
Quantifying surface severity of the 2014 and 2015 fires
in the Great Slave Lake area of Canada

Nancy H. F. French A,C, Jeremy GrahamA, Ellen Whitman B and
Laura L. Bourgeau-ChavezA

AMichigan Tech Research Institute, Michigan Technological University, Ann Arbor,

MI 48105, USA.
BNatural Resources Canada, Canadian Forest Service, Edmonton, AB T6H 3S5, Canada.
CCorresponding author. Email: nhfrench@mtu.edu

Abstract. The focus of this paper was the development of surface organic layer severitymaps for the 2014 and 2015 fires

in the Great Slave Lake area of the Northwest Territories and Alberta, Canada, using multiple linear regression models
generated from pairing field data with Landsat 8 data. Field severity data were collected at 90 sites across the region,
together with other site metrics, in order to develop a mapping approach for surface severity, an important metric for
assessing carbon loss from fire. The approach utilised a combination of remote sensing indices to build a predictive model

of severity that was applied within burn perimeters. Separate models were created for burns in the Shield and Plain
ecoregions using spectral data from Landsat 8. The final Shield and Plain models resulted in estimates of surface severity
with 0.74 variance explained (R2) for the Plain ecoregions and 0.67 for the Shield. The 2014 fires in the Plain ecoregion

were more severe than the 2015 fires and fires in both years in the Shield ecoregion. In further analysis of the field data, an
assessment of relationships between surface severity and other site-level severity metrics found mixed results.
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Introduction

Boreal ecosystems of North America are fire-adapted and gen-
erally resilient to disturbance. The north-western boreal forest is
composed of evergreen and deciduous forest with interspersed
shrublands and herbaceous open site conditions, with varying

hydrologic regimes (upland, lowland, marshland and peatland).
At the regional-scale, peatlands across boreal Canada were
assessed by Tarnocai et al. (2002) to cover 1.136 million km2 or

12% of the land area. These peatlands are estimated to hold 147
Gt of carbon in the deep (40þ cm) peat deposits, which is,56%
of the total organic carbon stored in Canadian soils (Tarnocai

2006). Upland forested ecosystems, in particular mixed conifer
and spruce types, typically have a layer of carbon-rich soil
overlaying the mineral soil. This surface organic material

(SOM) ranges from a few centimetres to depths up to 40 cm
(known as duff). Sites with more than 40 cm SOM are consid-
ered to be peatlands. These carbon pools are vulnerable to fire
when environmental and site conditions allow the SOM (duff

and peat) to dry out. Stand replacing fire is common in pine
(Pinus banksiana), black spruce (Picea mariana) and mixed
wood deciduous ecosystems; however, there is debate over the

vulnerability and resilience of peat-dominated ecosystems to
fire (Bourgeau-Chavez et al. 2020). Treed and open peat bogs,
as well as fens, are known to burn, but the frequency of sub-

stantial peat loss and the typical level of consumption of the
carbon-rich organic soils are not well established.

The 2014 and 2015 fire seasons in the Great Slave Lake area

of the Northwest Territories (NWT) and Alberta (AB), Canada,
generated some of the largest fires on record for the region,
resulting in millions of hectares of burned area and encompass-
ing a variety of ecosystem types within the Taiga and Boreal

Plain and Taiga Shield ecological regions. The severity of these
burns, especially to the organic soil layer, has several implica-
tions regarding direct carbon emissions and post-fire carbon

sequestration potential vegetation recovery, as well as the
influence on post-fire ecosystem structure and function.
Although fire is not uncommon in this region, the level of

consumption of surface organic soils because of the extreme
drought conditions was substantially above normal, creating
outcomes relevant to carbon cycling and ecosystem resiliency.

The severity of the fires, as defined by SOM consumption, is a
valuablemetric for gauging themagnitude of the fires’ departure
from normal, the effect of fire on carbon losses to the
atmosphere and assessing ecosystem resiliency.

Fire severity is defined as the immediate effect of fire on the
site (Jain 2004). Severity can be subjective and the definition
differs depending on the application (e.g. vegetation removal,

soil heating or loss of property), so it needs to be explicitly
defined for each study (Lentile et al. 2006; French et al. 2008).
For the purposes of this study, we focused on severity to the

surface (comprised of SOM and often referred to as ‘below-
ground biomass’ or ‘belowground fuel’) as determined with
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field-observed metrics, including a spatial severity assessment
and level of consumption. The carbon-rich SOM in uplands
(duff) and peatlands (peat) serves as an important factor in

subsurface thermodynamics and therefore permafrost presence
and condition (Van Cleve et al. 1986). Consequently, SOM is
critical in the carbon balance, permafrost status and site-level

ecology of boreal ecosystems of Alaska and northern Canada
(Viereck et al. 1986). Carbon-rich organic soil is common across
boreal Canada and Alaska and represents a substantial propor-

tion of the carbon held in this region (Tarnocai et al. 2002).
Variability in fire severity is known to be a factor in carbon loss
and is likely a factor defining site resiliency and vegetation
regrowth following fire (Kasischke and Johnstone 2005).

Moderate resolution optical multispectral remote sensing in
the visible, near-infrared (NIR: 0.7–1.3 mm) and mid-wave
infrared region (MidIR: 1.3–3.0 mm) has served as a valuable

tool formapping andmonitoring fire disturbance since the 1980s,
including mapping within-burn variability as an indicator of fire
severity (Kasischke et al. 1993; French et al. 2008). French et al.

(2008) provide a thorough overview of severity mapping with
multispectral remote sensing through the mid-2000s and review
the value of the differenced normalised burn ratio (dNBR) for

this purpose. Introduced by Key and Benson (2006), the dNBR
uses the general form of a normalised spectral index, using bands
that exploit the high reflectivity of live vegetation in the NIR and
the low reflectivity of vegetation and high reflectivity of bare soil

and char in the MidIR. The NBR is then computed as: (NIR –
MidIR)/(NIR þ MidIR). Differencing a post-fire NBR with a
pre-fire NBR with undisturbed live vegetation where the fire

occurred provides a clear indication of areas that have been
disturbed in the fire. The dNBR,with a theoretical range of�2 to
2, has been used as a surrogate for mapping the severity of fire.

