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Abstract: Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications
including neural networks and expert systems. Since then, the field has rapidly progressed congruently with the wide adoption
of machine learning (ML) methods in the environmental sciences. Here, we present a scoping review of ML applications in
wildfire science and management. Our overall objective is to improve awareness of ML methods among wildfire researchers and
managers, as well as illustrate the diverse and challenging range of problems in wildfire science available to ML data scientists.
To that end, we first present an overview of popular ML approaches used in wildfire science to date and then review the use of
ML in wildfire science as broadly categorized into six problem domains, including (i) fuels characterization, fire detection, and
mapping; (ii) fire weather and climate change; (iii) fire occurrence, susceptibility, and risk; (iv) fire behavior prediction; (v) fire
effects; and (vi) fire management. Furthermore, we discuss the advantages and limitations of various ML approaches relating to
data size, computational requirements, generalizability, and interpretability, as well as identify opportunities for future ad-
vances in the science and management of wildfires within a data science context. In total, to the end of 2019, we identified
300 relevant publications in which the most frequently used ML methods across problem domains included random forests,
MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. As such, there exists
opportunities to apply more current ML methods — including deep learning and agent-based learning — in the wildfire sciences,
especially in instances involving very large multivariate datasets. We must recognize, however, that despite the ability of ML
models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across
multiple scales, while the complexity of some ML methods such as deep learning requires a dedicated and sophisticated
knowledge of their application. Finally, we stress that the wildfire research and management communities play an active role in
providing relevant, high-quality, and freely available wildfire data for use by practitioners of ML methods.

Key words: machine learning, wildfire science, fire management, wildland fire, support vector machine, artificial neural network,
decision trees, Bayesian networks, reinforcement learning, deep learning.

Résumé : L’intelligence artificielle a été utilisée en science et en gestion des feux de forêt depuis les années 1990, les premières
applications comprenant les réseaux neuronaux et les systèmes experts. Depuis lors, le domaine a rapidement progressé
parallèlement à l’adoption des méthodes d’apprentissage machine (AM) en sciences de l’environnement. Les auteurs présentent
ici une synthèse du cadrage des applications de l’AM en science et en gestion des feux de forêt. Leur objectif global consiste à
améliorer la notoriété des méthodes d’AM auprès des chercheurs et des gestionnaires des feux de forêt, de même qu’à illustrer
l’étendue vaste et complexe des problèmes en science des feux de forêt dont disposent les scientifiques spécialistes de données
en AM. À cette fin, ils présentent d’abord un survol des approches populaires en AM utilisées en science des feux de forêt à ce jour
et font ensuite la synthèse de l’utilisation de l’AM en science des feux de forêt, selon six grands domaines de problèmes dont (i) la
caractérisation des carburants, la détection et la cartographie de l’incendie; (ii) la température de l’incendie et les changements
climatiques; (iii) les circonstances, la susceptibilité et le risque d’incendie; (iv) la prédiction du comportement de l’incendie; (v) les
effets de l’incendie; et (vi) la gestion de l’incendie. Par ailleurs, les auteurs discutent des avantages et des limites de différentes
approches d’AM en lien avec la taille des données, les exigences de calcul, le potentiel de généralisation et d’interprétation et
identifient également les possibilités d’avancées futures en science et gestion des feux de forêt dans le contexte de la science des
données. Ils ont identifié au total 300 publications pertinentes jusqu’à la fin de 2019 qui comprennent les méthodes d’AM les plus
fréquemment utilisées à travers les domaines de problèmes, dont les forêts aléatoires, MaxEnt, les réseaux de neurones
artificiels, les arbres de décision, les séparateurs à vaste marge et les algorithmes génétiques. Il existe ainsi des possibilités
d’appliquer davantage de méthodes actuelles d’AM — y compris l’apprentissage profond et l’apprentissage basé sur l’agent — en
sciences des feux de forêt, particulièrement dans les cas impliquant de très grands ensembles de données multivariées. Ils
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reconnaissent cependant que, malgré la capacité des méthodes en AM d’apprendre par elles-mêmes, l’expertise en science des
feux de forêt est nécessaire pour s’assurer d’une modélisation réaliste des processus des incendies à différentes échelles, alors
que la complexité de certaines méthodes en AM telles que l’apprentissage profond, requiert une connaissance approfondie et
spécifique de leur application. Finalement, ils soulignent que les communautés qui se consacrent à la recherche et à la gestion
des feux de forêt jouent un rôle actif en fournissant des données pertinentes, de haute qualité et en libre accès à l’usage des
praticiens des méthodes en AM. [Traduit par la Rédaction]

Mots-clés : apprentissage machine, science des feux de forêt, gestion des feux, feu de végétation, séparateurs à vaste marge, réseau
de neurones artificiels, arbres de décision, réseaux bayésiens, apprentissage par renforcement, apprentissage profond.

1. Introduction
Wildland fire is a widespread and critical element of the Earth’s

system (Bond and Keeley 2005) and a continuous global feature
that occurs in every month of the year. Presently, global annual
area burned is estimated to be approximately 420 Mha (Giglio
et al. 2018), which is greater in area than the country of India.
Globally, most of the area burned by wildfires occurs in grasslands
and savannas. Humans are responsible for starting over 90% of
wildland fires, and lightning is responsible for almost all of the
remaining ignitions. Wildland fires can result in significant im-
pacts to humans, either directly through loss of life and destruc-
tion to communities or indirectly through smoke exposure.
Moreover, as the climate warms, we are seeing increasing impacts
from wildland fire (Coogan et al. 2019). Consequently, billions of
dollars are spent every year on fire management activities aimed
at mitigating or preventing wildfires’ negative effects. Under-
standing and better predicting wildfires is therefore crucial in
several important areas of wildfire management, including emer-
gency response, ecosystem management, land-use planning, and
climate adaptation to name a few.

Wildland fire itself is a complex process; its occurrence and
behavior are the product of several interrelated factors, including
ignition source, fuel composition, weather, and topography. Fur-
thermore, fire activity can be examined across a vast range of
scales — from ignition and combustion processes that occur at a
scale of centimetres over a period of seconds to fire spread and
growth over minutes to days from metres to kilometres. At larger
extents, measures of fire frequency may be measured over years to
millennia at regional, continental, and planetary scales (see
Simard (1991) for a classification of fire-severity scales and Taylor
et al. (2013) for a review of numerical and statistical models that
have been used to characterize and predict fire activity at a range
of scales). For example, combustion and fire behavior are funda-
mentally physicochemical processes that can be usefully repre-
sented in mechanistic (i.e., physics-based) models at relatively fine
scales (Coen 2018); however, such models are often limited by
both the ability to resolve relevant physical processes and the
quality and availability of input data (Hoffman et al. 2016). More-
over, with the limitations associated with currently available com-
puting power, it is not feasible to apply physical models to inform
fire management and research across the larger and longer scales
that are needed sometimes in near real time. Thus, wildfire sci-
ence and management rely heavily on the development of empir-
ical and statistical models for meso-, synoptic-, strategic-, and
global-scale processes (Simard 1991), the utility of which are de-
pendent on their ability to represent the often complex and non-
linear relationships among the variables of interest, as well as by
the quality and availability of data.

While the complexities of wildland fire often present chal-
lenges for modelling, significant advances have been made in
wildfire monitoring and observation primarily due to the increas-
ing availability and capability of remote-sensing technologies.
Several satellites (e.g., NASA TERRA and AQUA, NOAA GOES), for
instance, have onboard fire detection sensors (e.g., Advanced Very
High Resolution Radiometer (AVHRR), Moderate Resolution Imag-
ing Spectroradiometer (MODIS), and Visible Infrared Imaging Ra-

diometer Suite (VIIRS)). These sensors, along with those on other
satellites (e.g., LANDSAT series), routinely monitor vegetation dis-
tributions and changes. Additionally, improvements in numerical
weather prediction and climate models are simultaneously offer-
ing smaller spatial resolutions and longer lead forecast times
(Bauer et al. 2015), which potentially offer improved predictability
of extreme fire weather events. Such developments make a data-
centric approach to wildfire modeling a natural evolution for
many research problems given sufficient data. Consequently,
there has been a growing interest in the use of machine learning
(ML) methodologies in wildfire science and management in recent
years.

