 sieve filter.
Yearly tree cover losses accounted for forest changes (harvest, fire) between the various
acquisition years of all datasets encompassing the period 2000–2010.

2.2.4. Independent Validation Datasets

Two sample sets were used as independent validation datasets:

1. Fifty-two 400 m2 NFI ground plots [51,52] (hereafter NFI plots) for which stand-level
forest attributes derived from a combination of ground measurements and allometric
equations were available as continuous variables, except for crown closure provided
in broad ordinal classes. NFI plots qualify as an independent validation set as they
provide a probabilistic sample set but with the caveat that it is a relatively small
sample size for the study area;

2. Over 1 million Boreal transect ALS 25 m cells (hereafter BT−ALS LiDAR plots) de-
rived from ALS data acquired in the summer of 2010 along 750 m wide transects
totalling 1800 km in length with a point sampling density of 2.8 point·m−2 [53,54].
Stand height, Lorey’s height, and crown closure were estimated from ALS models,
while stand volume was estimated from stand height, and both total volume and
AGB were estimated from average Lorey’s height [5]. However, crown closure esti-
mates were not retained for validation because of a laser power issue preventing the
proper transferability of the ALS-based crown closure model to the BT−ALS data [7].
Although the BT−ALS sample set does not provide attribute estimates as accurate
as those from the NFI ground plots, and thus qualifies more as a comparison rather
than a validation set, we still considered it to be a valuable independent validation
dataset. It has a large number of 25 m cells and its extensive spatial extent captures a
much wider geographic range of forest conditions across broad forest types than NFI
ground plots.

2.2.5. Landsat-Based Forest Attribute Maps

We used two previously published 30 m Landsat-based maps of stand height and
AGB, respectively:

1. The ca. 2007 k-NN map of stand height over the same extent from Mahoney et al. [7];

https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf/fnf_palsar20140116_e.htm
https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf/fnf_palsar20140116_e.htm
http://earthenginepartners.appspot.com/science-2013-global-forest
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2. The large-area 2007 AGB map of Wang et al. [55] covering northwestern Canada
and Alaska; this map was part of a 1984–2014 time series of 30 m annual AGB maps
derived from the Gradient Boosted Machines machine learning algorithm trained
by GLAS-based AGB estimates and using predictors from seasonally fit Landsat
time series.

We selected these two maps as they were also produced using machine learning
algorithms that were trained using GLAS-modelled attributes and a feature dataset that
employed similar yet different environmental and Landsat features. In addition, we created
a version of our maps of stand height and AGB that excluded PALSAR from the feature
dataset (a version we call SVI_L, L for Landsat, see Section 2.3.6). These two sets of Landsat-
based stand height and AGB maps, created without any PALSAR features, were used as
baseline maps to quantify accuracy gains brought by the integration of PALSAR features.

2.3. Methods

The k-NN algorithm finds, for each forested target pixel with unknown forest attributes
(response variables), the k most similar reference pixels to the target pixel and predicts the
value of the forest attributes as a combination of the values in those reference pixels [27].
Similarity is measured in the multidimensional space of the auxiliary feature variables
using various distance metrics, common ones being Euclidian, Mahalanobis, and most
similar neighbour (MSN) [26]. For each target forested pixel, the values of the five forest
attributes are predicted as the average of the k reference pixels (i.e., the pixels corresponding
to the centroids of the GLAS footprints used as surrogate FI plots) that are nearest to the
target pixel in the space of feature variables as follows [27]:

ỹi =
∑k

j=1 wi
jy

i
j

∑k
j=1 wi

j

, wi
j =

1

Dtd
ij

(1)

where ỹi is the predicted attribute for the ith target pixel,
{

yi
j; j = 1, . . . , k

}
is the set of

observed response variables for the jth reference GLAS surrogate FI plots nearest in the
feature space to the ith target pixel, weights wi

j are given by the inverse of the distance
Dij in the feature space on the basis of a given distance metric between the ith target pixel
and the jth nearest reference pixel, and exponent td usually takes on values td = 0 (simple
average) or 1 (inverse distance weighted average).

Our k-NN workflow (Figure 3), adapted from Beaudoin et al. [43], includes the fol-
lowing pre-processing steps of input datasets: (i) GLAS modelling of response variables,
(ii) processing of feature variables, and (iii) creation of a reference set of GLAS surrogate
FI plots along with two independent validation sets. Then the steps specific to k-NN
mapping and accuracy assessment includes (iv) selection of the best feature variables
among those from the Landsat, PALSAR, and environmental datasets, (v) optimization of
k-NN parameters, (vi) creation of forest attribute SVI raster maps from k-NN predictions,
and (vii) accuracy assessment of SVI maps including a comparative evaluation with a
Landsat-based SVI map version and with previously published Landsat-based maps.

2.3.1. GLAS Modelling of Response Variables

The values of the 5 forest attributes (Section 2.2.1) in the reference dataset were
estimated using 2-stage predictive models based on (i) 38 field plots with ALS data for
the 1st stage models and (ii) 43 GLAS footprints that had coincident ALS data for the 2nd
stage models (see [5,7] for more information). Lorey’s height (i.e., weighted mean height of
trees, with weight proportional to the area of the trunk cross-section), stand height, and
crown closure was modelled from 2 distinct GLAS metrics (Table 2). Stand volume, total
volume, and AGB were modelled from the GLAS estimates of stand height and Lorey’s
height, respectively (Table 2). The GLAS models were subsequently applied to all GLAS
footprints in the study area, thereby creating GLAS surrogate FI plots.



Remote Sens. 2022, 14, 1181 9 of 28

Table 2. Geoscience Laser Altimeter System (GLAS) models of forest attributes along with model
form and coefficients, goodness of fit (adj. R2) and root mean square error (RMSE) values (adapted
from Tables 3 and 4a in [5]).

Forest Attribute Model and Parameters Adj. R2 RMSE

Lorey’s height (HL, m) a HLGLAS = 2.46 + 0.91 × P85 b 0.89 1.1
Stand height (Ht, m) HtGLAS = 2.30 + 1.10 × P85 0.88 1.3
Crown closure (CC, %) CCGLAS = 64.63 × Lz0.25 c 0.54 6.5
Stand volume (Vs, m3·ha−1) VsGLAS = 0.61 × HtGLAS

1.84 0.76 46.8
Total volume (Vt, m3·ha−1) VtGLAS = 1.84 × HLGLAS

1.69 0.81 59.3
Aboveground biomass (AGB, t·ha−1) AGBGLAS = 2.27 × HLGLAS

1.45 0.76 35.7
a Intermediate modelled attribute not targeted for k-NN mapping. b P85: GLAS waveform 85th percentile.
c Lz: cumulative projected foliage area index.

