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Abstract: Oil sands surface mining and processing in Alberta generate large volumes of fluid tailings
and process water high in salts and metals, which must be reclaimed. We investigated growth
of four common plants (two native and two non-native) found in boreal oil sands reclamation
sites as influenced by substrate type (tailings cake, and mixtures of cake-sand, cake-peat, and cake-
forest floor mineral mix) and water quality (0%, 50%, and 100% oil sands process water). Overall,
cake-peat supported the highest aboveground biomass among substrates whereas cake and cake-
sand performed poorly, possibly due to high sodium and chloride concentrations. Adding process
water to substrates generally reduced growth or increased mortality. Grasses had greater growth
than forbs, and for each functional group, non-native species performed better than native species.
Hordeum vulgare had the highest overall growth with no mortality followed by Agropyron trachycaulum
with negligible (0.5%) mortality. Chamerion angustifolium was most affected by the treatments with the
lowest growth and highest mortality (56%). Sonchus arvensis had higher growth than C. angustifolium
but its slow growth makes it less suitable for reclaiming tailings. Our results indicate that H. vulgare
and A. trachycaulum could be good candidates for use in initial reclamation of oil sands tailings.

Keywords: boreal plants; forest land reclamation; oil sands; process water; tailings cake

1. Introduction

The oil sands deposits in northern Alberta, Canada, represent the world’s third largest
oil deposit, with proven reserves of 165.4 billion barrels [1]. Oil sands surface mining results
in severe forest disturbance. Following mine closure, disturbed lands are to be returned
to an equivalent land capability, which can support land uses similar to the pre-disturbed
land [2]. The Government of Alberta has also implemented a directive for progressive
reclamation to ensure that all fluid tailings from a mining project are ready to reclaim ten
years after the end of mine life [3].

The extraction process generates large volumes of fluid fine tailings comprised of
connate and process water, sand, silt, clay, residual bitumen, inorganic salts, and organic
compounds [4–6]. Process water is classified as free water, residing on top of the tailings
material, or pore water, trapped within the fine spaces of tailings deposits. Oil sands fluid
fine tailings is generally composed of 70–80% water, 20–30% solids, and 1–3% residual
bitumen [5], and is alkaline and slightly brackish with high concentrations of organic
acids [4]. The suspended solids in oil sands tailings are dominated by quartz and clays
from the McMurray Formation, predominantly kaolinite, illite, and montmorillonite [7].
The total dissolved solids (TDS) in process water vary and change over time (for example,
ranging from 600 to 2200 mg L−1) as TDS mostly depends on the type of ore being mined.
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The aqueous cations are dominated by sodium while the anions are a mix of chloride,
sulphate, and bicarbonate [8].

A variety of chemical, physical, and mechanical methods are used or are being tested
to speed up the tailings dewatering process, with the objective of more quickly producing
a solid deposit with sufficient strength for reclamation. One of the first commercially im-
plemented tailings management method was composite or consolidated tailings where fine
and coarse tailings are mixed along with sufficient gypsum to create a non-segregating solid
mixture, which can settle to approximately 70 wt.% solids after one to two years. Another
commercially used method is centrifugation in combination with chemical amendments
to rapidly dewater tailings to produce tailings cake, with a typical solids content of 55 to
60 wt.%. In this study, we focus on tailings cake produced by centrifugation. As tailings
are being reclaimed, it is important to understand the effects of dewatered tailings (as
substrates) and process water (as groundwater seepage) on plant development and growth.

Response of plant growth to tailings or process water have been shown to vary
depending on species. Above- and belowground biomass of one-month-old jack pine
seedlings treated with process water was reduced by 31% and 20%, respectively, compared
to seedlings irrigated with deionized water [9]. A positive correlation was also found
between needle necrosis and tissue sodium and chloride for seven-month-old seedlings
treated with process water [9]. Pouliot et al. [10], however, observed no stress signs after
two growing seasons for fen vascular plants irrigated with process water, but groundwater
discharge of process water adversely affected mosses under dry conditions. For raspberry
grown in soil amended with 15% (by volume) fluid fine tailings, shoot and root dry
weights reduced by more than 50%, but in conifer seedlings, shoot and root dry weights
were not significantly different from those in control soils with no fluid fine tailings after
3 months [11]. Although plant responses to tailings or process water have been documented,
it is unclear how the synergistic stress of tailings and process water may affect growth and
development of common species in boreal reclamation sites. Knowledge of the combined
effect of tailings and process water on plant growth will help identify species that would
be suitable for consideration in reclaiming oil sands tailings.