By relating these remote sensing indices to site-defined severity
from field data, thresholds can be created to classify severity.
Similar indices have been suggested as improvements to dNBR
that relativise dNBR by the pre-fire dNBR (e.g. relative dNBR

(RdNBR) and relative burn ratio (RBR);Miller and Thode 2007;
Parks et al. 2014); however, the general approach is consistent –
to map the resulting index value to a severity rating, sometimes

using field-informed thresholds.
In addition to general site severity, the differencing of pre-

and post-fire Landsat images is operationally used to assess

specific fire effects, including tree death (Miller and Quayle
2015) and soil burn severity (Parson et al. 2010). Soil burn
severity is a metric used to assess soil stability due to the loss of

surface vegetation and forest floor, which is important in
mitigating surface runoff. Soil burn severity assessed from
Landsat analysis is used as a tool to guide post-fire erosion
control in the USA for the Burned Area Emergency Response

program (Parson et al. 2010), which works quickly to assess and
mitigate soil loss and erosion disaster by implementing erosion
control treatments before the first damaging storms. The Land-

sat pre- and post-fire image product is a key resource to inform
this assessment andmitigation service. Oncemade, it is adjusted
with on-site soil assessments (including char depth, organic

matter loss, altered colour and structure and reduced infiltration)
to create a soil burn severity map.

For this study, Landsat-derived dNBR and related remote
sensing indices were assessed for their value in extending field

measurements of SOM consumption. This use of pre-and post-
fire spectral index differencing for mapping surface severity has
beenmet with caution for several reasons: (1) the indices’ strong

relationships with canopy loss (Lentile et al. 2006; Hoy et al.

2008); (2) being based on the spectral sensitivity of the NIR and
MidIR to vegetation and moisture variability (French et al.

2008; Veraverbeke et al. 2015); and (3) issues associated with
application across different ecosystem types, hydrological con-
ditions and vegetation densities (Soverel et al. 2010; Rogers

et al. 2014). We present a fire severity mapping methodology
that relates Landsat 8 Operational Land Imager (OLI)-derived
indices to field-collected training data of SOM consumption
within validatedmultiple linear regressionmodels.Models were

developed for the 2014 and 2015 fires in the Great Slave Lake
region of Canada with specific attention to severity to the SOM
(organic soil present in both uplands (duff) and peatlands (peat))

in order to understand the implications of these severe fires to
ecosystem vulnerability and carbon balance. Additional assess-
ment of the relationship between field-measured severity, SOM

consumption, canopy severity and remote sensing-derived
dNBR was also done in order to further consider the utility of
remote sensing for severity mapping.

Methods

Study area

Sites burned in the 2014 and 2015 wildland fires in the south-
eastern portion of the NWT and northern AB, Canada, were the

subject of this study (Fig. 1). The study area included 142 fires
covering 3 3075.5 km2within the fire perimeters (Table 1) and is
within the area mapped for the NASA Arctic Boreal Vulnera-

bility Experiment (ABoVE) for studying fire in peatland eco-
systems (Bourgeau-Chavez et al. 2019) and upland boreal
forests (Whitman et al. 2018). The study area contains the Taiga
and Boreal Plain ecoregions (grouped into Plain) and the Taiga

Shield ecoregion (Shield) of Canada (Commission for Envi-
ronmental Cooperation 1997). These ecoregions contain a mix
of both upland and wetland ecosystems that are described by

Whitman et al. (2018) and are representative of the Plain and
Shield ecoregions.

Field data

Severity sampling for 2014 and 2015 burnswas carried out in the
year following fire as described in detail in Bourgeau-Chavez
et al. (2017). Sites of at least 1 ha (nominally 100� 100m) were

chosen from high-resolution pre-fire images to represent con-
tiguous, homogeneous patches of a specific pre-fire ecosystem
type. Sites were selected to capture a variety of ecosystems
(uplands, bogs and fens) and fire season (month of burning) in

the Plain and Shield ecoregions. Of the 90 sites sampled, 37were
in uplands and 53 in peatlands, which included 18 open and 35
treed wetland types (including bogs and fens). Sites with road

access were chosen for safety and ease-of-access and site
boundaries were drawn with care to be at least 150 m and
maximum 1.5 km from a road, trail or waterbody to circumvent

edge effects. Distances between site-centres within each fire are
reported in Table 2 and averaged 168 km. Sites that were less
than 1 km apart differed in ecosystem type. Given the irregular
distribution of sampling points (some relatively clustered,

Surface severity of Great Slave Lake fires Int. J. Wildland Fire 893



others isolated and often large distances between clusters),
Moran’s I was used to test for autocorrelation (threshold dis-

tance of 25 km). Results gave Moran’s I ¼ 0.14, P ¼ 0.07,
showing that the effect of spatial autocorrelation in our dataset
with the varied distances between samples was minimal.

Severity was sampled at six 10 � 10-m plots along two

transects within each 1 ha site. Plots were situated at least 20 m
from the edge of the ecosystem patch in order to avoid natural
edge effects. The six severity estimates from the 10� 10-mplots

were averaged to generate one surface severity estimate to
represent the site.

This study focused on the severity of burning in the SOM and

peat in the ground layer, rather than aboveground ecosystem
components, and used the burn severity index (BSI; initially
described by Bourgeau-Chavez 1994), a field metric for quanti-
fying fire severity of the organic surface layer adapted to peatland

ecosystems from methods described by Dyrness and Norum
(1983). The original metrics developed by Dyrness and Norum

(1983) used a 5-point scale to assess the loss of SOM in upland
black spruce forests that ranged from: 1 ¼ heavily burned
(consumption of SOM to the mineral soil), to 4 ¼ scorched
mosses and 5 ¼ unburned surface. The BSI similarly uses a 5-

point scale, but reverses the values to allow for computation of an
index. As described in Loboda et al. (2013), BSI is calculated for
each plot using aweighted summation of the field data as follows:

BSI ¼ 1 � % signedð Þ þ 2 � % lightð Þ þ 3 � %moderateð Þð
þ 4 � % severeð ÞÞ=100

which yields a value between 0 and 4, increasing with the burn
severity of SOM. In this way, the method takes into account the

Table 1. Number of fires and area of fire, land and water in the study area by ecoregion and year

Water and land area % is of the total fire area

Ecoregion/

year

No. of

fires

Fire area total

(km2)

Average fire size (km2)

(� s.d.)