2.3.2. Processing of Feature Variables

The spectral bands 1 to 5 and band 7 of the 2006–2008 summer TM images were nor-
malized to a MODIS Top-of-Atmosphere (TOA) reflectance 250 m monthly composite [56]
to balance the radiometry across all images, providing a mostly seamless ca. 2007 Land-
sat TM TOA reflectance mosaic (Table 1). In addition, we derived three commonly used
spectral indices, namely the normalized difference vegetation index (NDVI), its variant the
Reduced Simple Ratio (RSR) [57] and the normalized difference moisture index (NDMI).
Finally, we added as texture feature the variance in band 4 over a 3 × 3 moving window
(B4_TEX) for a total of 10 Landsat features (Table 1).

For the PALSAR features, the contiguous 2007 HV and HH gamma-naught backscatter
amplitude tiles were mosaicked and clipped to the extent of the Landsat mosaic. The
backscatter amplitude pixel values were squared into intensity values and filtered for
speckle noise using the Touzi multi-resolution speckle filter with an 11 × 11 window [58].
Next, we derived the cross-polarized ratio HV/HH (HVHH). Finally, the local coefficient
of variation was calculated over a 9 × 9 moving window for each of the 3 unfiltered
mosaics providing first-order texture features (HH_TEX, HV_TEX, HVHH_TEX) [38]. This
processing provided a total of six PALSAR features (Table 1).

For the environmental biotic feature, the global 2000 percent tree cover product (TC)
was updated to year 2007, using yearly tree cover loss [45] as in Beaudoin et al. [6]. For
the environmental abiotic features, the CDED provided terrain elevation (ELEV) with
90 m pixel from which we derived local slope (SLOPE) and compound topographic index
(CTI) [59]. The two climatic features, CMI and SMI, were used as provided for a total of six
environmental features (Table 1).

All of the above datasets, provided in various file formats, ground resolutions (Table 1),
and projections, were re-projected to Albers equal area conic projection with a 30 m pixel
size using bilinear interpolation, were clipped to the extent of the study area and were
saved as a stack of geoTIFF files.

2.3.3. Creation of Reference and Validation Datasets

To create the reference dataset of GLAS-based surrogate FI plots, we screened all avail-
able GLAS 2A and 3A footprints in the study area to discard footprints potentially affected
by noise from the atmosphere, topography (slope > 5◦), or snow cover [7]. This resulted
in an initial selection of 9247 surrogate FI plots. Next, we applied an additional screen-
ing by using the yearly cover loss maps to exclude GLAS footprints that were disturbed
before or during the 2006–2008 years of Landsat and PALSAR acquisitions. Furthermore,
to reduce the effect of spatial autocorrelation, we selected a smaller subset in which no
2 footprints were closer to each other than 500 m. The latter was the autocorrelation range
found by a semi-variogram analysis [6]. A downside of this approach was a reduction in
the range of reference attribute values, which in turn increases k-NN prediction bias [39].
Therefore, excluded initial footprints that were below the 1% or above the 99% percentiles
were reintroduced.
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The filtering process generated a final reference set of 3600 out of 9247 GLAS surrogate
FI plots that were well distributed across the study area (Figure 1). Histograms of forest
landcover classes for the final selection of GLAS samples of surrogate FI plots were similar
to the initial GLAS samples and of all forested pixels within the study area (Figure 2).
Noticeably, Pearson correlation coefficient r among the 5 attributes showed that stand
volume and total volume were highly correlated to AGB in the reference dataset (r > 0.95,
p < 0.001) (Table S1). Such high correlation arises from the fact that AGB and total volume
were both derived from GLAS-based estimates of Lorey’s height, whereas total volume
was derived from GLAS-based estimates of stand height (Table 2), itself highly correlated
to Lorey’s height.

For the validation datasets, we discarded NFI and BT−ALS LiDAR plots that were
either (i) non-forested or wetland treed according to the landcover map, (ii) located over
sloping terrain (slope > 5 degrees), and (iii) disturbed between their measurement year
and the 2006–2008 years of Landsat and PALSAR acquisitions according to the yearly tree
cover loss map. This process resulted in selecting (i) 31 NFI plots out of 53 in the study area
(19 conifer, 7 mixedwood, and 5 broadleaf samples), and (ii) 1,080,866 BT−ALS LiDAR
plots (76.9% conifer, 13.6% mixedwood, and 9.5% broadleaf samples) (Table 3b). Due to
data gaps, a slightly smaller validation sample was produced for the accuracy assessment
of Wang’s AGB map (Table 3b).

Table 3. Descriptive statistics for ‘’observed” stand height and aboveground biomass (AGB) using
all samples that are also partitioned by three forest cover types for (a) reference set from GLAS
surrogate and (b) two validation sets: National Forest Inventory (NFI) plots and BT−ALS LiDAR
plots. Descriptive statistics for all five attributes are reported in Table S2.

(a) Reference Set (b) Validation Sets

GLAS NFI a BT−ALS

Attribute Forest
Type n Min Max Mean SD b n Min Max Mean SD n Min Max Mean SD

Stand
height

(m)

ALL 3600 3.6 34.1 9.7 5.9 31 5.0 31.5 14.8 7.0 1,080,866 2.5 35.0 11.6 6.1
Conifer 2459 3.6 33.6 8.8 4.8 19 6.5 29.7 12.9 6.6 831,619 2.5 34.8 10.0 5.0

Mixedwood 528 3.7 34.1 13.5 7.4 7 12.0 31.5 19.7 7.0 146,738 2.6 34.9 16.5 6.7
Broadleaf 219 3.7 34.0 15.7 8.3 5 5.0 20.4 14.9 6.1 102,509 2.6 35.0 17.4 6.1

AGB
(t·ha−1)

ALL 3600 1.2 352.1 54.2 51.6 30 4.5 300.1 85.4 77.0 1,080,734 7.9 326.4 72.1 55.1
Conifer 2459 15.1 286.5 49.2 38.6 18 7.6 195.8 64.4 59.6 831,499 7.9 324.4 57.9 43.5

Mixedwood 528 15.9 292.6 87.2 64.8 7 26.7 300.1 147.7 100.8 146,726 8.2 325.9 116.3 64.3
Broadleaf 219 15.9 290.6 107.0 73.1 5 4.5 127.5 74.0 61.2 102,509 8.3 326.4 124.3 59.8

a samples with numbers in black italic font not used for validation due to small sample size. b standard deviation.