A desirable goal for reclaimed land in the oil sands region in northern Alberta is to
have a functioning forest ecosystem composed of native plant species. However, substan-
tial changes in forest ecosystems due to mining activities, e.g., increased soil salinity [12],
may hinder growth of native species and favor non-native ones. Mixing contaminated sed-
iments with soil [13] or modifying the physiochemical environment of contaminated sites
through the addition of organic matter and nutrients in addition to planting native species
acclimated to contaminated soils [14,15] may reduce the concentration of contaminants
such as excess salts and improve plant growth. There is limited literature on the effect
of heavy metals from process water on boreal plant health. However, it is well known
that some heavy metals can accumulate within plants at high concentrations without
any indication of stress [16–18]. Increase in concentrations of these metals above plant
threshold levels would modify plant physiological processes [19]. Consequences include
visible changes in plant morphology, such as chlorosis and necrosis in leaves, stunted plant
growth, and changes in root structure [19–22].

In the current study, we investigated the response of four native and non-native plant
species commonly found in newly reclaimed areas in the boreal forest region of Canada:
Chamerion angustifolium (L.) Holub (fireweed, native forb), Sonchus arvensis L. (perennial
sow thistle, non-native forb), Agropyron trachycaulum (Link) Malte (slender wheatgrass,
native grass), and Hordeum vulgare L. (barley, non-native grass). Our objectives were
to determine the effect of oil sands tailings, mixtures of treated oil sands tailings and
reclamation substrates, and oil sands process water on aboveground biomass and mortality
of these four plants.
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2. Materials and Methods
2.1. Experimental Set Up

This was a randomized, complete block design, greenhouse pot study with 4 species ×
4 substrates × 3 water quality treatments × 6 blocks (gradient of sunlight and temperature
within greenhouse as influenced by distance of pots to greenhouse window) for a total
of 288 pots. Additionally, control pots with no plants were set up for each substrate ×
water combination, with 6 replicates for each combination for a total of 72 control pots. The
greenhouse temperature was set at 22–24 ◦C during the day (1000–2000 h) and 18–22 ◦C at
night (0100–0600 h), relative humidity was set to 30% and 40% during the day and night,
respectively, and an artificial light source (LumiGrow Pro 650) was turned on automatically,
within a 16-h period (0500–2100), when natural light intensity fell below 200 W m−2.

2.2. Substrates and Process Water

We used four tailings substrates: (i) pure centrifuge tailings cake, and mixtures (1:1 by
volume) of (ii) tailings cake and forest floor mineral mix (FFMM) (cake-FFMM), (iii) tailings
cake and sphagnum peat moss (cake-peat), and (iv) tailings cake and sand (cake-sand).

The tailings cake was created by centrifuging a mixture of fluid fine tailings (obtained
from an operational mine site in northern Alberta), gypsum (~900 ppm), and a high
molecular weight anionic polymer, A3338 polymer (~1000 ppm). The resulting tailings
cakes had 55.7 wt.% solids. The sand and sphagnum peat moss were commercially obtained,
and FFMM was obtained from an operational mine site in northern Alberta and consisted
of forest floor materials mixed with the underlying mineral soil.

Three types of irrigation water were used, which differed in quality: 0%, 50%, and
100% process water. The 0% process water consisted of reverse osmosis water whereas the
100% process water was the centrate water obtained from the centrifugation process used
to produce the tailings cake. The 50% process water was made up of equal proportions of
reverse osmosis water and 100% process water.

Chemical characterization of the substrates and process water used for the experiment
(Table 1) was done by CanmetENERGY, Natural Resources Canada, Devon, AB, Canada.
Tailings cake and tailings cake mixtures were slightly alkaline to alkaline (pH of 7.2–8.2). In
general, concentrations of ions in the 100% process water were approximately double that
of the 50% process water and were both substantially greater than the 0% process water.
The 0% process water was slightly acidic (pH of 6.7) and the 50% and 100% process water
were alkaline (pH of 8.2). To estimate soil nutrient supply rates during the period of the
experiment, a pair of anion and cation plant root simulator (PRS; Western Ag Innovations,
Saskatoon, SK, Canada) probes were installed to a depth of 9–10 cm in the control pots.
PRS probes give estimates of soil nutrient supply rates by attracting and adsorbing ions
on negatively and positively charged ion-exchange membranes [23,24]. The probes were
removed after eight weeks, washed with reverse osmosis water and sent to Western Ag
Innovations for extraction and laboratory analysis.