Although no formal definition exists, we adopt the conven-
tional interpretation of ML as the study of computer algorithms
that can improve automatically through experience (Mitchell
1997). This approach is necessarily data-centric, with the perfor-
mance of ML algorithms dependent on the quality and quantity of
available data relevant to the task at hand. The field of ML has
undergone an explosion of new algorithmic advances in recent
years and is deeply connected to the broader field of artificial
intelligence (AI). AI researchers aim to understand and synthesize
intelligent agents that can act appropriately to their situation and
objectives, adapt to changing environments, and learn from ex-
perience (Poole and Mackworth 2010). The motivations for using
AI for forested ecosystem related research, including disturbances
due to wildfire, insects, and disease, were discussed in an earlier
paper (Schmoldt 2001), while Olden et al. (2008) further argued for
the use of ML methods to model complex problems in ecology.
The use of ML models in the environmental sciences has seen a
rapid uptake in the last decade, as evidenced by recent reviews in
the geosciences (Karpatne et al. 2017), forest ecology (Liu et al.
2018), extreme weather prediction (McGovern et al. 2017), flood
forecasting (Mosavi et al. 2018), statistical downscaling (Vandal
et al. 2019), remote sensing (Lary et al. 2016), and water resources
(Shen 2018; Sun and Scanlon 2019). Two recent perspectives have
also made compelling arguments for the application of deep
learning (DL) in Earth system sciences (Reichstein et al. 2019) and
for tackling climate change (Rolnick et al. 2019). To date, however,
no such paper has synthesized the diversity of ML approaches
used in the various challenges facing wildland fire science.

In this paper, we review the current state of literature on ML
applications in wildfire science and management. Our overall
objective is to improve awareness of ML methods among fire re-
searchers and managers and illustrate the diverse and challeng-
ing problems in wildfire open to data scientists. This paper is
organized as follows. In section 2, we discuss commonly used ML
methods, focusing on those most commonly encountered in wild-
fire science. In section 3, we give an overview of the scoping re-
view and literature search methodology employed in this paper.
In this section, we also highlight the results of our literature
search and examine the uptake of ML methods in wildfire science
since the 1990s. In section 4, we review the relevant literature
within six broadly categorized wildfire modeling domains: (i) fu-
els characterization, fire detection, and mapping; (ii) fire weather
and climate change; (iii) fire probability and risk; (iv) fire behavior
prediction; (v) fire effects; and (vi) fire management. In section 5,
we discuss our findings and identify further opportunities for the
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application of ML methods in wildfire science and management.
Finally, in section 6, we offer conclusions. Thus, this review will
serve to guide and inform both researchers and practitioners in
the wildfire community looking to use ML methods, as well as
provide ML researchers with the opportunity to identify possible
applications in wildfire science and management.

2. Artificial intelligence and machine learning
Machine learning can be defined as a set of methods that “de-

tect patterns in data, use the uncovered patterns to predict future
data or other outcomes of interest” from Machine Learning: A
Probabilistic Perspective, 2012 (Murphy 2012).

ML itself can be seen as a branch of AI or statistics, depending
who you ask, that focuses on building predictive, descriptive, or
actionable models for a given problem by using collected data, or
incoming data, specific to that problem. ML methods learn di-
rectly from data and dispense with the need for a large number of
expert rules or the need to model individual environmental vari-
ables with perfect accuracy. ML algorithms develop their own
internal model of the underlying distributions when learning
from data and thus need not be explicitly provided with physical
properties of different parameters. For example, in the task of
modeling wildland fire spread, the relevant physical properties
include fuel composition, local weather, and topography. The cur-
rent state-of-the-art method in wildfire prediction includes
physics-based simulators that fire fighters and strategic planners
rely on to take many critical decisions regarding allocation of
scarce fire-fighting resources in the event of a wildfire (Sullivan
2007). These physics-based simulators, however, have certain crit-
ical limitations: they normally render very low accuracies, have a
prediction bias in regions where they are designed to be used, and
are often hard to design and implement due to the requirement of
a large number of expert rules. Furthermore, modelling many
complex environmental variables is often difficult due to large
resource requirements and complex or heterogeneous data for-
mats. ML algorithms, however, learn their own mappings be-
tween parametric rules directly from the data and do not require
expert rules, which is particularly advantageous when the num-
ber of parameters is quite large and their physical properties are
quite complex, as in the case of wildland fire. Therefore, an ML
approach to wildfire response may help to avoid many of the
limitations of physics-based simulators.

A major goal of this review is to provide an overview of the
various ML methods utilized in wildfire science and management.
Importantly, we also provide a generalized framework for guiding
wildfire scientists interested in applying ML methods to specific
problem domains in wildland fire research. This conceptual
framework, derived from the approach in Murphy (2012) and mod-
ified to show examples relevant to wildland fire and management,
is shown in Fig. 1. In general, ML methods can be identified as
belonging to one of three types: supervised learning, unsuper-
vised learning, or agent-based learning. We describe each of these
below.

Supervised learning — In supervised ML, all problems can be
seen as one of learning a parametrized function, often called a
“model”, that maps inputs (i.e., predictor variables) to outputs (or
“target variables”), both of which are known. The goal of super-
vised learning is to use an algorithm to learn the parameters of
that function using available data. In fact, both linear and logistic
regressions can be seen as very simple forms of supervised learn-
ing. The most popular ML methods fall into this category.

Unsupervised learning — If the target variables are not avail-
able, then ML problems are typically much harder to solve. In
unsupervised learning, the canonical tasks are dimensionality re-
duction and clustering, with relationships or patterns being ex-
tracted from the data without any guidance as to the “correct”
answer. Extracting embedded dimensions that minimize variance

or assigning data points to (labelled) classes that maximize some
notion of natural proximity or other measures of similarity are
examples of unsupervised ML tasks.

Agent-based learning — Between supervised and unsupervised
learning is a group of ML methods in which learning happens by
simulating behaviors and interactions of a single autonomous
agent or a group of autonomous agents. These are general unsu-
pervised methods that use incomplete information about the tar-
get variables (i.e., information is available for some instances but
not for others), requiring generalizable models to be learned. A
specific case in this space is reinforcement learning (Sutton and
Barto 1998), which is used to model decision-making problems
over time whereby critical parts of the environment can only be
observed interactively through trial and error. This class of prob-
lems arises often in the real world and requires efficient learning
and careful definition of values (or preferences) and exploration
strategies.

In the next section, we present a brief introduction to com-
monly used ML methods from the aforementioned learning para-
digms. We note that this list is not meant to be exhaustive and
that some methods can accommodate both supervised and unsu-
pervised learning tasks. It should be noted that the classification
of a method as belonging to either ML or traditional statistics is
often a question of taste. For the purpose of this review, and in the
interests of economy, we have designated a number of methods as
belonging to traditional statistics rather than ML. For a complete
listing, see Tables 1 and 2.

2.1. Decision trees
Decision trees (DTs) (Breiman et al. 1984) belong to the class of

supervised learning algorithms and are another example of a uni-
versal function approximator, although in their basic form such
universality is difficult to achieve. DTs can be used for both clas-
sification and regression problems. A DT is a set of if-then-else
rules with multiple branches joined by decision nodes and termi-
nated by leaf nodes. The decision node is where the tree splits into
different branches, with each branch corresponding to the partic-
ular decision being taken by the algorithm, and leaf nodes repre-
sent the model output. This could be a label for a classification
problem or a continuous value in the case of a regression prob-
lem. A large set of decision nodes is used in this way to build the
DT. The objective of DTs is to accurately capture the relationships
between input and outputs using the smallest possible tree that
avoids overfitting. C4.5 (Quinlan 1993) and classification and re-
gression trees (CART; Breiman et al. 1984) are examples of com-
mon single DT algorithms. Note that while the term CART is also
used as an umbrella term for single-tree methods, we use DT here
to refer to all such methods. The majority of DT applications are
ensemble DT (EDT) models that use multiple trees in parallel (i.e.,
bootstrap aggregation or bagging) or sequentially (i.e., boosting)
to arrive at a final model. In this way, EDTs make use of many
weak learners to form a strong learner while being robust to
overfitting. EDTs are well described in many ML–AI textbooks and
are widely available as implemented libraries.

2.1.1. Random forests
A random forest (RF) (Breiman 2001) is an ensemble model com-

posed of a many individually trained DTs and is the most popular
implementation of a bagged DT. Each component DT in an RF
model makes a classification decision whereby the class with the
maximum number of votes is determined to be the final classifi-
cation for the input data. RFs can also be used for regression with
the final output being determined by averaging over the
individual-tree outputs. The underlying principle of the RF algo-
rithm is that a random subset of features is selected at each node
of each tree; the samples for training each component tree are
selected using bagging, which resamples (with replacement) the
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original set of data points. The high performance of this algo-
rithm is achieved by minimizing correlation between trees while
reducing model variance so that a large number of different trees
provides greater accuracy than individual trees; however, this im-
proved performance comes at the cost of an increase in bias and
loss of interpretability (although variable importance can still be
inferred through permutation tests).