Descriptive statistics of the GLAS reference set and two validation datasets for stand
height and AGB are shown in Table 3 (see Table S2 for all five attributes). The GLAS-
modelled forest attributes in the reference dataset (all forest cover types combined) were
relatively similar to those of conifers, which dominate the study area (Table 3a). The
distribution was skewed towards sparse and open conifer stands with smaller attribute
values compared with the taller and more stocked broadleaf and mixedwood forest types.
Average stand height was the smallest for conifers, with larger values for broadleaf and
mixedwood forest types, a result that was consistent in both the reference and validation
datasets (Table 3a,b). Average AGB were largest and most variable for broadleaf stands,
followed by mixedwood stands, and smallest for conifer stands, a result that was consistent
for both the GLAS reference and validation datasets (Table 3).

2.3.4. Selection of Best Feature Variables

The purpose of this procedure was to avoid ingesting noisy or highly correlated feature
variables into the k-NN process [27]. Initially, this was done by visual inspection of the
feature variables. In particular, bands 1 and 2 of the ca. 2007 Landsat TM TOA reflectance
mosaic were removed due to residual atmospheric artifacts. Among those that passed
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the visual inspection, we selected the best feature subset using the varSelection procedure
within the yaImpute R package [60] using the forward selection mode “addVars” and
the MSN distance metric as in Beaudoin et al. [43]. The varSelection procedure uses the
global root mean square difference (GRMSD) as a single multivariate accuracy metric that
was calculated between observed and predicted forest attribute values projected in the
Mahalanobis space using n = 30 bootstrap samples [60]. An iterative forward selection
procedure finds the single best feature that yields the lowest GRMSD, with successive
features being sequentially added by decreasing GRMSD values until these values reach a
minimal value as a saddle point. Beyond this saddle point, GRMSD values increase due to
the addition of noisy features that are less correlated to the response variables.

The feature selection procedure was applied first in univariate mode to assess each
feature for its predictive capacity separately for each of the five individual forest attributes
and to record the number of times it was selected across the five attributes. Multivariate
mode was subsequently used to assess the overall predictive capacity of the best features
selected at once for all five forest attributes. We assessed the best feature selection by
reapplying the iterative forward selection procedure described above to ensure low GRMSD
levels without any substantial increase for the last selected features.

2.3.5. Optimization of k-NN k Parameters

In this paper, we used the Euclidian distance metric with simple averaging (td = 0
in Equation (1)). The optimization of the k value was determined using a five-fold cross-
validation analysis undertaken on the reference dataset based on k-NN predictions using
the yaImpute R package [61]. For a given value of k, ranging from 1 to 15, we computed
for each of 5 forest attributes the following 5 statistics: T2 (pseudo-R2, [27], Equation (2)),
as a measure of goodness of fit; root mean square difference (RMSD, [61], Equation (3)),
indicative of overall accuracy; mean difference (MD, Equation (4)), indicative of bias; and
MD for surrogate FI plots within the 5% lower tail (MD5, Equation (5)) and upper tail
(MD95, Equation (6)) which indicate the over- and underestimation biases found at the
lower and upper distribution tails, respectively [43].

T2 =
(SSmean − SSerr)

SSmean
(2)

RMSD =

√
1
n ∑ n

i=1(ỹi − yi)
2 (3)

MD =
1
n ∑ n

i=1(ỹi − yi) (4)

MD5 =
1
l ∑ l

i=1(ỹi − yi) | yi < y(rank(y, 0.05n)) (5)

MD95 =
1
u ∑ u

i=1(ỹi − yi) | yi > y(rank(y, 0.95n)) (6)

where SSmean and SSerr are the squared sum of differences between the observations and
the mean and between the observations and the predictions, respectively, n is the number
of GLAS surrogate FI plots, ỹi and yi are the predicted and observed attribute values in
surrogate FI plot, respectively, l and u are the number of surrogate FI plots in the lower and
upper tails of the distribution of forest attribute y, respectively, and y(rank(y, P·n)) is the
value corresponding to the P percentile of attribute y.

For each forest attribute, the 5 statistics described in equations 2 to 6 were calculated
using a 20% random sample cross-validation fold that was repeated 5 times, from which a
mean value was obtained for each statistic. To compare the statistics among attributes, we
normalized the statistics relative to the mean observed attribute value (percent value). Each
of the five normalized statistics was further averaged across the five attributes to compute a
single “multivariate” value per statistic [43]. Finally, each of the five multivariate statistics
was converted into a percent value relative to its optimal value (relstat_opt) found across the
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range of k values. The optimal value is the maximum value for T2 and the minimum value
for the four other statistics adapted from [27].

Graphs of relstat_opt versus k values were used to select the best k value as a compro-
mise between (i) the reduction of overestimation at low values and underestimation at
high values of the forest attributes, which requires lower k values and (ii) the reduction
of prediction variance and augmentation of the goodness of fit, which requires higher
k values [39].

2.3.6. Forest Attribute Maps from k-NN

The SVI raster maps of the five forest attributes were produced as a stack of GeoTIFF
files from an in-house C++ k-NN routine (k-NNMapping, [43]) that provides very fast and
exact k-NN predictions using the Approximate Nearest Neighbour library [62]. Based
on the landcover map, all 30 m forested pixels were assigned k-NN predictions for the
5 attributes, whereas non-forested pixels were assigned to no data. The k-NN predictions
were obtained using the full set of best feature variables (Section 2.3.4) and the optimized
k-NN k parameter value (Section 2.3.5).

In addition to the SVI maps derived from PALSAR, Landsat, and environmental
features, we also created a Landsat-based SVI map version combining only Landsat and
environmental features (hereafter SVI_L, L for Landsat).