Table 1. Chemical characteristics of substrates and process water used for plant growth. EC, TDS, and SAR represent
electrical conductivity, total dissolved solids and sodium adsorption ratio, respectively.

Substrate Water

Cake Sand
+ Cake

FFMM +
Cake

Peat
+ Cake

Reverse
Osmosis

50% Process
Water

100% Process
Water

Percent solids (%) 56 78 73 53
pH 7.90 8.21 7.87 7.17 6.71 8.24 8.26

EC (mS/cm) 2.79 4.95 4.73 2.39 0.02 1.16 2.18
TDS Calculated (g/L) 3.69 5.64 4.82 2.86 0.02 1.06 1.87
SAR Concentrations mg/kg mineral solids mg/L

Na 867 910 754 559 4.1 285 495
Cl− 215 212 202 190 1.11 133.5 238

CO3
2− 5.5 5.5 <3.8 <3.8 <3.8 5.9 13

HCO3− 1266 1567 1678 471 12.7 466 858
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Table 1. Cont.

Substrate Water

SO4
2− 837 1766 1214 1017 2.30 94.9 151

Ca 85 368 294 86 0.33 11.4 21.4
K 42 56 78 44 <0.01 7.73 13.1

Mg 35 97 116 53 0.37 7.73 12.4
S 319 614 435 383 0.88 36.5 58.9
B 5.49 6.67 6.16 6.27 0.14 0.81 1.34

Ba 0.96 0.83 0.71 8.21 0.00 0.22 0.39
Al 0.07 0.04 0.63 1.49 0.00 0.03 0.02

2.3. Plants

The species selected for this experiment were Chamerion angustifolium (L.) Holub
(native forb), Sonchus arvensis L. (non-native forb), Agropyron trachycaulum (Link) Malte
(native grass), and Hordeum vulgare L. (non-native grass). These are common plant species
found in newly reclaimed areas or used as cover species in reclamation and are fast
growing herbaceous species suitable for short-term greenhouse experiments. They are also
representatives of both native and non-native grasses and forbs.

Seeds of S. arvensis were obtained from Canadian Natural Resources Limited (Fort
McKay, AB) and seeds of the remaining species were obtained from commercial sources
across Canada and the United States of America. The seeds were germinated under
greenhouse conditions in styroblocks (plug size of 2.5 cm in diameter and 11.3 cm in length)
using a commercial garden soil and watered as needed. Five average-sized seedlings of
each species were transplanted into 1.5-L pots filled with the experimental substrates and
allowed to settle for one week before watering with the process water. During this period,
plants were manually watered to field capacity with greenhouse irrigation water and those
that died were replaced. At the end of this period, three healthy plants were selected for
the experiment, and the remaining plants were uprooted from the pots. The plants were
then watered manually each day with the process water on an as needed basis.

We applied a 20-20-20 nitrogen, phosphorus, and potassium fertilizer at rates of
75 mL per week (recommended rates by manufacturers) for the first four weeks and
15 mL biweekly (equivalent to the rate used in reclamation practices, i.e., 100 kg nitrogen
ha yr−1) for the last four weeks of the experiment. Fertilization is commonly used in oil
sands reclamation in Alberta to ensure that planted or naturally regenerated plants have
adequate nutrients for establishment and early growth [25].

Plants were grown under the experimental conditions for eight weeks and mortality
was recorded in the final week of the experiment. At the end of the 8-week period,
plants were clipped at the soil surface and dried to a constant weight at 40 ◦C to obtain
aboveground biomass.

2.4. Data Analysis

Mixed model analysis of variance (ANOVA), with block as the random factor, was
used to test for differences in aboveground biomass and mortality among substrates and
watering treatments for each species at the end of the study. Tukey’s procedure was
used for pairwise comparisons. Cube root transformation was applied to C. angustifolium
aboveground biomass to meet ANOVA assumption of homoscedasticity. Differences
in nutrient concentrations were also tested among substrates with one-way ANOVA.
Correlation analyses (spearman rank correlation) were performed between nutrient supply
rates from the control pot and aboveground biomass for each species. Mixed model
ANOVA and multiple comparison tests were performed with nlme [26] and emmeans [27]
packages, respectively. Correlation coefficients and associated probability values were
calculated with psych package [28]. ANOVA and correlation analysis were performed with
R statistical software [29], and statistical significance was considered at p < 0.05.
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3. Results