Largest

(km2)

Land area (km2)

(%)

Water area (km2)

(%)

Barren area (km2)

(% of land area)

Plains 2014 52 17 057.7 355.9 (� 1211.6) 7308.5 15 463.4 (91%) 1594.2 (9%) none

Plains 2015 27 2742.8 101.7 (� 178.5) 616.1 2588 4(94%) 154.4 (6%) none

Shield 2014 46 12 186.9 258.3 (� 760.4) 4502.1 10 163.1 (84%) 2023.8 (16%) 1553.5 (15%)

Shield 2015 17 1088.1 64.1 (� 121.7) 387.2 992.5 (91%) 95.7 (9%) 204.5 (21%)

0 100

0 125 250 Kilometres

200 400 Km

N
2014 Fire 2015 Fire

Peatland field site
Upland field site

Fig. 1. Study region around the Great Slave Lake, Canada showing the locations of the burns in this study, the

locations of field data collections, and boundary between the Plain (green) and Shield (blue) ecoregions. The inset

gives the names of the burns.
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percent area of the surface in these five severity classes within
each plot, resulting in an estimated severity rating (BSI) for each
plot of a known spatial extent. The approach provides a consis-

tent method for capturing the high spatial variability in SOM
severity that was often found in these sites. In addition to the
BSI, biophysical measurements were collected for each of the

six plots in a site, including depth of burn using the adventitious
root method and the canopy fire severity index as described by
Kasischke et al. (2008).

The BSI method is similar to methods to determine the
composite burn index (CBI; Cocke et al. 2005; Epting et al.

2005; Key and Benson 2006; Miller and Thode 2007; Hall et al.
2008; Parks et al. 2014), in that both are subjective metrics

(Lentile et al. 2006) using an ocular assessment by a field team to
define severity. However, the BSI includes an assessment of the
spatial proportion of severity across a set area, in this case a set of

10� 10-m plots that represent the 1-ha site area. The CBI was an
averaged linear combination of 23 factors over five vegetation
strata at each site, whereas the BSI is a 5-point severity scale

determined as an aggregate assessment of the fire’s effect on the
ground surface at the plot level. For the focus of this study the BSI
protocol for quantifying surface severity offered two advantages

over the CBI; first, the percent cover estimates are taken over
defined areas as opposed to the point-based assessment used for
CBI and second, very few of the 23 CBI factors are related to
SOM. Furthermore, previous assessment has found that the

metric is not optimal for assessing severity to the surface at sites
with deep organic soils (Kasischke et al. 2008). The method
simplifies the field collection effort and provides a rigorous way

of determining an overall severity rating for the surface when
spatial variability across a site is large.

Remote sensing

For severity model development, Landsat 8 OLI/TIRS scenes
that cover the locations of the field sites were obtained from the
USGeological Survey (https://earthexplorer.usgs.gov [accessed

17 January 2018]; Table 2). Only images with less than 40%
cloud cover were selected and special care was given to avoid
having clouds obscuring or shadowing the sites. Selection of
Landsat scenes prioritised phenological matching of pre- and

post-fire scenes. The date of the best post-fire scene, which in
most instances was in the following calendar year, determined
the selection of the pre-fire scene selection to match seasonal

plant phenology. Anniversary date pre-fire scenes were
selected, going back up to three years if necessary. All available
unique combinations of pre- and post-fire scenes were included

in the analysis and treated as replicates for modelling severity
(Table 2). Image data were processed from digital numbers to
top of atmosphere reflectance values followingUSGSLandsat 8
guidelines. Raster stacks were created from the processed data

consisting of bands 2–7 (blue, green, red, NIR, MidIR1,
MidIR2, 30-m resolution) and bands 10–11 (thermal infrared:
TIR1 and TIR2, 100-m resolution resampled bilinearly to 30m).

Using the GPS coordinates of the six plots, an approximate
1-ha bounding box for each field site was selected for pairing
field data with remote sensing data. Mean reflectance values of

each Landsat band were calculated for both pre- and post-fire
images using pixels located within the field site polygons. Most

field site polygons were 10 000 m2, yielding 10–11 pixels per
site, though some polygons were smaller, the lowest having
three pixels. In addition to the plot mean Landsat reflectance

values, several spectral indices were developed for severity
assessment and their pre- and post-fire differences were calcu-
lated using methods from the literature to be used for model

testing and development (Table 3). In all, 58 spectral reflectance
values and indices were tested. All remote sensing analysis was
done using the Canada Albers Equal Area Conic projection.

Severity model development

Multiple linear regression (MLR) models were developed using
remote sensing data to predict BSI obtained from field obser-

vations. Because of physiographic differences between the Plain
and Shield (e.g. soil depth, topography, vegetation; Table 1), the
BSI models were created independently for fires in the two
ecoregions, as well as a generic model for the entire study area.

In addition to the Landsat reflectance and thermal infrared data,
the following fire and topographic variables for each site were
used in model development and evaluation as predictor vari-

ables: burn date in Julian day (from Bourgeau-Chavez et al.

2017); latitude; longitude; slope; elevation; solar-radiation
aspect index (Roberts and Cooper 1989); heat load index

(McCune and Keon 2002) and 300-, 600-, 900- and 1200-m
topographical elevation indices (Weiss 2001). Slope, aspect and
heat load index were derived from the Canadian Digital Ele-
vation Model (CDEM; Government of Canada 2011) using the

R package spatialEco (Evans 2019).
Model variables were selected using a suite of feature

selection algorithms and evaluated by adjusted-R2, Akaike

information criterion and Bayesian information criterion, with
the leaps and caret packages (Kuhn 2016; Lumley 2017) and
also with consideration of the meaningfulness of predictor

variables. Collinearity of predictor variables was tested using
variance inflation factor analysis with a threshold of 10 to
remove collinear variables frommodels.Model fits were tested

using 3- (Shieldmodel) and 10- (Plain and genericmodels) fold
cross-validation with 100 repeats using the Caret package
(Kuhn 2016).