2.3.7. Accuracy Assessment

The accuracy of the SVI maps (Section 2.3.6) and the two sets of Landsat-based maps
(Sections 2.2.5 and 2.3.6) was assessed separately using two independent validation datasets
(NFI plots and BT−ALS LiDAR plots, Section 2.2.4). The accuracy metrics for the SVI maps
were then compared to those from Landsat-based maps to assess the accuracy gains brought
by our improved k-NN workflow including PALSAR features. The following accuracy
metrics were obtained for each of the maps:

1. goodness of fit (adj. R2) and coefficients of linear regressions (predictions ~ observations);
2. mean error or bias (ME, predicted minus observed, expressed as in Equation (4) for

MD) and root mean square error (RMSE, expressed as in Equation (3) for RMSD) as a
measure of overall accuracy, both expressed as percent values relative to the observed
mean value (ME%, RMSE%);

3. mean and standard deviation of prediction error (predicted minus observed) by quar-
tile group across the range of observed NFI attribute values. This is presented along
with overall mean prediction error in a plot similar to a Bland Altman diagram [63,64],
which provides a visual graphic of the magnitude and distribution of prediction bias
and variance across the range of the response variable.

To assess the potential impact of forest type on accuracy, these metrics were computed
first using all samples and then using samples partitioned by forest cover type for each of
the two validation datasets.

Strictly speaking, the above accuracy metrics qualify as prediction errors only for the
NFI plots, which come from a probability-based design and which have attribute values
closer to the truth than the modelled attributes from the BT−ALS plots, but with the caveat
of a small sample size. On the other hand, the BT−ALS plots provide a much larger sample
set across all forest cover types, but being modelled, must be interpreted with caution.

3. Results
3.1. Selection of Best Feature Variables

Figure 4a shows the multivariate GRMSD curve as a function of the 20 feature vari-
ables selected in decreasing order of importance along with the number of times (0 up
to 5) each feature was selected in univariate mode. GRMSD reached a minimal value of
1.11 with the selection of 9 features (up to the CMI climatic variable in Figure 4a). The
overall best feature was the percent tree cover TC, which was systematically selected in
univariate mode for all of the forest attributes but only once as best feature for crown
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closure (Figure S1). The second-best feature was the HV-polarized PALSAR backscatter,
which was also systematically selected in univariate mode and, notably, was selected as
best feature for all five attributes except for crown closure (Figure S1). The Landsat TM
NIR (B4) and red (B3) bands were also selected among the best features, as well as three
topographic features (CTI, ELEV and SLOPE) and two climatic features (CMI, SMI).
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We refined the selection of best features based on the following adjustments. The
Landsat-based RSR vegetation index, which was highly correlated with forest attributes
(0.57 < r < 0.62), was not selected during the multivariate selection. As a result, it was read-
mitted to the set of best features. RSR was selected four out of five times in the univariate
selection mode (Figure 4a). This suggests that the predictive power of RSR is somehow
masked out during the multivariate selection process, and in this case is preferable to
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follow the outcome of the univariate selection. In addition, further visual inspection of
the CTI variable revealed some artifacts over flat terrain, hence it was discarded. We also
rejected the CMI variable because it was highly correlated with SMI (r = 0.96). Finally,
we readmitted the Landsat SWIR (B7) band because it was a relatively good predictor for
2 attributes in the univariate selection mode (–0.59 < r < –0.47). We further validated this
updated selection of 9 best features (highlighted by the ‘*’ symbol in Figure 4a and Table 1)
by reapplying the VarSelection procedure in both multivariate and univariate modes. The
resulting GRMSD curve (Figure 4b) shows a predictive response similar to that of the
GRMSD curve using the initial selection of 9 features (Figure 4a), which attained a low
GRMSD value of around 1.13, comparable to the value achieved in Figure 4a. Although the
inclusion of B7 and RSR resulted in only a marginal increase in GRMSD, it was justified
because both features were useful predictors for a number of attributes (Figure S1).

3.2. Optimization of the k-NN k Parameter

A value of k = 4 was selected from our multivariate optimization scheme based on 4
of the 5 relative statistics relstat_opt (%) across k values derived from Equations (2), (3), (5),
and (6) (T2, RMSD, MD95, MD5) (Figure 5). This decision considered the reduction of over-
and underestimation biases (smallest MD5 and MD95) requiring the lowest possible k value
while factoring the reduction in variance (smallest RMSD) and increase in goodness of fit
(highest T2), both requiring larger k values (Figure 5). The k value of 4 allowed all relative
statistics relstat_opt to be within 20% of their optimal values (100%) while keeping RMSD
and T2 values within 5% of their optimal values. This trade-off was selected to favour the
reduction of variance to avoid grainy maps resulting from lower k values.
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mean difference using the lower and upper 5% of distribution (MD5, MD95, Equations (5) and (6)),
supporting the selection of the optimal k value of 4.

3.3. SVI Maps from k-NN

SVI maps of all five attributes were created from optimized multivariate k-NN pre-
dictions. Out of the five attributes, our focus is on stand height and AGB. This is because
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(i) the GLAS-based stand volume and total volume estimates in the reference dataset were
highly correlated to AGB (r > 0.95, p < 0.001), resulting in similar SVI map patterns of stand
and total volume to those of the SVI map of AGB and similar trends in accuracy metrics,
(ii) the quality of SVI map of crown closure could not be properly evaluated as it is only
reported by broad classes in the NFI plots and (iii) published Landsat-based maps used for
comparison were only available for stand height and AGB. Maps and accuracy metrics for
all SVI forest attributes (except crown closure, for the above reason) are available in the
Supplementary Materials (Figure S2, Tables S3 and S4).

SVI maps of stand height and AGB are illustrated in Figure 6. The patterns matched
well with the expectations for both high and low productivity areas, where higher produc-
tive forest regions in the west were consistent with the expected occurrence of forest stands
with the largest stand height and AGB. Based on the analysis by Castilla et al. [5], they also
reported the mapped SVI predictions were considered reasonable for conifer stands, which
occupy over 70% of the forested area within the study area, and were relatively poorer for
mixedwood and broadleaf stands.
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Figure 6. SVI raster maps from k-NN predictions of (a) stand height and (b) AGB for the Phase 1
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attribute values are the 5% and 95% percentile, respectively. SVI maps for all five forest attributes are
found in Figure S2.