2.1.2. Boosted ensembles
Boosting describes a strategy in which one combines a set of

weak learners, usually DTs, to make a strong learner using a se-
quential additive model. Each successive model improves on the
previous one by taking into account the model errors from the
previous model, which can be done in more than one way. For
example, the adaptive boosting algorithm, known as AdaBoost
(Freund and Shapire 1995), works by increasing the weight of
observations that were previously misclassified. This can, in prin-
ciple, reduce the classification error leading to a high level of
precision (Hastie et al. 2009).

Another very popular implementation for ensemble boosted
trees is the gradient boosting machine (GBM), which makes use of
the fact that each DT model represents a function that can be
differentiated with respect to its parameters, i.e., how much a
change in the parameters will change the output of the function.
GBMs sequentially build an ensemble of multiple weak learners
by following a simple gradient that points in the opposite direc-
tion to weakest results of the current combined model (Friedman
2001).

The details for the GBM algorithm are as follows. Denoting the
target output as Y and given a tree-based ensemble model, repre-
sented as a function Ti(X) ¡ Y, after already adding i weak learners,
the “perfect” function for weak learner i + 1 would be h(x) = Ti(x) – Y,
which exactly corrects the previous model (i.e., T(i+1)(x) = Ti(x) +
h(x) = Y). In practice, we can only approach this perfect update by
performing functional gradient descent in which we use an ap-
proximation of the true residual (i.e., loss function) at each step. In
our case, this approximation is simply the sum of the residuals

Fig. 1. A diagram showing the main machine learning (ML) types, types of data, and modeling tasks in relation to popular algorithms and
potential applications in wildfire science and management. Note that the algorithms shown in bold type are core ML methods, whereas those
algorithms not in bold type are often not considered ML methods (see Tables 1 and 2).
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from each weak learner DT, L�Y,T�X�� � �
i

Y � Ti�X�. GBM explicitly

uses the gradient �Ti
L�Y,Ti�X� of the loss function of each tree to fit a

new tree and add it to the ensemble.
In a number of domains and particularly in the context of eco-

logical modeling, GBM is often referred to as boosted regression

trees (BRTs) (Elith et al. 2008). For consistency with most of the
literature reviewed in this paper, we henceforth use the latter
term. It should be noted that while deep neural networks (DNNs)
and EDT methods are both universal function approximators,
EDTs are more easily interpretable and faster to learn with less
data than DNNs. There are, however, fewer and fewer cases in
which tree-based methods can be shown to provide superior per-
formance on any particular metric when DNNs are trained prop-
erly with enough data (see, for example, Korotcov et al. 2017).

2.2. Support vector machines
Another category of supervised learning includes support vec-

tor machines (SVMs) (Hearst et al. 1998) and related kernel-based
methods. SVM is a classifier that determines the hyperplane (de-
cision boundary) in an n-dimensional space separating the bound-
ary of each class, for data in n dimensions. SVM finds the optimal
hyperplane in such a way that the distance between the nearest
point of each class and the decision boundary is maximized. If the
data can be separated by a line, then the hyperplane is defined to
be of the form wTx + b = 0, where the w is the weight vector, x is the
input vector, and b is the bias. The distance of the hyperplane to
the closest data point d, called a support vector, is defined as the

Table 1. Table of abbreviations and definitions for common machine learning algorithms
referred to in the text.

Abbreviation Definition

A3C Asynchronous advantage actor–critic
AdaBoost Adaptive boosting
ANFIS Adaptive neuro fuzzy inference system
ANN Artificial neural networks
ADP Approximate dynamic programming (also known as reinforcement learning)
Bag Bagged decision trees
BN Bayesian networks
BRT Boosted regression trees (also known as gradient boosted machine)
BULC Bayesian updating of land cover
CART Classification and regression tree
CNN Convolutional neural network
DNN Deep neural network
DQN Deep Q-network
DT Decision trees (including CART, J48, and jRip)
EDT Ensemble decision trees (including bagging and boosting)
ELM Extreme machine learning (i.e., feedforward network)
GA Genetic algorithms (also known as evolutionary algorithms)
GBM Gradient boosted machine (also known as boosted regression trees, including

XGBoost, AdaBoost, and LogitBoost)
GMM Gaussian mixture models
GP Gaussian processes
HCL Hard competitive learning
HMM Hidden Markov models
ISODATA Iterative self-organizing DATA algorithm
KNN k nearest neighbor
KM k-means clustering
LB LogitBoost (including AdaBoost)
LSTM Long short-term memory
MaxEnt Maximum entropy
MCMC Markov chain Monte Carlo
MCTS Monte Carlo tree search
MLP Multilayer perceptron
MDP Markov decision process
NB Naive Bayes
NFM Neuro-fuzzy models
PSO Particle swarm optimization
RF Random forest
RL Reinforcement learning
RNN Recurrent neural network
SGB Stochastic gradient boosting
SOM Self-organizing maps
SVM Support vector machines
t-SNE t-distributed stochastic neighbor embedding

Table 2. Table of abbreviations and definitions for com-
mon data analysis algorithms usually considered as foun-
dational to, or outside of, machine learning itself.

Abbreviation Definition

DBSCAN Density-based spatial clustering of
applications with noise

GAM Generalized additive model
GLM Generalized linear model
KLR Kernel logistic regression
LDA Linear discriminant analysis
LR Logistic regression
MARS Multivariate adaptive regression splines
MLR Multiple linear regression
PCA Principal component analysis
SLR Simple linear regression
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margin of separation. The objective is to find the optimal hyper-
plane that minimizes the margin. If they are not linearly separa-
ble, kernel SVM methods such as radial basis functions (RBF) first
apply a set of transformations to the data to a higher dimensional
space where finding this hyperplane would be easier. SVMs have
been widely used for both classification and regression problems,
although recently developed DL algorithms have proven to be
more efficient than SVMs given a large amount of training data;
however, for problems with limited training samples, SVMs might
give better performances than DL-based classifiers.

2.3. Artificial neural networks and deep learning
The basic unit of an artificial neural network (ANN) is a neuron

(also called a perceptron or logistic unit). A neuron is inspired by
the functioning of neurons in mammalian brains in that it can
learn simple associations, but in reality, it is much simpler than
its biological counterpart. A neuron has a set of inputs that are
combined linearly through multiplication with weights associ-
ated with the input. The final weighted sum forms the output
signal, which is then passed through a (generally) nonlinear acti-
vation function. Examples of activation functions include sig-
moid, tanh, and the rectified linear unit (ReLU). This nonlinearity
is important for general learning as it creates an abrupt cutoff (or
threshold) between positive and negative signals. The weights on
each connection represent the function parameters, which are fit
using supervised learning by optimizing the threshold so that it
reaches a maximally distinguishing value.

In practice, even simple ANNs, often called multilayered per-
ceptrons (MLP), combine many neuron units in parallel, each pro-
cessing the same input with independent weights. In addition, a
second layer of hidden neuron units can be added to allow more

degrees of freedom to fit general functions (see Fig. 2). MLPs are
capable of solving simple classification and regression problems.
For instance, if the task is one of classification, then the output is
the predicted class for the input data, whereas in the case of a
regression task, the output is the regressed value for the input
data. Deep learning (LeCun et al. 2015) refers to using deep neural
networks (DNNs), which are ANNs with multiple hidden layers
(nominally more than three) and include convolutional neural
networks (CNNs), popularized in image analysis, and recurrent
neural networks (RNNs), which can be used to model dynamic
temporal phenomena. The architecture of DNNs can vary in con-
nectivity between nodes, the number of layers employed, the
types of activation functions used, and many other types of hyper-
parameters. Nodes within a single layer can be fully connected or
connected with some form of convolutional layer (e.g., CNNs),
recurrent units (e.g., RNNs), or other sparse connectivity. The only
requirement of all these connectivity structures and activation
functions is that they are differentiable.

Regardless of the architecture, the most common process of
training an ANN involves processing input data fed through the
network layers and activation functions to produce an output. In
the supervised setting, this output is then compared with the
known true output (i.e., labelled training data), resulting in an
error measurement (loss or cost function) used to evaluate model
performance. The error for DNNs is commonly calculated as a
cross-entropy loss between the predicted output label and the
true output label. As every part of the network is mathematically
differentiable, we can compute a gradient for the entire network.
This gradient is used to calculate the proportional change in each
network weight needed to produce an infinitesimal increase in

Fig. 2. Logistic regression can be seen as a basic building block for neural networks, with no hidden layer and a sigmoid activation function.
Classic shallow neural networks (also known as multilayer perceptrons) have at least one hidden layer and can have a variety of activation
functions. Deep neural networks essentially have a much larger number of hidden layers and use additional regularization and
optimization methods to enhance training.
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the likelihood of the network producing the same output for the
most recent output. The gradient is then weighted by the com-
puted error, and thereafter, all the weights are updated in se-
quence using a backpropagation algorithm (Hecht-Nielsen 1992).