Across all treatments, the grasses, H. vulgare (10.73 g) and A. trachycaulum (7.85 g),
exhibited 2–8 times greater aboveground biomass than the forbs, S. arvensis (5.01 g) and
C. angustifolium (1.28 g), and the introduced species performed better than the native species
within each functional group (Figure 1a–d.) Among substrates, cake-peat supported the
overall highest aboveground biomass (6.83 g), followed by cake-FFMM (6.24 g), cake
(6.20 g), and cake-sand (5.61), and the 0% process water, overall, supported a higher
aboveground biomass (6.72 g) than the 50% (6.45 g) and 100% (5.49 g) process water. There
were varying responses of aboveground biomass to substrate and water treatments among
the four species.
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Figure 1. Total aboveground biomass (mean and standard error) of four understory species (a). Chamerion angustifolium; (b).
Sonchus arvensis; (c). Agroypyron trachycaulum; (d) Hordeum vulgare, commonly found in newly reclaimed areas in the boreal
forest region of Canada, under four soil amendments and three watering treatments.

The treatment effects were most pronounced in C. angustifolium (Figure 1a), with
cake supporting 67% lower aboveground biomass than cake-peat (p < 0.001), and cake-
sand supporting 70% or 82% lower aboveground biomass than cake mixed with FFMM
(p = 0.035) or peat (p < 0.001), respectively. For the same species, watering with 100%
process water reduced aboveground biomass by 79% (p < 0.001) and 68% (p = 0.007)
compared to watering with 0% and 50% process water, respectively. For S. arvensis, cake-
sand supported 13% and 11% lower biomass than cake-peat (p = 0.004) and cake (p = 0.030),
respectively, and cake-FFMM supported 11% lower biomass than cake-peat (p = 0.021).
Watering with 100% and 50% process water also reduced aboveground biomass by 16 %
(p < 0.001) and 10% (p = 0.003), respectively, compared to watering S. arvensis with 0%
process water (Figure 1b). Differences in aboveground biomass among substrates was only
found between cake-peat (8.40 g) and cake-sand (7.24 g) (p = 0.013) for A. trachycaulum, and
for the same species, watering with 100% process water reduced aboveground biomass
by 23% (p < 0.001) and 18% (p = 0.005) compared to watering with 0% and 50% process
water, respectively (Figure 1c). Substrate × process water interaction effect on variation in
aboveground biomass was only observed for H. vulgare. Cake-sand watered with 100%
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process water had 25% or 26% lower aboveground biomass than cake watered with 50%
(p = 0.023) or 0% (p = 0.020) process water (Figure 1d).

In relation to supply rates of nutrients (Table 2), C. angustifolium aboveground biomass
was positively correlated with nitrate (p = 0.030), phosphorus (p = 0.040), and magnesium
(p = 0.010), and S. arvensis was positively correlated with magnesium (p = 0.040). No
significant relationships were found between the other species and nutrients supply rates
(Table 2).

Table 2. Spearman rank correlations between plant aboveground biomass and nutrient supply
rates across substrates and watering treatments. Statistically significant correlations are marked
with asterisk.

Species NH4
+ NO3− P K Ca S Mg

Chamerion angustifolium 0.56 0.64 * 0.61 * 0.30 0.13 −0.10 0.75 *
Sonchus arvensis 0.55 0.20 0.49 0.34 −0.13 −0.13 0.61 *

Agropyron trachycaulum 0.29 0.53 0.57 0.00 0.38 0.13 0.52
Hordeum vulgare 0.34 0.15 0.44 0.42 −0.34 −0.31 0.34

Mortality was only observed among the native species. C. angustifolium had the highest
mortality across treatments (56%), followed by a negligible amount for A. trachycaulum
(0.5%) (Figure 2). For C. angustifolium, 100% and 50% process water had 36% (p = 0.004) and
29% (p = 0.022), respectively, higher mortality than 0% process water, but neither substrate
nor substrate × water interaction effect was significant.
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Figure 2. Mortality (mean and standard error) for Chamerion angustifolium under four soil amend-
ments and three watering treatments.