Two additional validation approaches were used to assess the

robustness of the selected models. The first was to validate the
generic model on BSI field datasets collected from a separate
study of two 2016 burns – the Horse River fire near Fort

McMurray, AB, and the ZF028 fire in the NWT – in order to
test the validity of the model on fires from a different year
burning under very different conditions than fires in the main

study. Using field data from the 2016 fires collected as described
for themain sites (Horse River¼ 5 sites, ZF28¼ 1 site, field BSI
values ranging from 1.8 to 3.4), the model was validated using
all valid pre-post scene combinations (Horse River ¼ 2,

ZF28 ¼ 4). The second validation exercise was done with
further model development using the original dataset parsed
by ecoregion, year and ecosystem group (wetlands, uplands),

using different combinations of time differenced or post-image
only data (see Table S1 in Supplementary Material online for
validation set-up). This approach tests the suitability of the IR

bands within linear models to predict using datasets different
from the model training data.
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Data preparation for mapping severity

Applying the model geospatially to map fire severity for all fires
in the study area required continuous Landsat image coverage of
pre- and post-fire conditions, free of atmospheric interference

(clouds, mist, smoke, shadows). A total of 45 pre-fire and 38
post-fire Landsat 8 scenes were used for this analysis (Table S2
in Supplementary Material online). Pre- and post-fire image

data were selected for each fire individually to assure continuity
and phenological matching of the landscape within the fire-
disturbed areas. Images were then mosaicked for pre-fire and

post-fire for each year and ecoregion. Criteria for scene selection
and processing were the same as described above and scenes
were clipped to the fire perimeters designated by the Canadian
National Fire Database (Natural Resources Canada 2018). Most

frequently the post-fire scenes were available in the following
May or June; however, in some instances the best available
image was in the same year. Using the band quality assurance

layer all pixels not designated as cloud-free were expanded by
five pixels and used to erase values in that scene. Gaps created as
a result of the erasing process were filled using the next best

scene, which in some instances required three scenes. A total of
83 Landsat scenes were used to make the pre- and post-fire
mosaics upon which the models were applied.

Considerable land area in this region consists of water bodies
and barren rock outcroppings are common within the Shield
ecoregion. As the model is designed to be applied to areas
known to have burned, it was considered best to mask water and

barren areas for the Shield ecoregion and not include their areal
extent in the burned area calculations. Using WorldView 2
images within the Shield region of our study area we collected

the previously described Landsat reflectance values and indices
for these outcroppings and examined which metrics were most
distinguishable between bare rock outcrops and vegetated land.

The rock mask was created where pixels met the following
criteria: pre-fire SWIR1 . 1650, pre-fire SWIR2 . 1200, pre-
fire NDVI , 0.45, and differenced tasseled cap wetness, 525

(Baig et al. 2014). These values were defined by visual exami-
nation of the resulting masks of each metric and subsequent
adjustments. Water bodies were masked from the severity layer
using the global surface water occurrence dataset (Pekel et al.

2016) modified to threshold only water bodies with an occur-
rence percentage of 3 10%. Upon application of the model to the
pre- and post-fire mosaics, severity values were classified using

the following breaks: unchanged 0–0.5; singed . 0.5–1.5,
light . 1.5–2.5; moderate . 2.5–3.5; severe . 3.5. To avoid
subjectivity in setting thresholds, as mentioned in Hall et al.

(2008), the breaks were set at midpoints between the weights
applied to each BSI class.

Assessing surface severity relationships

With site-level severity, including the BSI, and concurrent

measurements of depth of burn and canopy severity collected at
all sites, relationships among these field-based severity mea-
surements and dNBR could be tested. The relationships of the

physical variables (burn depth, canopy severity and surface
severity) were tested using Pearson’s correlation with both plot-
level and site-level data. Not all plots had a measurable canopy,
so those plots were left out of the analyses. Additionally, burn
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depth was not always collected at each plot, because of differ-
ences in field collection protocols of this variable at some sites,
including the lack of black spruce trees where adventitious roots

could be measured. The relationships of the canopy and surface
severities to dNBR were tested with Pearson’s correlation at
the site and plot levels. Additionally, simple linear, exponential

and logarithmic models were fit to test the relationship between
surface severity and remote sensing indices commonly used to
predict severity (dNBR, RdNBR, RBR, dNBR2 and RdNBR2;

Table 3).

Results

Model selection and validation

The finalmodels (Fig. 2)were selected from several possibilities

after evaluating errors, strength of fit and model simplicity
(Table 4). Error rates for wetland and upland samples in the
generic model were calculated using the mean of the absolute

value of each residual for the two ecosystem groups. Average
residuals of the wetland groups were smaller, 0.39, than that of
the upland, 0.49. Of the 58 spectral metrics and indices tested,
products of the NIR andMidIR bandswere consistently found to

be the strongest predictors of burn severity. Products of the
NBR2 were generally found to be the best predictors, but this
differed between ecoregions, with the best fitting model in the

Shield using dNBR2 rather than the post-fire NBR2 in the Plain.
All of the best-fit models included differenced NIR as an
additional predictor variable. In comparison with the models

using a single remote sensing index, theMLRmodels developed
in this study performed significantly better (Table 4).

The validation effort that used data from the two 2016 fires

yielded a total of 14 predicted values. The generic model
accuracy of these predictions was: R2 ¼ 0.54, RMSE ¼ 0.45,
MAE ¼ 0.38. The second validation effort using the parsed-out
dataset to generate models applied to each opposing dataset

(Table S1; 2014 v. 2015; Shield v. Plain; wetlands v. uplands)
generally showed that most combinations of NBR2 and NIR
yielded acceptable results (R2 ranging from 0.45 to 0.79), with

the exception of cross-ecoregion assessment using the models
based on post-fire data (Table S1). Other than for cross-
ecoregion modelling, there was some loss of accuracy using

post-fire only Landsat 8 data; however, in the absence of pre-fire
data, the accuracy may be considered sufficient for many
applications.

Model and mapping adjustments

The inclusion of elevation parameters and thermal remote
sensing offered modest model improvements (Table 4), but they
were not able to be used for mapping due to issues that arose

from image mosaicking. Initial models that were evaluated for
Shield burn severity included post-fire normalised ratio of
Landsat 8 TIR bands 10 and 11. However, discontinuities in the

form of artificial linear features in predicted BSI values were
apparent along the edges of scenes where they were joined. It
was determined that TIR bands were sensitive to temporal dif-

ferences from scene to scene due to non-burn related phenomena
such as time of day or season and therefore should not be used as
an estimation parameter for burn severity when multiple scenes
were used. The topographic derivatives of aspect and heat load

index were found to be significant predictors for burn severity in
the Shield model, but offered only modest model improvements
(R2 increased from 0.72 to 0.79 in initial testing with a subset of

data). The 900-m topographic position index was significant in
the Plain model, but again, only minor improvements were
found. These metrics introduced relevant problems when map-

ped across the region of interest, because boundaries where
CDEM data tiles were joined were producing linear artefacts in
the predicted BSI products. Therefore, topographic parameters
were not included in the final models, because the gains were

minimal. Due to the discontinuity of the Landsat TIR and
CDEM data, models were re-evaluated without TIR and ele-
vation products and these data were discounted for this model-

ling effort.
In the initial severity maps, pixels immediately adjacent to

the north edges of lakes were mis-classified as severe burn

severity, with neighbouring pixels generally classified as
unburned or singed. This was determined to be a combination
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Fig. 2. Graphs showing observed versus model-predicted severity for all

fires (generic), as well as the Plain and Shield regions separately. Grey

regions represent the standard error. Dotted lines show the 95% confidence
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of shadow artefacts andwater-level differences between the pre-
and post-fire scenes, leaving exposed soil and particularly so in

the 2014 Plain map due to extremely low water levels that year.
To mitigate these effects a 1-pixel buffer was created around all
water pixels in the 2014 and 2015 Shield maps and the 2015