ANNs can also be configured for unsupervised learning tasks.
For example, self-organizing maps (SOMs) are a form of ANN
adapted for dealing with spatial data and have therefore found
widespread use in the atmospheric sciences (Skific and Francis
2012). A SOM is a form of unsupervised learning that consists of a
two-dimensional array of nodes as the input layer, representing,
for example, a gridded atmospheric variable at a single time. The
algorithm clusters similar atmospheric patterns together, result-
ing in a dimensionality reduction of the input data. More recently,
unsupervised learning methods from DL such as autoencoder net-
works are starting to replace SOMs in the environmental sciences
(Shen 2018).

2.4. Bayesian methods

2.4.1. Bayesian networks
Bayesian networks (Bayes net, belief network; BN) are a popular

tool in many applied domains because they provide an intuitive
graphical language for specifying the probabilistic relationships
between variables, as well as the tools for calculating the resulting
probabilities (Pearl 1988). The basis of BNs is Bayes’ theorem,
which relates the conditional and marginal probabilities of ran-
dom variables. BNs can be treated as an ML task if one is trying to
automatically fit the parameters of the model from data or, even
more challenging, to learn the best graphical structure that
should be used to represent a dataset. BNs have close ties to causal
reasoning, but it is important to remember that the relationships
encoded in a BN are inherently correlational rather than causal.
BNs are acyclic graphs, consisting of nodes and arrows (or arcs),
defining a probability distribution over variables U. The set of
parents of a node (variable) X, denoted �X, are all nodes with
directed arcs going into X. BNs provide compact representation of
conditional distributions as p�Xi�X1, …, Xi�1� � p�Xi��Xi

�, where
X1, …, Xi–1 are arranged to be all of the ancestors of Xi other than
its direct parents. Each node X is associated with a conditional
probability table over X and its parents defining p(X|�X). If a node
has no parents, a prior distribution is specified for p(X). The joint
probability distribution of the network is then specified by the
chain rule P�U� � �

X�U
p�X��X�.

2.4.2. Naïve Bayes
A special case of a BN is the naïve Bayes (NB) classifier, which

assumes conditional independence between input features, al-
lowing the likelihood function to be constructed by a simple mul-
tiplication of the conditional probability of each input variable
conditional on the output. Therefore, while NB is fast and
straightforward to implement, prediction accuracy can be low for
problems in which the assumption of conditional independence
does not hold.

2.4.3. Maximum entropy
Maximum entropy (MaxEnt), originally introduced by Phillips

et al. (2006), is a presence-only framework that fits a spatial prob-
ability distribution by maximizing entropy, consistent with exist-
ing knowledge. MaxEnt can be considered a Bayesian method as it
is compatible with an application of Bayes theorem as existing
knowledge is equivalent to specifying a prior distribution. MaxEnt
has found widespread use in landscape ecology species distribu-
tion modeling (Elith et al. 2011), where prior knowledge consists of
occurrence observations for the species of interest.

2.5. Reward-based methods

2.5.1. Genetic algorithms
Genetic algorithms (GA) are heuristic algorithms inspired by

Darwin’s theory of evolution (natural selection) and belong to a
more general class of evolutionary algorithms (Mitchell 1996). GAs
are often used to generate solutions to search and optimization
problems by using biologically motivated operators such as mu-
tation, crossover, and selection. In general, GAs involve several
steps. The first step involves creating an initial population of po-
tential solutions, with each solution encoded as a chromosome. In
the second step, a fitness function appropriate to the problem is
defined, which returns a fitness score determining how likely an
individual is to be chosen for reproduction. The third step re-
quires the selection of pairs of individuals, denoted as parents. In
the fourth step, a new population of finite individuals is created
by generating two new offspring from each set of parents using
crossover whereby a new chromosome is created by some random
selection process from each parent’s chromosomes. In the final
step called mutation, a small sample of the new population is
chosen, and a small perturbation is made to the parameters to
maintain diversity. The entire process is repeated many times
until the desired results are satisfactory (based on the fitness func-
tion) or some measure of convergence is reached.

2.5.2. Reinforcement learning
Reinforcement learning (RL) represents a very different learn-

ing paradigm to supervised or unsupervised learning. In RL, an
agent (or actor) interacts with its environment and learns a de-
sired behavior (set of actions) to maximize some reward. RL is a
solution to a Markov decision process (MDP) in which the transi-
tion probabilities are not explicitly known but need to be learned.
This type of learning is well suited to problems of decision-making
such as required for automated control (e.g., robotics) or for sys-
tem optimization (e.g., management policies). Various RL algo-
rithms include Monte Carlo tree search (MTCS), Q-learning, and
actor–critic algorithms. For an introduction to RL, see Sutton and
Barto (2018).

2.6. Clustering methods
Clustering is the process of splitting a set of points into groups

such that each point in a group is more similar to its own group
than to any other group. There are different ways in which clus-
tering can be done; for example, the K-means clustering (KM)
algorithm (MacQueen 1967), based on a centroid model, is perhaps
the most well-known clustering algorithm. In KM, the notion of
similarity is based on closeness to the centroid of each cluster. KM
is an iterative process in which the centroid of a group and points
belonging to a group are updated at each step. The KM algorithm
consists of five steps: (i) specify the number of clusters; (ii) ran-
domly assign each data point to a cluster; (iii) calculate the cen-
troids of each cluster; (iv) reassign the points to the nearest
centroids; and (v) recompute the cluster centroids. Steps iv and v
repeat until no further changes are possible. Although KM is the
most widely used clustering algorithm, several other clustering
algorithms exist, for example, agglomerative hierarchical cluster-
ing (HC), Gaussian mixture models (GMMs), and iterative self-
organizing Data (ISODATA).

2.7. Other methods

2.7.1. k-Nearest neighbor
The k-nearest neighbor (KNN) algorithm is a simple but very

effective supervised classification algorithm based on the intui-
tive premise that similar data points are in close proximity accord-
ing to some metric (Altman 1992). Specifically, a KNN calculates
the similarity of data points to each other using the Euclidean
distance between the k nearest data points. The optimal value of k
can be found experimentally over a range of values using the
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classification error. KNN is widely used in applications in which a
search query is performed such that the results should be similar
to another pre-existing entity. Examples of this include finding
similar images to a specified image and recommender systems.
Another popular application of KNN is outlier (or anomaly) detec-
tion whereby the points (in a multidimensional space) farthest
away from their nearest neighbors may be classified as outliers.

2.7.2. Neuro-fuzzy models
Fuzzy logic is an approach for encoding expert human knowl-

edge into a system by defining logical rules about how different
classes overlap and interact without being constrained to “all-or-
nothing” notions of set inclusion or probability of occurrence.
Although early implementations of fuzzy logic systems depended
on setting rules manually and therefore are not considered ML,
using fuzzy rules as inputs or extracting them from ML methods is
often described as “neuro-fuzzy” methods. For example, the adap-
tive neuro-fuzzy inference system (ANFIS) (Jang 1993) fuses fuzzy
logical rules with an ANN approach, while trying to maintain the
benefits of both. ANFIS is a universal function approximator like
ANNs; however, as this algorithm originated in the 1990s, it pre-
cedes the recent DL revolution so is not necessarily appropriate
for very large data problems with complex patterns arising in
high-dimensional spaces. Alternatively, human-acquired fuzzy
rules can be integrated into ANNs learning; however, it is not
guaranteed that the resulting trained neural network will still be
interpretable. It should be noted that fuzzy rules and fuzzy logic
are not a major direction of research within the core ML commu-
nity.

3. Literature search and scoping review
The combination of ML and wildfire science and management

comprises a diverse range of topics in a relatively nascent field of
multidisciplinary research. Thus, we employed a scoping review
methodology (Arksey and O’Malley 2005; Levac et al. 2010) for this
paper. The goal of a scoping review is to characterize the existing
literature in a particular field of study, particularly when a topic
has yet to be extensively reviewed and the related concepts are
complex and heterogeneous (Pham et al. 2014). Furthermore,
scoping reviews can be particularly useful for summarizing and
disseminating research findings and for identifying research gaps
in the published literature. A critical review of methodological
advances and limitations and comparison with other methods is
left for future work. We performed a literature search using the
Google Scholar and Scopus databases and the key words “wildfire”
or “wildland fire” or “forest fire” or “bushfire” in combination
with “machine learning” or “random forest” or “decision trees” or
“regression trees” or “support vector machine” or “maximum en-
tropy” or “neural network” or “deep learning” or “reinforcement
learning”. We also used the Fire Research Institute’s online data-
base (http://fireresearchinstitute.org) using the following search
terms: “Artificial Intelligence”; “Machine Learning”; “Random
Forests”; “Expert Systems”; and “Support Vector Machines”. Fur-
thermore, we obtained papers from references cited within pa-
pers that we had obtained using the aforementioned literature
databases.