Mixing cake with peat substantially reduced concentrations of sodium, chloride, and
the carbonate, HCO3

−, from 867 mg kg−1, 215 mg kg−1, and 1266 mg kg−1, respectively, to
559 mg kg−1 (p = 0.003), 190 mg kg−1 (p = 0.033), and 471 mg kg−1 (p < 0.001), respectively
(Table 1). On the other hand, electrical conductivities and concentrations of macronutrients
(calcium, potassium, magnesium, and sulfur) tended to increase when cake was mixed
with sand or FFMM but not with peat (Table 1). Supply rates of nitrogen, phosphorus, and
potassium were generally lower for cake-sand compared to that of the other substrates
(Table 3).
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Table 3. Mean values (associated standard errors) of supply rates of nutrients over an 8-week period for tailings cake and
cake-amendments under three watering treatments.

Nutrient Supply Rate (µg 10 cm−2 8 Weeks−1)

Substrate Process Water (%) NH4
+ NO3− P K Ca S Mg

Cake 0 8.2 0.0 7.4 44.9 1700.6 270.3 505.2
(2.6) (0.0) (2.5) (3.2) (51.9) (54.3) (25.1)

Cake 50 6.0 0.0 3.0 47.3 1592.4 238.2 490.5
(1.3) (0.0) (0.9) (3.2) (84.3) (39.6) (24.3)

Cake 100 6.3 0.0 1.3 45.7 1444.2 266.8 469.3
(1.8) (0.0) (0.3) (3.2) (43.90) (66.1) (21.8)

Cake + FFMM 0 4.6 2.8 5.5 30.4 2144.3 315.8 530.0
(1.6) (2.8) (0.7) (1.1) (71.0) (56.2) (22.0)

Cake + FFMM 50 5.2 2.6 3.7 32.5 2025.5 302.7 508.6
(2.0) (1.8) (0.7) (1.7) (84.1) (24.0) (19.2)

Cake + FFMM 100 3.09 5.7 3.9 32.0 1997.4 336.0 479.0
(0.9) (3.9) (0.3) (1.7) (111.9) (58.0) (18.0)

Cake + Peat 0 19.8 0.2 2.1 49.6 1845.5 638.4 569.8
(3.0) (0.2) (0.4) (2.3) (59.8) (82.6) (17.5)

Cake + Peat 50 16.3 0.07 2.0 51.8 1742.3 500.4 540.2
(2.9) (0.1) (0.1) (2.2) (46.7) (65.9) (12.0)

Cake + Peat 100 12.9 0.0 2.0 53.0 1659.2 599.3 530.3
(3.6) (0.0) (0.4) (2.3) (86.2) (51.5) (17.0)

Cake + Sand 0 2.4 0.0 2.2 27.1 2117.6 875.8 379.2
(0.3) (0.0) (0.3) (1.4) (62.7) (80.4) (16.7)

Cake + Sand 50 2.0 0.00 1.3 29.9 2083.4 723.6 395.7
(0.4) (0.0) (0.1) (2.1) (109.3) (28.0) (23.7)

Cake + Sand 100 2.5 0.0 1.0 30.8 1990.2 615.7 382.8
(0.8) (0.0) (0.1) (1.5) (86.4) (45.5) (10.0)

4. Discussion

We examined the effect of oil sands tailings, mixtures of treated oil sands tailings and
reclamation substrates, and oil sands process water on aboveground biomass and mortality
of four plants (C. angustifolium, S. arvensis, A. trachycaulum and H vulgare) commonly found
in boreal oil sands reclamation sites. Overall, cake-peat supported the highest aboveground
biomass among substrates whereas cake and cake-sand performed poorly. Another study
also reported that consolidated tailings amended with peat improved germination, survival,
and growth compared to plants growing directly in consolidated tailings [30]. In the present
study, mixing cake with peat reduced pH and substantially reduced the concentrations of
sodium, chloride, and carbonates. The high pH of tailings could result in plant mineral
deficiency by reducing available macronutrients (e.g., phosphorus and nitrogen) and trace
elements [30]. Salts are also known to adversely affect plant water balances by targeting
the osmotic gradient across cells [31,32]. In particular, chloride has been observed to
accumulate in shoots while the buildup of sodium in plant tissue has the potential to
interfere with enzymes participating in chlorophyll production, and the accumulation
of both ions within plant tissue can reduce photosynthesis and growth [33–35]. The
better growth performance of plants grown in cake-peat in our study may be due to the
reduced pH and salt content of the cake-peat substrate. Organic contaminants in the
process water were not measured; however, the higher organic carbon content of the peat
is expected to also cause sorption of dissolved organics to the peat, reducing the toxicity of
the water [36,37].