3.4. Accuracy Assessment
3.4.1. Accuracy of SVI Maps

Pixel-level scatterplots of observed (NFI plots and BT−ALS LiDAR plots) versus
predicted (SVI) values of stand height and AGB exhibited a similar pattern regardless of the
validation dataset (Figure 7a). The linear regressions followed trends that approximated
the 1:1 line, with similar slopes and intercepts (Figure 7a). There was increasing variance
and heteroscedasticity at larger values of the attribute (Figure 7a), consistent with previous
reports [27,43]). The adj. R2 values were only moderate, being largest for stand height at
0.48 and 0.55, and slightly lower for AGB at 0.45 and 0.53, for NFI plot and BT−ALS LiDAR
plots (Figure 7a), respectively.

When all NFI plots were parsed by cover type, larger adj. R2 values of 0.58 for stand
height and 0.74 for AGB (Figure 8a, Table S3a) were observed, but only for conifers as there
were an insufficient number of NFI plots to assess trends for mixedwood and broadleaf
species (Table 3b). A decreasing trend in adj. R2 values from conifer to mixedwood
and broadleaf was observed when the SVI map of stand height was evaluated using
the BT−ALS plots (Figure 8a). This trend was also consistent for the SVI map of AGB
(Figure 8b). Linear trends and adj. R2 values of stand volume and total volume were similar
to those of AGB (Table S3).
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Figure 7. Comparison of scatterplots of observations versus predictions of stand height (left column)
and AGB (right column) from (a) SVI maps, (b) Landsat-based SVI_L maps and (c) previously
published Landsat-based maps using all NFI plots (blue dots) and BT−ALS LiDAR plots (density
scatterplot). Dashed blue and black lines are regression lines along with equations and adj. R2

values, respectively, based on NFI plots and BT−ALS LiDAR plots (see Table S3 for linear regression
statistics of all attributes). Distinctive symbols for the NFI plots (blue dots) distinguish the three
forest cover types.
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Figure 8. Goodness of fit (adj. R2) for (a) stand height and (b) AGB relative to the validation datasets
comprising NFI plots and BT−ALS LiDAR plots using all samples (ALL) then partitioned by forest
cover type (C: conifer, M: mixedwood, B: broadleaf) for SVI maps compared to Landsat-based SVI_L
maps and published (PUB) maps.

Based on all NFI plots, SVI predictions for stand height compared to AGB were
more biased (ME% = −6.9% vs. ME% = 1.6%) (Figure 9a,b; Table S4a) but less variable
(RMSE% = 33.9% vs. RMSE% = 64.7%) (Figure 10a,b; Table S4a). When parsed by cover
type, ME% and RMSE% metrics were more favourable for NFI conifer plots compared to
all NFI plots for both stand height and AGB, i.e., smallest ME% (Figure 9a,b) and smallest
RMSE% (Figure 10a,b; Table S4a). The exception occurred for ME% for AGB where conifer
was 16.3% overestimated, on average, compared to when all cover types were evaluated
(1.6%) (Figure 9a; Table S4a). Most of the study area is comprised of relatively low biomass
conifer (Figure 6b, Table 3). When NFI plots were parsed by cover type, 19 conifer plots were
available to validate SVI estimates from which small values of AGB were overestimated
(Table 3, Figure 9b). Predictions for NFI conifer plots were less biased for stand height
compared to AGB (ME% = −3.2% vs. ME% = 16.3%) and less variable (RMSE% = 32.1% vs.
RMSE% = 47.8%) (Figures 9a and 10a).
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Figure 10. Percent root mean square error (RMSE%) for (a) stand height and (b) AGB relative to the
validation datasets comprising NFI plots and BT−ALS LiDAR plots using all samples (ALL) then
partitioned by forest cover type (C: conifer, M: mixedwood, B: broadleaf) for SVI maps compared to
Landsat-based SVI_L maps and published (PUB) maps.

Based on BT−ALS LiDAR plots, ME% values for stand height were slightly overesti-
mated for conifers (2.0%), followed by a decreasing trend of larger underestimation errors
for mixedwood and for broadleaf species (Figure 9a, Table S4b). ME% values for AGB
were slightly underestimated for conifers (−0.8%), this was also followed by a decreasing
trend of larger underestimation errors for mixedwood and for broadleaf species (Figure 9b,
Table S4b). There was relatively little change in stand height RMSE% when evaluating the
SVI using the BT−ALS plots (Figure 10a). For AGB, SVI RMSE% was smaller for conifer
than from all species using the NFI plot validation dataset and relatively larger for conifers
than for mixedwood and broadleaf using the BT−ALS validation dataset (Figure 10b). This
result is caused by the dominance of conifers and their wide range of stand attribute values
in the study area (Figure 1, Table 3).

Based on a plot of mean prediction errors across the 4 quartile groups (hereafter Q1,
Q2, Q3 and Q4) of NFI-observed attribute values of stand height (Figure 11a), prediction
bias changes across the range of the forest attribute. There is an average overestimation of
0.7 m at smaller attribute values (Q1) and an average underestimation of −6.1 m at larger
attribute values (Q4). Over- and underestimation biases compensated each other resulting
in an overall small bias of−1.4 m (Figure 11a, horizontal black lines). Furthermore, quartile-
level standard deviation of prediction errors increased for larger values, which is indicative
of heteroscedasticity. Similar trends were observed across quartiles for AGB except for Q2,
with an average overestimation of 25.8 t·ha−1 for Q1 and an average underestimation of
−60.8 t·ha−1 for Q4, with an overall small bias of 1.3 t·ha−1 (Figure 11b). The standard
deviation of prediction error also increased as AGB values became larger.

3.4.2. Accuracy Comparison between SVI Maps and Landsat-Based Maps

First, we compared the pixel-level accuracy metrics of the SVI maps with those from
the Landsat-based SVI_L map versions, which employed Landsat and environmental data
(B3, B4, B7, RSR; TC, ELEV, SLOPE, SMI) but no PALSAR data (HV). Comparison of SVI
and SVI_L scatterplots of stand height and AGB (Figure 7a vs. Figure 7b) revealed similar
patterns and linear trends but with decreased scatter of SVI predictions. The SVI map
of stand height had larger adj. R2 values than those from the SVI_L map, and this was
consistent for both validation datasets (Figure 8a). There was a similar observation for AGB
(Figure 8b). The magnitude of SVI ME% values was generally smaller than the SVI_L ME%
values for stand height and AGB (Figure 9a,b). SVI RMSE% values were systematically
smaller than SVI_L RMSE% values by about 15% on average for both stand height and
AGB (Figure 10a,b).
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using all NFI plots (horizontal lines) and NFI plots grouped by quartiles Q1 to Q4 (mean error ± one
standard deviation, dots) for SVI maps, Landsat-based SVI_L maps and published (PUB) maps.
Dotted lines are added to highlight trends across four quartiles.