After performing our literature search, we identified a total of
300 publications relevant to the topic of ML applications in wild-
fire science and management (see Supplementary material1 for a
full bibliography). Furthermore, a search of the Scopus database
revealed a dramatic increase in the number of wildfire and ML
articles published in recent years (see Fig. 3). After identifying
publications for review, we further applied the following criteria
to exclude nonrelevant or unsuitable publications: (i) conference

submissions in which a journal publication describing the same
work was available, (ii) conference posters, (iii) articles in which
the methodology and results were not adequately described to
conduct an assessment of the study, (iv) articles not available to us
either by open access or by subscription, and (v) studies that did
not present new methodologies or results.

4. Wildfire applications
In summary, we found a total of 300 journal papers or confer-

ence proceedings on the topic of ML applications in wildfire sci-
ence and management, published up to the end of 2019 (Fig. 4). We
found that the problem domains with the highest application of
ML methods were fire occurrence, susceptibility, and risk (127
papers) followed by fuels characterization, fire detection, and
mapping (66 papers), fire behavior prediction (43 papers), fire
effects (35 papers), fire weather and climate change (20 papers),
and fire management (16 papers). Within fire occurrence, suscep-
tibility, and risk, the subdomains with the most papers were fire-
susceptibility mapping (71 papers) and landscape controls on fire
(101 papers). Note that some papers appear in multiple problem
domains or subdomains. Refer to Table 3 and the Supplementary
material1 for a breakdown of each problem subdomain and the
ML methods used, as well as study areas considered.

4.1. Fuels characterization, fire detection, and mapping

4.1.1. Fuels characterization
Fires ignite in a few fuel particles; subsequent heat transfer

between particles through conduction, radiation, and convection
and the resulting fire behavior (fuel consumption, spread rate,
intensity) is influenced by properties of the live and dead vegeta-
tive fuels, including moisture content, biomass, and vertical and
horizontal distribution. Fuel properties are a required input in all
fire behavior models, whether it be a simple categorical vegeta-
tion type, as in the Canadian Fire Behavior Prediction (FBP) Sys-
tem, or as physical quantities in three-dimensional space (e.g., see
FIRETEC model; Linn et al. 2002). Research to predict fuel proper-
ties has been carried out at two different scales: (i) regression
applications to predict quantities such as the crown biomass of
single trees from more easily measured variables such as height
and diameter, and (ii) classification applications to map fuel type

1Supplementary material is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/er-2020-0019.

Fig. 3. Number of publications by year for 300 publications on topic
of machine learning and wildfire science and management as identified in
this review.
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descriptors or fuel quantities over a landscape from visual inter-
pretation of air photographs or by interpretation of the spectral
properties of remote sensing imagery. Relatively few studies, how-
ever, have employed ML to wildfire fuel prediction, leaving the
potential for substantially more research in this area.

In an early study, Riaño et al. (2005) used an ANN to predict and
map the equivalent water thickness and dry matter content of wet
and dry leaf samples from 49 species of broadleaf plants using
reflectance and transmittance values in the Ispra region of Italy.
Pierce et al. (2012) used RF to classify important canopy fuel vari-
ables (e.g., canopy cover, canopy height, canopy base height, and
canopy bulk density) related to wildland fire in Lassen Volcanic
National Park, California, using field measurements, topographic
data, and NDVI to produce forest canopy fuel maps. Likewise,
Riley et al. (2014) used RF with Landfire and biophysical variables
to perform fuel classification and mapping in eastern Oregon. The
authors of the aforementioned study achieved relatively high
overall modelling accuracy, for example, 97% for forest height,
86% for forest cover, and 84% for existing vegetation group (i.e.,
fuel type). López-Serrano et al. (2016) compared the performance
of three common ML methods (SVM, KNN, and RF) and multiple
linear regression in estimating aboveground biomass in the Sierra
Madre Occidental, Mexico. The authors reported the advantages
and limitations of each method and concluded that the nonpara-
metric ML methods had an advantage over multiple linear regres-
sion for biomass estimation. García et al. (2011) used SVM to
classify LiDAR and multispectral data to map fuel types in Spain.
Chirici et al. (2013) compared the use of CART, RF, and stochastic
gradient boosting (SGB), an ensemble tree method that uses both
boosting and bagging, for mapping forest fuel types in Italy and
found that SGB had the highest overall accuracy.

4.1.2. Fire detection
Detecting wildfires as soon as possible after they have ignited,

and therefore while they are still relatively small, is critical to
facilitating a quick and effective response. Traditionally, fires
have mainly been detected by human observers by distinguishing
smoke in the field of view directly from a fire tower or from a
video feed from a tower, aircraft, or from the ground. All of these
methods can be limited by spatial or temporal coverage, human
error, the presence of smoke from other fires, and hours of day-
light. Automated detection of heat signatures or smoke in infra-
red (IR) or optical images can extend the spatial and temporal
coverage of detection, the detection efficiency in smoky condi-

tions, and remove bias associated with human observation. The
analytical task is a classification problem that is quite well suited
to ML methods.

For example, Arrue et al. (2000) used ANNs and IR image pro-
cessing (in combination with visual imagery and meteorological
and geographic data used in a decision function using fuzzy logic)
to identify true wildfires. Several researchers have similarly em-
ployed ANNs for fire detection (Al-Rawi et al. 2001; Angayarkkani
and Radhakrishnan 2010; Fernandes et al. 2004a, 2004b; X. Li et al.
2015; Soliman et al. 2010; Utkin et al. 2002; Sayad et al. 2019). In
addition, Liu et al. (2015) used ANNs on wireless sensor networks
to build a fire detection system in which multicriteria detection
was used on multiple attributes (e.g., flame, heat, light, and radi-
ation) to detect and raise alarms. Other ML methods used in fire
detection systems include SVM to automatically detect wildfires
from videoframes (Zhao et al. 2011), GA for multi-objective opti-
mization of a LiDAR-based fire detection system (Cordoba et al.
2004), BN in a vision-based early fire detection system (Ko et al. 2010),
ANFIS (Angayarkkani and Radhakrishnan 2011; Wang et al. 2011), and
KM (Srinivasa et al. 2008).

CNNs (i.e., deep learning), which are able to extract features and
patterns from spatial images and are finding widespread use in
object detection tasks, have recently been applied to the problem
of fire detection. Several of these applications trained the models
on terrestrial-based images of fire and (or) smoke (Zhang et al.
2016; B. Zhang et al. 2018; Q.X. Zhang 2018; Yuan et al. 2018;
Akhloufi et al. 2018; Barmpoutis et al. 2019; Jakubowski et al. 2019;
Sousa et al. 2019; X. Li et al. 2018, T. Li et al. 2019; Muhammad et al.
2018; Wang et al. 2019). Of particular note, Q.X. Zhang et al. (2018)
found that CNNs outperformed a SVM-based method, and
Barmpoutis et al. (2019) found that a faster region-based CNN
outperformed another CNN based on YOLO (“you only look
once”). Yuan et al. (2018) used CNN combined with optical flow to
include time-dependent information. X. Li et al. (2018) similarly
used a three-dimensional CNN to incorporate both spatial and
temporal information and so were able to treat smoke detection
as a segmentation problem for video images. Another approach
by Cao et al. (2019) used convolutional layers as part of a long
short-term memory (LSTM) neural network for smoke detection
from a sequence of images (i.e., video feed). They found that the
LSTM method achieved 97.8% accuracy, a 4.4% improvement over
a single image based DL method.

Perhaps of greater utility for fire management were fire/smoke
detection models trained on either unmanned aerial vehicle
(UAV) images (Zhao et al. 2018; Alexandrov et al. 2019) or satellite
imagery including GOES-16 (Phan and Nguyen 2019) and MODIS
(Ba et al. 2019). Zhao et al. (2018) compared SVM, ANN, and three
CNN models and found that their 15-layer CNN performed best,
with an accuracy of 98%. By comparison, the SVM-based method,
which was unable to extract spatial features, only had an accuracy
of 43%. Alexandrov et al. (2019) found that YOLO was both faster
and more accurate than a region-based CNN method in contrast to
Barmpoutis et al. (2019).