Plain map and a 3-pixel buffer for the 2014 Plain map. Within
the buffered area the results of a multiple-iterated eight-neigh-
bour half-threshold majority filter was applied, using two

iterations for 2015 layers and 4 iterations for 2014 layers. The
majority filter is a smoothing algorithm where the value of a
centre pixel will be replaced by a new value when half of the
neighbouring cells have the same value. Each successive itera-

tion of the filter creates a more smoothed result. In all cases
except the Plain 2015 this resulted in a slight expansion of lakes,
while subtracting minimal area from the other classes. Despite

the loss of some information around lake bodies, the expansion
and filter step was regarded as necessary to remove potentially
erroneous values while maintaining continuity around lakes.

Predicted surface burn severity

Of the 3 3075.5 km2 of area mapped for surface severity,
2 6876.1 km2 (81.3%) was classified as burnable when masking

out water and barren landscape (Fig. 3). Light severity was
found to be the most abundant of the five severity classes for
both years and in 2015 in the Shield, with singed severity most
common for the 2015 burns in the Plain ecoregion (Fig. 4,

Table 5). A higher proportion of areawasmoderately or severely
burned in 2014 than in 2015 within the Plain, but not in the
Shield. In concert with this, a very small percentage of area

within the 2014 Plain burn perimeters was unburned (4%) and
more than 80% was categorised as light (52%), singed (18%) or
unburned (16%) in the 2014 Shield. Distribution of severity

values was more centred around the mean for sites in the Shield
than in the Plain (Fig. 4). The distribution of severity was similar
for both years in the Shield, whereas in the Plain 69%of the 2014
area was classified as light to severe, compared with 69% of the

2015 area classified as singed or unburned. The 2015 results
showed less area burned for both regions than in 2014 and that

severity was lower overall for burns in the Plain ecoregion, but
similar to 2014 in the Shield.

Severity relationships

Surface severitymeasured in the field was weakly tomoderately

related to field-measured canopy severity (Table 6a; site level
R2 ¼ 0.40–0.68). This relationship was stronger in peatlands
than uplands and in the Plain ecoregion compared with the

Shield. At the site level, depth of burn was moderately related to
SOM severity in the Shield but weakly in the Plain ecoregion,
but the plot-level relationships were much weaker (Table 6a).

There appeared to be no relationship between depth of burn and
SOM severity in the uplands, but there were very limited sam-
ples for this analysis. At the plot level, the relationship between

depth of burn and SOM severity weakened.
The relationship between both canopy and SOM severity

(BSI) to Landsat-derived dNBRwas similar (Table 6b), demon-
strating a moderate relationship in the Plain but no relationship

in the Shield. Canopy severity was strongly related to dNBR in
uplands but less so in peatlands. Conversely, SOM severity
exhibited a slightly stronger relationship to dNBR in peatlands

compared with uplands. In an expanded analysis, no single
remote sensing index demonstrated a significant relationship
with surface severity in the Shield. In the Plain, all regressions

were significant andR2 ranged from 0.4 to 0.5, with a linear fit of
the RdNBR2 demonstrating the best fit.

Discussion

The carbon held in the organic soils of upland and peatland
ecosystems of the boreal region is highly vulnerable to fire

because of the active fire regime of the region. The severity of
fire across the landscape is a major factor in the amount of
carbon released into the atmosphere, which has important con-
sequences for climate. To properly quantify the carbon budget of

Table 4. Performance comparison between the selected (a) generic, (b) Plain and (c) Shield models for predicting BSI (bold)

and other models that use a single index (not bold)

Model F RMSE R2 MAE

(a) Generic (10-fold 100 repeats)

BSI5 4.2934921 (29.29893)postNBR21 (23.74395)dNIR 93.6 0.53 0.64 0.44

BSI¼ 2.1119243þ (�8.0072091)postNBR2þ (0.0009068)postNIR 60.8 0.59 0.53 0.49

(b) Plain (10-fold 100 repeats)

BSI5 4.10791 (29.4189)postNBR21 (23.0829)dNIR 91.0 0.54 0.67 0.44

BSI¼ 1.271142þ (2.344248)dNBR 64.7 0.70 0.43 0.55

BSI¼ 1.087709þ (1.566435)RdNBR 78.7 0.67 0.48 0.56

BSI¼ 1.172391þ (3.448929)RBR 72.5 0.68 0.46 0.57

BSI¼ 1.230995þ (5.713436)dNBR2 75.9 0.67 0.47 0.55

BSI¼ 1.116897þ (3.350058)RdNBR2 95.4 0.64 0.53 0.53

(c) Shield (3-fold 100 repeats)

BSI5 1.7996971 (10.07699)dNBR21 (26.058569)dNIR 32.1 0.30 0.73 0.25

BSI¼ 3.0101520þ (�0.8451775)dNBR 1.3 0.52 0.12 0.46

BSI¼ 3.0652788þ (�0.6226614)RdNBR 1.9 0.52 0.14 0.46

BSI¼ 3.04864þ (�1.317584)RBR 1.6 0.52 0.13 0.46

BSI¼ 2.73732642þ (�0.711383)dNBR2 0.1 0.55 0.10 0.50

BSI¼ 2.8490584þ (�0.6775317)RdNBR2 0.3 0.55 0.11 0.49
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the region, knowing the effects of fire on upland and peatland
organic soils is necessary (Kasischke et al. 2008; Bourgeau-
Chavez et al. 2020). Severity mapping, together with ecosystem
type mapping, allows a more complete understanding of the

effect of fire at the landscape scale, providing important metrics
for assessing the vulnerability of a landscape to fire (Grosse
et al. 2011; Turetsky et al. 2015).