The comparison of the plot of SVI vs. SVI_L mean prediction errors for stand height
revealed a similar trend across the attribute quartiles, with slightly smaller overestimation
for Q1 (0.7 m vs. 1.8 m), and slightly lower underestimation for Q4 (−6.1 m vs. −7.6 m), and
a slightly smaller overall bias of −1.4 m vs. −1.9 m (Figure 11a). For AGB, the trend was
similar across the quartiles with slightly lower overestimation for Q1 (25.8 vs. 28.8 t·ha−1),
lower underestimation for Q4 (−60.8 vs. −73.9 t·ha−1 ), and a smaller overall bias of
1.34 vs. −4.0 t·ha−1 (Figure 11b). These results suggest a modest decrease in overall bias
and underestimation for the upper half of attribute range, respectively. Some caution is
necessary when interpreting these values due to the small sample size that prevented a
more robust assessment of the statistical significance in the observed mean differences
between SVI and SVI_L prediction errors.

Second, we compared the pixel-level accuracy metrics of our SVI maps with those of
the two Landsat-based published (PUB) maps, stand height from Mahoney et al. [7] and
AGB from Wang et al. [55]. On the basis of scatterplots and linear regressions (Figure 7a vs.
Figure 7c), our SVI maps of stand height and AGB generated larger adj. R2 values with
regression lines closer to the 1:1 line than those from the published maps. For example,
Wang’s map of AGB had a slope that was twice that of the regression lines for the SVI
maps in addition to a large negative intercept (Figure 7c). The SVI stand height adj. R2

was larger than the published maps across both validation datasets, that was consistent
when further assessed by cover type (Figure 8a). The SVI AGB adj. R2 was also larger than
the published map from Wang et al. [55] with the NFI plot validation dataset (Figure 8b).
This trend changed when using the BT−ALS plots where adj. R2 was similar between SVI
and the published map for all cover types, and larger than SVI when parsed by cover type
(Figure 8b). This result is an artifact of the large slope relationship observed in Figure 7c,
and was therefore not a valid indicator of more accurate AGB estimates from the published
map. The ME% metric had smaller values for the SVI maps compared to the published map
for both stand height and AGB across both validation datasets (Figure 9a,b), indicating the
SVI maps are less biased than the published map. Map predictions with smaller RMSE%
is also an indicator of greater accuracy with the SVI generating smaller values than the
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published map that was consistent across validation datasets and cover types for both
stand height and AGB (Figure 10a,b).

The comparison of the plot of SVI vs. Landsat-based published mean prediction
errors for stand height revealed a similar trend across attribute quartiles with similar mean
errors for Q1 and Q2, but smaller SVI underestimation for both Q3 (1.5 m vs. −3.1 m)
and Q4 (−6.1 m vs. −11.8 m), resulting in an overall smaller SVI bias of −1.4 m vs.
−4.2 m (Figure 11a). For AGB, the trend was found more linear across the quartiles with
similar overestimation for Q1, a smaller SVI underestimation for both Q3 (17.3 t·ha−1 vs.
–26.0 t·ha−1) and Q4 (−60.8 t·ha−1 vs. −106.7 t·ha−1), resulting in an overall smaller SVI
bias of 1.3 t·ha−1 vs. −23.6 t·ha−1 (Figure 11b).

Our comparative accuracy assessment suggests the inclusion of the PALSAR HV
backscatter into our k-NN implementation provided in most cases more accurate predic-
tions as revealed by higher goodness of fit (Figure 8, Table S2), lower bias magnitude
(Figure 9, Table S3), lower RMSE% (Figure 10, Table S3), and modest reduction in under-
estimation biases compared to the Landsat-based SVI_L map (Figure 11). The differences
were even larger when comparisons were made with the Landsat-based published maps.
Both comparative accuracy assessments confirm the value of integrating Landsat and
PALSAR features.

4. Discussion

This paper details a k-NN mapping method that used multi-source satellite data to
generate improved forest attribute raster maps of a sparsely inventoried northern boreal
forested environment located in the NWT within the MVI project [5,7]. Our k-NN imple-
mentation, which superseded that by Mahoney et al. [7], was an adapted multivariate
version of published k-NN workflows and tools [27,39,43] for selection of best feature vari-
ables and optimization of k-NN parameters. Our k-NN modelling integrated environmental
features at 30 m resolution with open multi-source satellite data, including (i) GLAS LiDAR
data providing a reference set of surrogate FI plots with modelled attributes, (ii) Landsat
multispectral and environmental data, and (iii) L-band dual-polarized PALSAR radar data.
This specific combination, to our knowledge, has not yet been applied and evaluated over
large areas of northern boreal forests of Canada. Our work is particularly relevant in the
context of recent and upcoming satellite missions that ensure the continuous provision
of highly complementary spaceborne LiDAR, multispectral, and L-band SAR data time-
series. We comment on the primary results of this study related to our two objectives,
identify some of the main error sources and present opportunities for future work to further
improve forest information in the sparsely inventoried northern boreal forests of Canada.

4.1. Primary Results of This Study

Our study documents the benefits of using an optimized multivariate k-NN workflow
compared to a univariate workflow such as that in Mahoney et al. [7]. Comparing Landsat-
based maps, we observed a decrease in magnitude of ME% (Figure 9a) and RMSE%
(Figure 10a) between our Landsat-based SVI_L stand height map and that from Mahoney
et al. [7]. This reduction in prediction errors likely stems from our optimized selection of
best features and k parameter within our k-NN workflow. For AGB, the k-NN predictions
from our SVI_L map similarly showed a reduction in magnitude of ME% (Figure 9b) and
a relatively smaller RMSE% (Figure 10b) compared to those from the Wang et al. [55]
map. We observed that Wang et al. [55] did not incorporate PALSAR data, used a different
machine learning algorithm, and employed generic GLAS models to map AGB across a
much broader spatial extent than this study. These factors possibly explain why our results
were more accurate than those computed from Wang et al. [55].