4.1.3. Fire perimeter and severity mapping
Fire maps have two management applications: (i) accurate maps

of the location of the active fire perimeter are important for daily
planning of suppression activities and (or) evacuations, including
modeling fire growth; and (ii) maps of the final burn perimeter
and fire severity are important for assessing and predicting the
economic and ecological impacts of wildland fire and for recovery
planning. Historically, fire perimeters were sketch-mapped from
the air, from a ground or aerial GPS or other traverse, or by air-
photo interpretation. Developing methods for mapping fire pe-
rimeters and burn severity (a measure of above- and below-ground
biomass loss due to fire) from remote sensing imagery has been an
area of active research since the advent of remote sensing in the
1970s and is mainly concerned with classifying active fire areas

Fig. 4. Number of machine learning (ML) applications by category
and year for 300 publications on topics of ML and wildfire science
and management as identified in this review. See Table 1 for the
definition of abbreviations.
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from inactive or nonburned areas, burned from unburned areas
(for extinguished fires), or fire-severity measures such as the nor-
malized burn ratio (Lutes et al. 2006).

In early studies using ML methods for fire mapping, Al-Rawi
et al. (2001) and Al-Rawi et al. (2002) used ANNs (specifically, the
supervised ART-II neural network) for burn-scar mapping and fire
detection. Pu and Gong (2004) compared logistic regression (LR)
with ANN for burn-scar mapping using Landsat images; both
methods achieved high accuracy (>97%). Interestingly, however,
the authors found that LR was more efficient for their relatively
limited dataset. The authors in Zammit et al. (2006) performed
burned-area mapping for two large fires that occurred in France
using satellite images and three ML algorithms, including SVM,
KNN, and the KM algorithm; overall SVM had the best perfor-
mance. Likewise, Dragozi et al. (2011) compared the use of SVM
against a nearest neighbor method for burned-area mapping in
Greece and found better performance with SVM. In fact, a number
of studies (Alonso-Benito et al. 2008; Cao et al. 2009; Petropoulos
et al. 2010, 2011; Zhao et al. 2015; Pereira et al. 2017; Branham et al.
2017; Hamilton et al. 2017) have successfully used SVM for burn-
scar mapping using satellite data. Mitrakis et al. (2012) performed
burned-area mapping in the Mediterranean region using a variety
of ML algorithms, including a fuzzy neuron classifier (FNC), ANN,
SVM, and AdaBoost, and found that while all methods displayed
similar accuracy, the FNC performed slightly better. Dragozi et al.
(2014) applied SVM and a feature selection method (based on fuzzy
logic) to IKONOS imagery for burned-area mapping in Greece.
Another approach to burned-area mapping in the Mediterranean
used an ANN and MODIS hotspot data (Gómez and Martín 2011).
Pereira et al. (2017) used a one-class SVM, which requires only
positive training data (i.e., burned pixels), for burn-scar mapping,
which may offer a more sample-efficient approach than general
SVMs; the one-class SVM approach may be useful when good wild-
fire training datasets are difficult to obtain. In Mithal et al. (2018),
the authors developed a three-stage framework for burned-area
mapping using MODIS data and ANNs. Crowley et al. (2019) used
Bayesian updating of landcover (BULC) to merge burned-area
classifications from three remote sensing sources (Landsat-8,
Sentinel-2, and MODIS). Celik (2010) used GA for change detec-
tion in satellite images, while Sunar and Özkan (2001) used the
interactive ISODATA and ANN to map burned areas.

In addition to burned-area mapping, ML methods have been
used for burn-severity mapping, including GA (Brumby et al.

2001), MaxEnt (Quintano et al. 2019), bagged DTs (Sá et al. 2003),
and others. For instance, Hultquist et al. (2014) used three popular
ML approaches (Gaussian process regression (GPR) (Rasmussen
and Williams 2006), RF, and SVM) for burn-severity assessment
in the Big Sur ecoregion, California. RF gave the best overall per-
formance and had lower sensitivity to different combinations of
variables. All ML methods, however, performed better than con-
ventional multiple regression techniques. Likewise, Hultquist
et al. (2014) compared the use of GPR, RF, and SVM for burn-
severity assessment and found that RF displayed the best perfor-
mance. Another recent paper by Collins et al. (2018) investigated
the applicability of RF for fire-severity mapping and discussed the
advantages and limitations of RF for different fire and land con-
ditions.

One recent paper by Langford et al. (2019) used a five-layer DNN
for mapping fires in Interior Alaska with a number of MODIS-
derived variables (e.g., NDVI and surface reflectance). They found
that a validation-loss (VL) weight selection strategy for the unbal-
anced dataset (i.e., the no-fire class appeared much more fre-
quently than fire) allowed them to achieve better accuracy
compared with a XGBoost method; however, without the VL ap-
proach, XGBoost outperformed the DNN, highlighting the need
for methods to deal with unbalanced datasets in fire mapping.

4.2. Fire weather and climate change

4.2.1. Fire weather prediction
Fire weather is a critical factor in determining whether a fire

will start, how fast it will spread, and where it will spread. Fire
weather observations are commonly obtained from surface weather
station networks operated by meteorological services or fire man-
agement agencies. Weather observations may be interpolated
from these point locations to a grid over the domain of interest,
which may include diverse topographical conditions; the interpo-
lation task is a regression problem. Weather observations may
subsequently be used in the calculation of meteorologically based
fire danger indices such as the Canadian Fire Weather Index (FWI)
System (Van Wagner 1987). Future fire weather conditions and
danger indices are commonly forecast using the output from nu-
merical weather prediction (NWP) models (e.g., the European For-
est Fire Information System; San-Miguel-Ayanz et al. 2012);
however, errors in the calculation of fire danger indices that have
a memory (such as the moisture indices of the FWI System) can

Table 3. Summary of machine learning (ML) methods applied to different problem domains in wildfire science and management.

Section Domain NFM SVM KM GA BN BRT ANN DT RF KNN MAXENT DL NB Other

1.1 Fuels characterization — 2 — — — 1 1 1 4 1 — — — —
1.2 Fire detection 2 3 1 1 1 — 12 — — — — 18 — 3
1.3 Fire perimeter and severity mapping 1 12 1 2 — 1 6 1 4 2 1 — — 6
2.1 Fire-weather prediction — — 1 — — — — — 1 — — — — 3
2.2 Lightning prediction — — — — — — — 1 2 — — — — —
2.3 Climate change — 1 — — — 6 2 2 5 — 7 — — —
3.1 Fire occurrence prediction — 3 — — 1 — 7 1 5 1 2 — 1 4
3.2 Landscape-scale burned area prediction — 1 1 1 — — 1 1 2 — 1 1 — 1
3.3 Fire susceptibility mapping 2 12 1 3 2 8 16 9 26 — 27 1 2 3
3.4 Landscape controls on fire 2 10 1 3 2 19 11 15 40 1 30 1 1 2
4.1 Fire spread and growth — — — 13 2 — 4 — 1 1 — 3 — 2
4.2 Burned area and fire-severity prediction — 7 — 1 1 3 10 7 6 3 — 2 1 5
5.1 Soil erosion and deposits — — 1 — — — 1 1 — — 1 — — —
5.2 Smoke and particulate levels — 2 — — — 3 3 — 5 2 — — — 2
5.3 Post-fire regeneration and ecology — 1 — 1 1 6 1 2 10 — 2 — 1 —
5.4 Socioeconomic effects — — — — 1 — — — — — — — — —
6.1 Planning and policy — — — 1 1 — — — 2 — — — — 2
6.2 Fuel treatment — — — 1 1 — — — — — — — — 1
6.3 Wildfire preparedness and response — — — 1 2 1 1 — — — 1 1 — 1
6.4 Social factors — — — — 1 — — — — — — — — —

Note: Abbreviations for the ML methods are defined in Table 1. Note that in some cases, a paper may use more than one ML method and (or) appear in multiple
problem domains.
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accumulate in such projections. It is noteworthy that surface fire
danger measures may be correlated with large-scale weather and
climatic patterns.