Modelling

The focus of this study was to develop MLR models using

moderate resolution optical multispectral remote sensing

(Landsat 8 OLI) and field-collected training data to create a
reliable surface severity map for use in further analysis of the
burn sites. The use of multiple pre- and post-fire image pairs for
training provided more complete characterisation of spectral

conditions, as discussed in Chen et al. (2020). The MLR
approach used here differs from previous studies that have
modelled severity using a single remote sensing index (e.g.

dNBR, RdNBR, RBR) to define thresholds that matched field
measurements (Miller and Thode 2007; French et al. 2008; Hall
et al. 2008; Soverel et al. 2010; Parks et al. 2014;Whitman et al.

2018) or used a single remote sensing index plus additional
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Fig. 3. (a–h) Severity maps of portions of the burns in this study (note scale differences). Unmapped areas outside of the burn

perimeters are shown in beige. Lakes are blue. Fire names are shown in Fig. 1. The complete fire severity map can be found at

NASA ORNL-DAAC (Bourgeau-Chavez et al. 2019).
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geophysical metrics (e.g. DEM products; Rogers et al. 2014;
Veraverbeke et al. 2015) to predict burn related parameters,
such as carbon emissions. In Veraverbeke et al. (2015), who

estimated belowground carbon consumption using multiple
predictor variables (date of burn, elevation, tree cover) together
with dNBR, there was only slight improvement in model

accuracy with the inclusion of dNBR, suggesting that it is
important to include non-remote sensing variables for mapping
severity. In this study, however, ancillary variables, including

latitude, longitude and day of burn, did not improve model
performance. Additionally, inconsistencies in the mapped
topographic metrics precluded the use of these products, though
some value was seen; therefore, improvements in these results

are possible once improved geospatial products are developed
from elevation data.

The final surface severity models developed for the Plain and

Shield ecoregions included the dNIR (with band 5) and a form of
the NBR2 index, which use the two MidIR bands (bands 6 and
7) – post-fire NBR2 for the Plain and differenced NBR2 for the

Shield (Table 4). Similarity of the Plain and generic models was
expected, given the higher sample size of the Plain. Within

north-west Canada, fires are more common in the Plain ecor-
egion than other ecoregions, including the Shield, therefore the
weighting of the generic model towards this ecoregion is

appropriate. However, should the models be applied to fires
outside this study area, it is recommended to use an ecoregion-
specific model to reduce error.

It was clear that the IR bands (Landsat 8 bands 5–7) provided
the most information on variations within the fire perimeters that
are related to severity, which is consistent with previous research

(French et al. 2008). Changes to vegetation from combustion are
accounted for with the dNIR parameter, included in both models,
by highlighting the loss in greenness. The post-fire char has
higher reflectance in theMidIR region than almost anything in the

natural world besides mineral soil, especially compared with live
moss and conifer vegetation, which was the most common
surface material present in the pre-fire image (French 2002).

Using both MidIR bands, as in the NBR2 index, maximises
the utility of Landsat observations for soils, char and ash. The
strength of the post-fire NBR2, as opposed to dNBR2, in the

Plain as a predictor of surface severity offers an interesting
perspective, considering past discussions regarding the necessity
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Fig. 4. Histograms showing the distribution of mapped surface severity by ecoregion (Plain, Shield) and year of

burn.

Table 5. Area burned by severity class for 2014 and 2015 in the two ecoregions of the study area

Unburned includes barren and unchanged areas. Percent values are calculated for land only with water excluded

Ecoregion/year Unburned (km2) Singed (km2) Light (km2) Moderate (km2) Severe (km2)

Plain 2014 635.2 (4%) 4187.4 (27%) 6164.7 (40%) 3959.4 (26%) 516.5 (3%)

Plain 2015 470.1 (18%) 1313.1 (51%) 672.0 (26%) 130.1 (5%) 3.2 (,1%)

Shield 2014 1608.1 (16%) 1779.1 (18%) 5500.8 (52%) 1217.8 (12%) 57.4 (1%)

Shield 2015 217.8 (22%) 164.7 (17%) 458.8 (46%) 140.6 (14%) 10.5 (1%)
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of information on pre-fire conditions when the goal is under-

standing the post-fire condition (Harden et al. 2000; Barrett et al.
2011). One rationale is that the denser canopy in the ecosystems
of the Plain ecoregion could create confusion with the inclusion

of pre-fire data, as the differenced indexwould be heavily skewed
with the signal generated from the pre-fire canopy. In the post-fire
image, the influence of the canopy can be expected to be weaker,

due to canopy consumption, with more of the surface layer
exposed. This premise hinges on the relationship between the
canopy and surface consumption, a relationship that may vary by
region, ecosystem and vegetation type, as well as fire character-

istics; and this is currently not settled in the literature (Lentile
et al. 2006; Hoy et al. 2008).

The models used multiple unique image pairs to generate

additional training data (Table 2). Though higher model accu-
racies and lower errors would be expected using a single image
pair to match with a field observation, this approach produced a

robust model and more valid final severity map than with one
pair of images. The extent of the mapping effort and size of the
fires mapped required numerous scene combinations to cover
the study area. Obtaining a perfect set of image pairs for

phenological matching, or assessments prescribed by Key and
Benson (2006) for initial or extended severity mapping, was not
possible due to cloud contamination, Landsat 8 overpass fre-

quency and burn dates. Because the final pre- and post-fire
Landsat 8 mosaics could not be uniformly matched across the
entire study area, using multiple unique image pairs for training

was thought to better represent the severity predictions across
the study area.

The errors of the MLR models in this study demonstrated

relatively equal capability across the range of observed severity
values (Fig. 2). Rogers et al. (2014) found that a logarithmic
growth model for relating dNBR to consumption reached a

plateau at higher consumption levels, leading to increasing error
with increasing consumption. This is similar to the finding by
Hall et al. (2008), who advised against using a second order

polynomial model to relate dNBR to CBI due to a drop in
predicted CBI at high dNBR values. Likewise,Miller and Thode
(2007) found that dNBR and RdNBR exponential models
predicting CBI exhibited increasing heteroscedasticity at higher

CBI values, though it was much better controlled using RdNBR.
Some of the difficulties in using remote sensing data in high-
severity areas can be attributed to sensor saturation in theMidIR

bands because of the high relative reflectance of char (Chuvieco
et al. 2006; Soverel et al. 2010).

An advantage of the final surface severity models produced

here is their high accuracy over a large range of fires without
ancillary data inputs, such as weather variables and digital
elevation model products, thereby creating usable data from
one data source, Landsat 8. However, if available, the inclusion

of ancillary geophysical data would create a more accurate
model, indicating a need for better elevation models and finer
spatial resolution weather data for this region.