More importantly, this study evaluated the inclusion of the single L-band PALSAR
HV backscatter feature together with environmental and Landsat features in the final SVI
maps. The value of the single PALSAR L-band HV backscatter feature was highlighted by
its selection as the first feature in the univariate mode for all attributes except for crown
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closure (Figure S1). PALSAR HV backscatter is correlated to biomass and volume through
the dominance of radar volume scattering from crown branches and twigs, which relates to
total biomass through allometric dependencies [65]. Notably, the PALSAR HH and HVHH
backscatter features were rejected, a result that was consistent with previous studies across
boreal forests [30–34], which reported that the biomass retrieval accuracy for summer HV
backscatter was consistently better than that for HH polarization.

Except in a few cases, the combination of PALSAR HV backscatter with selected
Landsat and environmental features yielded improved values of accuracy metrics of k-NN
predictions across both validation sets and across forest cover types (Figures 7–11 for stand
height and AGB; Tables S3 and S4 for all 4 attributes) consistent with studies combining
the same multi-source satellite datasets to extend LiDAR-based estimates [34–38]. k-NN
predictions generated from this study overestimate at low values and underestimate at
high values (Figure 11), consistent with the k-NN literature. However, all satellite-based
biomass maps evaluated in [34], which integrated PALSAR data, report similar levels
of over- and underestimation independent of the models used. A modest reduction in
underestimation bias (negative ME% values) was observed for taller and more stocked
forest stands (Figure 11a,b) sometimes found in conifer, but mostly in mixedwood and
broadleaf forest types (Table 3). This reduction in underestimation could be partly attributed
to the higher AGB saturation level of L-band HV data in the 100 to 150 t·ha−1 range for
boreal forests [30,36], compared to results generated from the use of multispectral imagery
alone. Contrary to stand height, overestimation bias was not reduced at low attribute
values of AGB (Figure 11b) that are mostly found in open and less stocked conifer forests
with smaller trees. A possible explanation is that the decreased volume scattering from tree
crowns in such forest types is offset by a combination of (i) increased volume scattering
from exposed mixtures of shrubs and understory trees, resulting in higher backscatter levels
than if the understory layer was barely present [33] and (ii) increased surface backscatter
contribution affected by soil moisture and surface roughness [34].

4.2. Sources of Errors

We attempted to mitigate sources of errors and to improve upon research reported in
Beaudoin et al. [43] and Mahoney et al. [7]. Three main sources of pixel-level errors in the
SVI maps include (i) sampling and multi-level modelling errors in the set of 3600 GLAS
surrogate FI plots with forest attributes modelled from FI plots and ALS metrics [5,7,30],
(ii) resolution, spatial and temporal mismatches between the GLAS surrogate FI plots and
the Landsat and PALSAR pixels [30], and (iii) k-NN prediction errors including the over-
and underestimation bias at the lower and upper ends of the attribute range, respectively,
and increased variance (heteroscedasticity) as attribute values increase [27].

Robust quantification of these error sources and their propagation in the multi-level
modelling was not possible because of the lack of sufficient NFI ground plots and the
greater uncertainty in the BT−ALS estimates of forest attributes modelled from LiDAR
metrics. Furthermore, other factors could have contributed to the differences we found in
our comparative accuracy assessment of the SVI maps and the two previously published
maps, namely, differences in training set (source, sample size, extent, etc.), Landsat and
environmental feature variables, and choice of machine learning algorithm (k-NN vs.
Gradient Boosted Machines). The inherent uncertainties in the satellite landcover map
used to stratify the NFI and BT−ALS LiDAR plots into species cover type may have also
influenced evaluation of the accuracy metrics.

Nevertheless, our comparative accuracy assessment, except in a few cases, consistently
suggested that our SVI maps integrating PALSAR features generated attribute predictions
that were in greater agreement with our NFI and BT−ALS validation datasets compared
to those from the two sets of Landsat-based maps. SVI maps generated more accurate
predictions for stand height than for AGB and stand and total volumes, in part due to
increased uncertainties associated with stand/total volume and AGB attributes within
the GLAS reference set, which were derived from models using height as the predictor
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variable [30]. Such modelling explains, in part, the similarity of the spatial patterns in the
SVI maps of these three attributes (Figure S2), as well as the similar trends in the accuracy
metrics of these attributes (Tables S3 and S4).

We observed increasing magnitude in bias in both stand height and AGB predictions
with increasing proportion of broadleaf species from conifer to mixedwood and broadleaf
cover type (Figures 9 and 10) consistent with Landsat-based results reported by Bell
et al. [66]. The integration of PALSAR HV backscatter modestly contributed to reducing
cover-related errors. While our results may have been influenced by the dominance of
conifers in the study area, there was a relatively lower occurrence of mixedwood and
broadleaf forest types.

The relative RMSE for SVI AGB achieved in this study (Figure 10b) were within the
range of 37% to 67% reported by Rodríguez-Veiga et al. [34], who compared approaches and
regional biomass maps across different biomes. They concluded that all current spaceborne
sensors have been inadequate for estimating AGB beyond the range of 100–150 t·ha−1 [34].

4.3. Future Work

There are opportunities to exploit other well-established machine learning algorithms
such as random forest [67,68] and to incorporate new, broader and synergistic Earth Ob-
servation data sources and data processing environments. The availability of new ICESat-
2 [69–71] and GEDI [71] LiDAR satellite data of increased quality and richness has further
opened up promising avenues to generate more accurate and spatially/temporally denser
surrogate FI plots. For the L-band SAR data, ALOS-1 then ALOS-2 PALSAR SAR missions
have been providing the first-ever freely available yearly worldwide dual-polarization
L-band mosaics at 25 m pixel since 2007 [44]. The upcoming L-band NISAR mission [30,71]
will increase the critical provision and uptake of long-wavelength SAR time-series across
the northern boreal forests of North America. In addition, investigations are needed to
further exploit the potential of multi-frequency SAR data (e.g., NiSAR, RCM, Sentinel-1,
PALSAR-4) along with polarimetric and interferometric capabilities for northern boreal
environments.