To date, there have been relatively few papers that address
fire weather and danger prediction using ML. The first effort
(Crimmins 2006) used SOMs to explore the synoptic climatology
of extreme fire weather in the southwestern United States (US).
Crimmins found three key patterns representing southwesterly
flow and large geopotential height gradients that were associated
with over 80% of the extreme fire weather days as determined by
a fire weather index. Nauslar et al. (2019) used SOMs to determine
the timing of the North American Monsoon that plays a major role
on the length of the active fire season in the southwestern US.
Lagerquist et al. (2017) also used SOMs to predict extreme fire
weather in northern Alberta, Canada. Fire weather was defined by
using extreme values of the Fine Fuel Moisture Code (FFMC), Ini-
tial Spread Index (ISI), and the Fire Weather Index (FWI), all com-
ponents of the FWI System (Van Wagner 1987). Good performance
was achieved with the FFMC and the ISI, and this approach has the
potential to be used in near real time, allowing input into fire
management decision systems. Other efforts have used a combi-
nation of conventional and ML approaches to interpolate meteo-
rological fire danger in Australia (Sanabria et al. 2013).

4.2.2. Lightning prediction
Lightning is the second most common cause of wildfires (be-

hind human causes); thus, predicting the location and timing of
future storms and strikes is of great importance to predicting fire
occurrence. Electronic lightning detection systems have been de-
ployed in many parts of the world for several decades and have
accrued rich strike location–time datasets. Lightning prediction
models have employed these data to derive regression relation-
ships with atmospheric conditions and stability indices that can
be forecast with NWP. Ensemble forecasts of lightning using RF is
a viable modelling approach for Alberta, Canada (Blouin et al.
2016). Bates et al. (2017) used two ML methods (CART and RF) and
three statistical methods to classify wet and dry thunderstorms
(lightning associated with dry thunderstorms are more likely to
start fires) in Australia.

4.2.3. Climate change
Transfer modeling, whereby a model produced for one study

region and (or) distribution of environmental conditions is ap-
plied to other cases (Phillips et al. 2006), is a common approach in
climate change science. Model transferability should be consid-
ered when using ML methods to estimate projected quantities due
to climate change or other environmental changes. With regards
to climate change, transfer modeling is essentially an extrapola-
tion task. Previous studies in the context of species distribution
modeling have indicated that ML approaches may be suitable for
transfer modeling under future climate scenarios. For example,
Heikkinen et al. (2012) indicated that MaxEnt and generalized
boosting methods (GBM) have better transferability than either
ANN and RF and that the relatively poor transferability of RF may
be due to overfitting.

There are several publications on wildfires and climate change
that use ML approaches. Amatulli et al. (2013) found that multi-
variate adaptive regression splines (MARS) were better predictors
of future monthly area burned for five European countries com-
pared with multiple linear regression and RF. Parks et al. (2016)
projected fire severity for future time periods in the western US
using BRT. Young et al. (2017) similarly used BRT to project future
fire intervals in Alaska and found up to a fourfold increase in
(30 year) fire occurrence probability by 2100. Several authors used
MaxEnt to project future fire probability globally (Moritz et al.
2012), for Mediterranean ecosystems (Batllori et al. 2013), in south-
western China (S. Li et al. 2017), in the US Pacific Northwest (Davis
et al. 2017), and for southcentral US (Stroh et al. 2018). An alterna-

tive approach for projecting future potential burn probability was
employed by Stralberg et al. (2018), who used RF to determine
future vegetation distributions as inputs to ensemble Burn-P3
simulations. Another interesting paper of note was by Boulanger
et al. (2018), who built a consensus model with two different pre-
dictor datasets and five different regression methods (generalized
linear models, RF, BRT, CART, and MARS) to make projections of
future area burned in Canada. The consensus model can be used
to quantify uncertainty in future area burned estimates. The au-
thors noted that model uncertainty for future periods (>200%) can
be higher than that of different climate models under different
carbon-forcing scenarios. This highlights the need for further
work in the application of ML methods for projecting future fire
danger under climate change.

4.3. Fire occurrence, susceptibility, and risk
Papers in this domain include prediction of fire occurrence and

area burned (at a landscape or seasonal scale), mapping of fire
susceptibility (or similar definitions of risk), and analysis of land-
scape or environmental controls on fire.

4.3.1. Fire occurrence prediction
Predictions of the number and location of fire starts in the

upcoming day(s) are important for preparedness planning, that is,
the acquisition of resources, including the relocation of mobile
resources and readiness for expected fire activity. The origins of
fire occurrence prediction (FOP) models go back almost 100 years
(Nadeem et al. 2020). FOP models typically use regression methods
to relate the response variable (fire reports or hotspots) to
weather, lightning, and other covariates for a geographic unit or
as a spatial probability. The seminal work of Brillinger and others
in developing the spatiotemporal FOP framework is reviewed in
Taylor et al. (2013) The most commonly used ML method in stud-
ies predicting fire occurrence were ANNs. As early as 1996,
Vega-Garcia et al. (1996) used an ANN for human-caused wildfire
prediction in Alberta, Canada, correctly predicting 85% of no-fire
observations and 78% of fire observations. Not long after,
Alonso-Betanzos et al. (2002) and Alonso-Betanzos et al. (2003)
used ANN to predict a daily fire occurrence risk index using tem-
perature, humidity, rainfall, and fire history as part of a larger
system for real-time wildfire management system in the Galicia
region of Spain. Vasilakos et al. (2007) used separate ANNs for
three different indices representing fire weather (Fire Weather
Index, FWI), hazard (Fire Hazard Index, FHI), and risk (Fire Risk
Index) to create a composite fire ignition index (FII) for estimating
the probability of wildfire occurrence on the Greek island of Les-
vos. Sakr et al. (2010) used meteorological variables in a SVM to
create a daily fire risk index corresponding to the number of fires
that could potentially occur on a particular day. Sakr et al. (2011)
then compared the use of SVM and ANN for fire occurrence pre-
diction based only on relative humidity and cumulative precipi-
tation up to the specific day. While Sakr et al. (2011) reported low
errors for the number of fires predicted by both the SVM and ANN
models, ANN models outperformed SVM; however, the SVM per-
formed better on binary classification of fire or no fire. It is im-
portant to note, however, that ANNs encompass a wide range of
possible network architectures. In an Australian study, Dutta et al.
(2013) compared the use of 10 different types of ANN models for
estimating monthly fire occurrence from climate data and found
that an Elman RNN performed the best.

After 2012, RF became the more popular method for predicting
fire occurrence among the papers reviewed here. Stojanova et al.
(2012) evaluated several ML methods for predicting fire outbreaks
using geographical, remotely sensed, and meteorological data in
Slovenia, including single classifier methods (i.e., KNN, naïve
Bayes, DT (using the J48 and jRIP algorithms), LR, SVM, and BN),
and ensemble methods (AdaBoost, DT with bagging, and RF). The
ensemble methods DT with bagging and RF displayed the best
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predictive performance, with bagging having higher precision
and RF having better recall. Vecín-Arias et al. (2016) found that RF
performed slightly better than LR for predicting lightning fire
occurrence in the Iberian Peninsula, based on topography, vege-
tation, meteorology, and lightning characteristics. Similarly, Cao
et al. (2017) found that a cost-sensitive RF analysis outperformed
GLM and ANN models for predicting wildfire ignition susceptibil-
ity. In recent noncomparative studies, Yu et al. (2017) used RF to
predict fire risk ratings in Cambodia using publicly available re-
motely sensed products, while Van Beusekom et al. (2018) used RF
to predict fire occurrence in Puerto Rico and found precipitation
tobethemost importantpredictor.TheMaxEntmethod has also been
used for fire occurrence prediction (De Angelis et al. 2015; Chen
et al. 2015). For example, De Angelis et al. (2015) used MaxEnt to
evaluate different meteorological variables and fire indices (e.g.,
the Canadian FWI) for daily fire risk forecasting in the mountain-
ous Canton Ticino region of Switzerland. The authors of that
study found that combinations of such variables increased predic-
tive power for identifying daily meteorological conditions for
wildfires. Dutta et al. (2016) use a two-stage ML approach (ensem-
ble of unsupervised deep belief neural networks with conven-
tional supervised ensemble machine learning (DBNet)) to predict
bush-fire hotspot incidence on a weekly time scale. In the first
unsupervised DL phase, Dutta et al. (2016) used DBNet to generate
simple features from environmental and climatic surfaces. In the
second supervised ensemble classification stage, features ex-
tracted from the first stage were fed as training inputs to 10 ML
classifiers (i.e., conventional supervised binary tree, linear discrim-
inant analyzer, naïve Bayes, KNN, bagging tree, AdaBoost, gentle
boosting tree, random under-sampling boosting tree, subspace dis-
criminant, and subspace KNN) to establish the best classifier for bush
fire hotspot estimation. The authors found that bagging and the
conventional KNN classifier were the two best classifiers, with 94.5%
and 91.8% accuracy, respectively.