Severity mapping

This study resulted in a set of models of SOM severity with high

reliability, providing confidence that the maps will be useful for
assessing the consequences of surface organic soil severity for

Table 6. Pearson correlations between (a) canopy severity, burn depth, and soil organic matter (SOM) severity, and (b) canopy

severity, SOM severity and dNBR by ecoregion and site type (wetlands v. uplands)

Tests using the differenced normalised burn ratio (dNBR) used multiple dNBR values retrieved from multiple unique image pairs. n¼ sample

size, r¼ coefficient of correlation,P¼P-value from the correlation test. For (a), values on the left of the line represent tests performed at the site

level and values to the right of the line represent tests performed at the plot level

n r P

(a) Comparisons of field metrics

Canopy severity - SOM severity, all 88 | 269 0.53 | 0.42 ,0.001 |, 0.001

Canopy severity - SOM severity, Shield 13 | 65 0.40 | 0.39 0.11 |, 0.01

Canopy severity - SOM severity, Plain 75 | 204 0.54 | 0.42 ,0.001 |, 0.001

Canopy severity - SOM severity, wetlands 50 | 206 0.68 | 0.50 ,0.001 |, 0.001

Canopy severity - SOM severity, uplands 38 | 63 0.53 | 0.41 ,0.001 |, 0.001

Burn depth - SOM severity, all 43 | 208 0.35 | 0.18 0.02 | 0.01

Burn depth - SOM severity, Shield 13 | 65 0.54 | 0.47 0.056 |, 0.001

Burn depth - SOM severity, Plain 30 | 143 0.30 | 0.12 0.11 | 0.139

Burn depth - SOM severity, wetlands 35 | 180 0.34 | 0.21 0.047 | 0.004

Burn depth - SOM severity, uplands 8 | 28 0.00 | 0.14 0.992 | 0.486

(b) Comparisons of field metrics with dNBR

Canopy severity - dNBR, all 116 0.55 ,0.001

Canopy severity - dNBR, Shield 26 �0.03 0.89

Canopy severity - dNBR, Plain 90 0.61 ,0.001

Canopy severity - dNBR, wetlands 72 0.41 ,0.001

Canopy severity - dNBR, uplands 44 0.80 ,0.001

SOM severity - dNBR, all 121 0.57 ,0.001

SOM severity - dNBR, Shield 26 �0.22 0.27

SOM severity - dNBR, Plain 95 0.64 ,0.001

SOM severity - dNBR, wetlands 77 0.54 ,0.001

SOM severity - dNBR, uplands 44 0.44 ,0.01
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this region. Validation assessments showed the models to be

robust and that using post-fire only indices can provide valuable
models results, a result that is encouraging if pre-fire imagery is
unavailable. Previous studies of fire severity in Alaska and

Western Canada have shown mixed results (Table 7). All of
those studies focused on forested ecosystems, and primarily
uplands, whereas we included a mix of open and treed uplands
and peatland ecosystems, providing a valuable assessment for

understanding the effects of fire on ecosystems with deep
organic soils.

This study aimed to predict severity to the SOM as assessed

in the field, rather than the multi-component field metric of CBI
(Hall et al. 2008; Soverel et al. 2010).We also did not attempt to
predict fuel consumption, as others have (Barrett et al. 2011;

Rogers et al. 2014; Veraverbeke et al. 2015), with the concern
that remote sensing-derived metrics are not sensitive to absolute
organic soil reduction (French et al. 2008; Barrett et al. 2011).

Some of those studies relied on the assumption that severity and
consumption are correlated; the assessment in this study, how-
ever, showed that this is not always a reliable assumption,
despite having been shown as valid in the other studies. Barrett

et al. (2011) produced excellent results for prediction of organic
soil loss for the forested sites in Alaska by using both remote
sensing metrics and topographic parameters, pointing to the

great value that topographic metrics can add for fuel consump-
tion modelling. Of the studies compared in Table 7, only
Veraverbeke et al. (2015) aimed to map severity/consumption

across diverse landscapes; the rest of the studies focus on a
single or few fire events. We attempted to map severity to the
SOMover a broad area encompassing two ecoregions and across
a range of upland and peatland ecosystems. This diversity

presented challenges to methods where consistent geospatial
data are needed and for this study, topographic data fell short.
With improved topographic metrics that can be mapped consis-

tently across a region, the approach taken for this study can be
improved, as has been shown by Barrett et al. (2011).

The 2014 fires in the Plain were substantially more severe

than the fires in the Shield or either ecoregion in 2015 (Table 5).

Although we do not have results for more than two years, the

results confirm that the severity of the 2014 fires was unusual;
indeed, with just 4% of the burnable surface left unburned and
the results skewed to higher severity in the 2014 Plain sites

(Fig. 4), the results point to the 2014 fires as a remarkable event,
with regard to surface severity. Severity has known effects on
post-fire soil and vegetation conditions and therefore far-
reaching ecological consequences. Topographic conditions,

thinner soils and a more discontinuous landscape from lakes
and exposed bedrock means less contiguous fuels to carry fire
across the landscape of the Shield than the more open topogra-

phy of the Plain (McKenzie et al. 2011), so the Shield is likely to
experience smaller and less severe fires than the Plain ecoregion.
Assessment of these results with topographical variables could

help understand which factors are of most consequence in
driving severity. These maps will be valuable in further assess-
ment of fire and ecological effects and subsequently for

improved carbon cycle assessments, climate effects and many
other factors that are driven by fire severity in boreal systems.

Severity relationships

The results presented in Table 6a assessing the relationships
between depth of burn, SOM severity and canopy severity are
varied. These relationships are important to understand for

proper interpretation of remote sensing-derived severity, par-
ticularly in boreal regions with carbon-rich SOM (duff and
peat). Field-measured canopy and surface severity are weakly to

moderately related, with the relationship stronger in the Plain
ecoregion compared with the Shield, and most strongly corre-
lated in wetlands (0.68 by site) compared with uplands (0.53 by
site). Surface severity is therefore shown to be partially decou-

pled, though not fully, from canopy severity, indicating that the
drivers of severity of canopy versus surface likely differ, a result
that encourages additional exploration. An interesting analysis

that is beyond the scope of this study would be to identify areas
where Landsat metrics (i.e. RBR, RdNBR, etc.) suggest a
moderate- or high-severity burn, but the models from this study

suggest low severity or unchanged surface severity and vice

Table 7. Comparison of previous studies on predicting fire severity or fuel consumption in the North American boreal region

CBI, composite burn index; dNBR, differenced normalised burn ratio

Authors Location/

ecoregion

Fire

year(s)

Area mapped

(ha)

Dependent

variable

Approach Independent variables Fit

Barrett et al.