For optical multispectral data, the Landsat continuity mission along with the ESA
Sentinel-2 mission provides opportunities to further exploit the synergism of both optical
sources through harmonized Landsat and Sentinel-2 (HLS) surface reflectance datasets [72],
providing denser, cloud-free, pixel-based image composite time-series along with a greater
number of feature variables than those provided by single summer Landsat imagery as used
in this study. Future work will incorporate cloud-based processing web platforms, such as
Google Earth Engine [73], which will enable much faster prototyping and operationalization
of large-area forest mapping methods.

Future work should target reduction of underestimation due to optical and backscatter
saturation for AGB levels above 100–150 t·ha−1 [34] and variance of predictions in more
stocked and heterogeneous (species-wise) mixedwood and broadleaf forests, such as in
the exploitation of signal seasonal dynamics [19,55]. Investigations are also necessary to
reduce overestimation in lowly stocked forests, which are common in northern boreal
forests. Overall, undertaking such work would help to improve prediction and mapping of
forest attributes across the range of forest types in all the NWT.

This study employed field, airborne, and satellite LiDAR with multi-source remote
sensing and environmental data to spatially predict a suite of forest attributes. Within
this context, a broader question is how these methods can be used within a monitoring
framework. The recent study by Coops et al. [35] identified modelling trends and offered
a future outlook that is highly relevant to the consequences of this study going forward.
Notably, most reported studies similar to ours have undertaken mapping of forest attributes
that are relevant to specific points in time [6,14,35,36]. The ability to assess changes in
forest structure is recognized of increasing importance as it expands the ability to assess
and adapt to how forest landscapes are changing or responding to natural and human-
caused disturbances. The ability to track changes in forest structure and biomass relative to
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disturbance dynamics has been recently demonstrated using Landsat time-series [14,74],
which could be enhanced through the combination of increasingly available L-band and
C-band dense time-series SAR data [34]. Forest inventory and assessment necessarily
require a monitoring component, with current and future work pointing to this direction to
track the temporal dynamics of forest attributes over space and time.

5. Conclusions

This paper describes the multivariate k-NN implementation approach followed in the
MVI project [5] to map forest attributes in the northern boreal forests of NWT, Canada,
and assesses improvements in predictive performance achieved through the addition of
L-band PALSAR to a set of Landsat and environmental feature variables. Forest attributes
were predicted wall to wall in 30 m cells and included stand height, crown closure, stand
volume, total volume, and AGB. In most cases, the inclusion of L-band PALSAR HV cross-
polarized backscatter as a feature variable generated forest attribute predictions with higher
goodness of fit (adj. R2), lower percent mean error (ME%) and percent root mean square
error (RMSE%), and lower underestimation for larger attribute values. Predictions were
most accurate for stand height (RMSE% = 32.1%, adj. R2 = 0.58) and AGB (RMSE% = 47.8%,
adj. R2 = 0.74) of conifer forests which occupy over 70% of the forested area within the
study area. However, predictions were poorer for taller and more stocked mixedwood and
broadleaf forest types, which showed greater underestimation and prediction variance.
Our study corroborates a known issue with k-NN prediction that tends to overestimate
at low values and underestimate at high values, the latter amplified by saturation of both
optical and radar backscatter.

Since this study was initiated, new spaceborne LiDAR data have become available,
in addition to improved optical data from both Landsat and Sentinel-2. Such open data
sources, combined with a cloud-based processing environment such as Google Earth
Engine, provide new opportunities to further improve upon the spatial prediction approach
described in this study. The scarcity of field data where physical access is costly and
logistically difficult remains a limitation in northern boreal forests. Multi-source, multi-
level sampling frameworks that incorporate these new sensor data capabilities provide the
most feasible means by which spatially contiguous, large-area forest attribute maps can be
generated and subsequently used to track changes over time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14051181/s1, Table S1: Pearson correlation coefficient r (p-value < 0.001) between pairs of
five forest attributes within the reference set of GLAS surrogate forest inventory (FI) plots (n = 3600).
Numbers in bold characters are for r values > 0.95. Table S2: Descriptive statistics for ‘’observed”
values of five forest attributes using both all reference/validation samples (ALL) and partitioned
by three forest cover types (Conifer, Broadleaf, Mixedwood) for: (a) a reference dataset from GLAS
surrogate forest inventory (FI) plots and (b) two validation sets: National Forest Inventory (NFI) plots
and boreal transect airborne laser scanning (BT-ALS) LiDAR plots. Empty cells are due to missing
validation sets for crown closure. Table S3: Linear regression (predicted ~ observed) goodness of
fit (Adj. R2) along with slope, intercept, root mean square error (RMSE) (p-value < 0.001) for four
attributes across broad forest types (rows) and across two Satellite Vegetation Inventory (SVI) map
versions (SVI: final maps; SVI_L: Landsat-based map) and previously published (PUB) Landsat-based
maps (columns) based on two independent validation sets: (a) National Forest Inventory (NFI) plots
and (b) boreal transect airborne laser scanning (BT-ALS) LiDAR plots. Empty cells are due to missing
published maps for total and stand volume. See Table S2 for the descriptive statistics of the two
validation sets; Table S4: Pixel-wise percent mean error (ME%) and percent root mean square error
(RMSE%) for four attributes across broad forest types (rows) and across two Satellite Vegetation
Inventory (SVI) map versions (SVI: final maps; SVI_L: Landsat-based map) and previously published
(PUB) Landsat-based maps (columns) based on two independent validation sets: (a) National Forest
Inventory (NFI) plots and (b) boreal transect airborne laser scanning BT-ALS cells. Empty cells
are due to missing Landsat-based published maps for total and stand volume See Table S2 for the
descriptive statistics of the two validation sets. Figure S1: Univariate global root mean square
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difference (GRMSD) metric (the circle represents the mean, and the vertical bar length is ± 1 standard
deviation) as function of forward iterative selection of best features among the final selection of nine
features for stand height, crown closure, stand volume, total volume and above ground biomass
(AGB). See Table 1 for more information regarding definition of the feature variables. Figure S2:
Satellite Vegetation Inventory (SVI) raster maps from k-NN predictions of (a) stand height, (b) crown
closure, (c) stand volume, (d) total volume and (e) aboveground biomass (AGB) for the Phase 1
area. White pixels are non-forested lands whereas light blue pixels are water bodies. Low and high
attribute values are the 5% and 95% percentile, respectively.
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