On the other hand, mixing cake with sand resulted in sodium, chloride, and carbonates
concentrations comparable to levels found in cake. This is possibly due to the presence of
soluble mineral material in the sand. Supply rates of nitrogen, phosphorus, and potassium
were also generally low for cake-sand compared to the other substrates. Consequently,
this caused poor growth of plants grown in the cake-sand substrate. Compensating
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for nutrient deficiencies, e.g., through fertilization, should be combined with processes
that reduce salinity, e.g., addition of organic matter to reduce evapotranspiration, in
tailings reclamation.

Addition of process water to the tailings and tailings mixes adversely affected plant
performance by reducing plant growth or increasing mortality. This may be due to the
presence of naphthenic acids and salts in process water [35]. The combined impact of
naphthenic acids and excess salts could exceed the sum of the individual effects of each
of them [38] and increase water stress, interfere with respiration, and be toxic for organ-
isms [35,39]. Leaf tip necrosis was observed in common herbaceous and woody forest
plants grown hydroponically and subjected to undiluted process water treatment [40],
possibly due to buildup of toxic compounds in the process water or nutritional deficiencies
resulting from excess salts [40,41]. In our study, similar growth levels were observed
between plants watered with reverse-osmosis water and those watered with equal propor-
tions of centrate water and reverse-osmosis water. This suggests some interaction with
process water will not be overly detrimental to the growth of plants.

We also found that the grasses had better growth performance than did forbs. Similar
findings have been reported by Naeth and Wilkinson [42]. H. vulgare also had the best
growth performance among all species. The ability of H. vulgare to germinate and establish
on tailings under controlled conditions suggest that it is a good candidate for early tailings
reclamation efforts, such as erosion control and phytoremediation [34]. A. trachycaulum
showed good health across all treatments, but its aboveground biomass accumulation
was less than H. vulgare over the study period. The slow growth of A. trachycaulum
restricts the quantity of potentially toxic ions it can remove from contaminated soils [30].
It can, however, be used in combination with H. vulgare in reclamation efforts to increase
vegetation cover, and consequently long-term stabilization [43] of tailings.

The native forb, C. angustifolium, has been suggested as a suitable species for reclaiming
disturbed forests because it can establish on reclaimed soils (especially, a forest floor mineral
mix) and capture soil nutrients effectively [44]. However, its growth on tailings and tailing
mixes was the poorest, exhibiting the greatest mortality, and surviving plants showed
average-to-poor health. This may be due in part to nutritional deficiencies of the tailings
and tailing mixtures since seedling establishment of the species may be confined to areas
that are rich in nutrients [45]. C. angustifolium growth was positively correlated with
macronutrients (nitrates, phosphorus, magnesium), which supports the observation that
the factors that influence successful establishment of C. angustifolium may be site and soil
specific [44]. Reclaiming tailings with C. angustifolium will be a challenge because of its poor
performance on tailings and potential soil specificity. S. arvensis exhibited better growth
performance than C. angustifolium. However, its very slow growth on tailings makes it
potentially less suitable for phytoremediation in these substrates compared to H. vulgare or
A. trachycaulum. It should be noted that while S. arvensis may occur in reclaimed areas, it
would not be specifically planted as it is classified as a noxious weed in Alberta [46].

Within each functional group, non-native species had better growth than native species.
Naeth and Wilkinson [42] also found that non-native species had higher emergence and
establishment on consolidated tailings than native species. Because native species are suited
to the pre-disturbed ecosystem, their decline in novel environments following mining can
be expected. However, native boreal species have been shown to exhibit varying tolerance
to salt [47]. Salt tolerant population of A. trachycaulum can be found in a dry area, in
Southern Alberta, with an underlying marine shale formation [48]. Understanding salt
tolerance levels of native species as well as differences among accessions is important to
determine their suitability for land reclamation [30].

5. Conclusions

This study tested the suitability of common boreal plants to the combined effect of
fluid fine tailings cake, mixtures of tailings cake and reclamation substrates, and process
water. Our results showed that mixing peat with cake tailings can reduce salinity and
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improve plant growth. Additionally, H. vulgare and A. trachycaulum exhibited greater
overall aboveground biomass and lower mortality and could therefore be suitable for
initial reclamation of oil sands tailings. Because our study was performed under controlled
greenhouse conditions, caution must be taken when extrapolating these studies to field
sites where conditions such as extreme temperatures and competition exist.
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