(2011)

Interior Alaska 2004 2.56 million Organic layer

depth

reduction (cm)

Random forest Numerous, including:

topographic, spectral,

spatial, fire

characteristics

R2¼ 0.94,

0.96, 095

Rogers et al.

(2014)

Interior Alaska 2010 8000 Combustion

(kgC m�2)

Multiple linear regression Log-transformed dNBR

and%deciduous cover

R2¼ 0.84

Hall et al. (2008) Western Canada 2003 and

2004

95 296 CBI Regression, linear and

non-linear

dNBR 0.73

Soverel et al.

(2010)

Western Canada 2005–07 198 420 CBI Regression, linear and

quadratic

dNBR and RdNBR 0.69, 0.71

Veraverbeke

et al. (2015)

Interior Alaska 2001–12 62 7000 Combustion

(kgC m�2)

Multiplicative non-linear

regression, regression

tree with gradient

boosting

dNBR, topography, burn

date, tree cover

0.29, 0.53
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versa. This type of additional study could provide an avenue to
understand how satellite remote sensing might be leveraged for
a complete picture of burn severity, because consumption of

SOM has a very different ecological effect to that of tree death
and aboveground vegetation loss, the phenomena that are most
detectable from Landsat spectral indices.

Field measurements of burn depth and surface severity were
found in this study to be mildly related and most strongly so in
the Shield (0.54 by site), where organic soils tend to be younger

and more shallow.When plotted, these results are compelling at
the site level, providing some optimism that remote sensing
could provide an indication of the level of surface consumption.
Interestingly these two relationships (canopy/surface severity,

surface severity/burn depth) are weaker at the plot level than at
the broader site level, where plot data are averaged. Because
field sites were selected to be homogeneous across the full site,

perhaps the results suggest that these variables are less related at
individual points at the site-level scale but are more linked at the
landscape scale. However, to conclude from this study that

Landsat can be used to indicate depth of burn is not valid; rather,
the work provides evidence that remote sensing could play a part
in a robust approach to mapping the level of surface fuel

consumption in general.
For all Shield and Plain sites, the variation explained at the

site level for each of the three relationships (canopy v. surface
severity, dNBR v. canopy severity and dNBR v. surface

severity) is similar (Table 6b; 0.53–0.57). However, the dNBR
relationships were very poor and non-significant in the Shield
for both canopy (�0.03) and surface severity (�0.22). In fact, all

remote sensing metrics tested (dNBR, RdNBR, RBR, dNBR2)
were poor predictors for canopy and surface severity in the
Shield ecosystem when used alone, with negative correlations.

Although theywere all adequate in the Plain, for both ecoregions
MLR techniques improved upon single-parameter models
(Table 4).

The utility of dNBR and similar remote sensing indices for

extending field measurements of SOM consumption has been
met with caution (Lentile et al. 2006; French et al. 2008; Hoy
et al. 2008; Soverel et al. 2010; Rogers et al. 2014; Veraverbeke

et al. 2015), but this study found dNBR to have some value
(Table 6b) and other indices performed with good results
(unpubl. data); however, inclusion of multiple variables

improved model predictions immensely (Table 4). Rogers
et al. (2014) and Veraverbeke et al. (2015) demonstrated
success at relating dNBR to field-measured surface layer con-

sumption in boreal Alaska, showing that aboveground consump-
tion was highly related to belowground consumption.
Veraverbeke et al. (2015) found that dNBR, as an individual
variable, was the top predictor of depth of burn in black spruce

forests, together with pre-fire tree cover. Additionally, Barrett
et al. (2011) found dNBR to be one of the top predictors of
severity. In contrast, Hoy et al. (2008) did not find a strong

correlation between surface organic consumption and dNBR in
Alaska. French et al. (2008) concluded that satellite-based
assessment of burn severity, including dNBR, in the boreal

region ‘needs to be used judiciously’ because of the mixed
results reported up to that point in time and the challenges of
using Landsat in the region (see Verbyla et al. 2008); our study
results support that conclusion.

Conclusions

In this study, the severity of the 2014 and 2015 fires in the Great

Slave Lake region of the NWT and AB, Canada, was mapped
using remote sensing, with specific attention to consumption of
the SOM (organic soil present in both uplands (duff) and peat-

lands (peat)), using validated MLR models. The study results
have improved on previous efforts to model severity to the SOM
and therefore demonstrate a reliable method of assessing the

2014 and 2015 fires regarding surface severity, a factor of great
importance when considering the vulnerability and resiliency of
these sites to fire. Key findings from this study are as listed.

� Fire severity in the region studied varied according to land-
scape (Plain v. Shield) and between years and represents a

wide range of variability for the boreal and taiga ecoregions.
The errors of the MLR models demonstrated relatively equal
capability across the range of observed severity values. These
results can be used to further explore the role of severity in fire

effects and the post-fire environment.
� The standardLandsat severity index, dNBR,was a poor remote

sensingmetric for SOMseverity retrieval in the Shield, butwas

adequate in the Plain ecoregion.MLRmodels, which usemore
than one index, improved on single index approaches for
mapping severity to the SOM.This study reinforced the finding

that the products of the NIR and MidIR bands are consistently
the strongest predictors of surface burn severity.

� Geophysical variables of topography and thermal radiance-
derived temperature were found to be relevant for modelling

severity; however; topographic and thermal data products
cannot yet be used for widespread mapping because of the
discontinuities in existing datasets.

� Assessment of the relationships between surface severity and
other site-level severity metrics had mixed results:

J surface severity was weakly to moderately related to
canopy severity

J depth of burn was moderately related to surface severity in

the Shield but weakly in the Plain ecoregion
J there was a weak relationship between depth of burn and

surface severity in peatlands and there appeared to be no

relationship between depth of burn and surface severity in
uplands.

This promising application of MLR modelling to severity
mapping will be improved in the future as better spatial datasets
are developed; in particular, thermal IR and elevation products,

weather metrics and the use of microwave-derived variables,
such as passive microwave and synthetic aperture radar back-
scatter for modelling live fuel moisture and fire weather vari-
ables. Analysis of the severity results of this study, together with

a classified ecosystem map, would provide a useful understand-
ing of the differential vulnerability of various ecosystems to fire.
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