4.3.2. Landscape-scale burned-area prediction
The use of ML methods in studies of burned-area prediction has

only occurred relatively recently compared with other wildfire
domains, yet such studies have incorporated a variety of ML meth-
ods. For example, Cheng and Wang (2008) used an RNN to forecast
annual average area burned in Canada, while Archibald et al.
(2009) used RF to evaluate the relative importance of human and
climatic drivers of burnt area in southern Africa. Arnold et al.
(2014) used hard competitive learning (HCL) to identify clusters of
unique pre-fire antecedent climate conditions in the interior west-
ern US, which they then used to construct fire danger models
based on MaxEnt.

Mayr et al. (2018) evaluated five common statistical and ML
methods for predicting burned area and fire occurrence in Na-
mibia, including GLM, MARS, regression trees from recursive par-
titioning (RPART), RF, and SVMs for regression (SVR). The RF
model performed best for predicting burned area and fire occur-
rence; however, adjusted R2 values were slightly higher for RPART
and SVR in both cases. Likewise, de Bem et al. (2018) compared the
use of LR and ANN for modelling burned area in Brazil. Both LR
and ANN showed similar performance; however, the ANN had
better accuracy when identifying nonburned areas but displayed
lower accuracy when classifying burned areas.

4.3.3. Fire-susceptibility mapping
A considerable number of references (71) used various ML algo-

rithms to map wildfire susceptibility, corresponding to either the
spatial probability or density of fire occurrence (or other measures
of fire risk such as burn severity), although other terms such as
fire vulnerability and risk have also been used. The general ap-
proach was to build a spatial fire-susceptibility model using either
remotely sensed or agency-reported fire data with some combina-
tion of landscape, climate, structural, and anthropogenic vari-

ables as explanatory variables. In general, the various modeling
approaches used either a presence-only framework (e.g., MaxEnt)
or a presence–absence framework (e.g., BRT or RF).

Early attempts at fire-susceptibility mapping used CART (Amatulli
et al. 2006; Amatulli and Camia 2007; Lozano et al. 2008). Amatulli
and Camia (2007) compared fire density maps in central Italy us-
ing CART and MARS and found that while CART was more accu-
rate, MARS led to a smoother density model. More recent work
has used ensemble-based classifiers such as RF and BRT or ANNs
(see Table S.3.3 in Supplementary material1 for a full list) Several
of these papers also compared ML and non-ML methods for fire-
susceptibility mapping and, in general, found superior perfor-
mance from the ML methods. Specifically, Adab (2017) mapped
fire hazard in northeastern Iran and found that ANN performed
better than binary logistic regression (BLR) with an area under the
curve (AUC) of 87% compared with 81% for BLR. Bisquert et al.
(2012) found that ANN outperformed LR for mapping fire risk in
the northwestern Spain. Goldarag et al. (2016) also compared ANN
and linear regression for fire-susceptibility mapping in northern
Iran and found that ANN had much better accuracy (93.49%) than
linear regression (65.76%). Guo et al. (2016a, 2016b) compared RF
and LR for fire-susceptibility mapping in China and found that RF
led to better performance. Oliveira et al. (2012) compared RF and
LR for fire density mapping in Mediterranean Europe and found
that RF outperformed linear regression. De Vasconcelos et al.
(2001) found that ANN had better classification accuracy than LR
for ignition probability maps in parts of Portugal.

Referring to Table 3 and section S.3.3 of Supplementary mate-
rial,1 a frequently used ML method for fire-susceptibility mapping
was MaxEnt. In particular, Vilar et al. (2016) found that MaxEnt
performed better than GLM for fire-susceptibility mapping in cen-
tral Spain with respect to sensitivity (i.e., true positive rate) and
commission error (i.e., false positive rate), even though the AUC
was lower. Of further note, Duane et al. (2015) partitioned their
fire data into topography-driven, wind-driven, and convection-
driven fires in Catalonia and mapped the fire susceptibility for each
fire type.

Other ML methods used for regional fire-susceptibility mapping
include BNs (Bashari et al. 2016; Dlamini 2011) and novel hybrid
methods such as neuro-fuzzy systems (Jaafari et al. 2019; Bui et al.
2017). Bashari et al. (2016) noted that BNs may be useful because
they allow probabilities to be updated when new observations
become available. SVM was also used by a number of authors as a
benchmark for other ML methods (Ghorbanzadeh et al. 2019b;
Gigović et al. 2019; Hong et al. 2018; Jaafari and Pourghasemi 2019;
Thach et al. 2018; Rodrigues and De la Riva 2014; Sachdeva et al.
2018; Tehrany et al. 2018; Bui et al. 2017; van Breugel et al. 2016;
Zhang et al. 2019), but as we discuss later, it did not perform as
well as other methods with which it was being compared.

There were two applications of ML for mapping global fire sus-
ceptibility, including Moritz et al. (2012) using MaxEnt and Luo
et al. (2013) using RF. Both of these papers found that at a global
scale, precipitation was one of the most important predictors of
fire risk.

The majority of papers considered thus far used the entire study
period (typically four or more years) to map fire susceptibility,
thereby neglecting the temporal aspect of fire risk; however, a few
authors have considered various temporal factors to map fire sus-
ceptibility. Martín et al. (2019) included seasonality and holidays
as explanatory variables for fire probability in northeastern Spain.
Vacchiano et al. (2018) predicted fire susceptibility separately for
the winter and summer seasons. Several papers produced maps
of fire susceptibility in the eastern US by month of year (Peters
et al. 2013; Peters and Iverson 2017). Parisien et al. (2014) examined
differences in annual fire-susceptibility maps and a 31-year clima-
tology for the US, highlighting the role of climate variability as a
driver of fire occurrence. In particular, they found that the 90th
percentile of the Canadian FWI was the dominant factor for an-
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nual fire risk but not for climatological fire risk. Cao et al. (2017)
considered a 10-day resolution (corresponding to the available fire
data) for fire risk mapping, which makes their approach similar to
fire occurrence prediction.

In addition to fire-susceptibility mapping, a few papers focused
on other aspects of fire risk, including mapping probability of
burn-severity classes (Holden et al. 2009; Parks et al. 2018; Tracy
et al. 2018). Parks et al. (2018) additionally considered the role of
fuel treatments on fire probability, which has obvious implica-
tions for fire management. Additionally, Ghorbanzadeh et al.
(2019a) combined fire-susceptibility maps with vulnerability and
infrastructure indicators to produce a fire hazard map.

A number of papers directly compared three or more ML (and
sometimes non-ML) methods for fire-susceptibility mapping. Here
we highlight some of these papers that elucidate the performance
and advantages–disadvantages of various ML methods. Cao et al.
(2017) found that a cost-sensitive RF model outperformed a stan-
dard RF model, ANN, as well as probit and LR. Ghorbanzadeh et al.
(2019a) compared ANN, SVM, and RF and found the best perfor-
mance with RF. Gigović et al. (2019) compared SVM and RF for
fire-susceptibility mapping in combination with Bayesian averag-
ing to generate ensemble models. They found that the ensemble
model led to marginal improvement (AUC = 0.848) over SVM
(AUC = 0.834) and RF (AUC = 0.844). For mapping both wildfire
ignitions and potential natural vegetation in Ethiopia, van Breugel
et al. (2016) also considered ensemble models consisting of a
weighted combination of ML methods (RF, SVM, BRT, MaxEnt, ANN,
and CART) and non-ML methods (GLM and MARS) and concluded
that the ensemble member performed best over a number of met-
rics. In that paper, however, RF showed the best overall performance
of all methods, including the ensemble model.

Jaafari et al. (2018) compared five DT-based classifiers for
wildfire-susceptibility mapping in Iran. Here, the alternating de-
cision tree (ADT) classifier achieved the highest performance
(94.3% accuracy) in both training and validation sets. Thach et al.
(2018) compared SVM, RF, and an MLP neural network for forest
fire danger mapping in the region of Thuan Chau in Vietnam.
They found that the performances of all models were comparable,
although MLP had the highest AUC values. Interestingly Pourtaghi
et al. (2016) found that a generalized additive model (GAM) outper-
formed RF and BRT for fire-susceptibility mapping in the Golestan
province in Iran. This was one of the few examples that we found
in which a non-ML method outperformed ML methods. Rodrigues
and De la Riva (2014) compared RF, BRT, SVM, and LR for fire-
susceptibility mapping and found that RF led to the highest accu-
racy, as well as the most parsimonious model. Tehrany et al. (2018)
compared a LogitBoost ensemble-based DT (LEDT) algorithm with
SVM, RF, and kernel logistic regression (KLR) for fire-susceptibility
mapping in the Lao Cai region of Vietnam and found the best
performance with LEDT, closely followed by RF. Finally, of partic-
ular note, Zhang et al. (2019) compared CNN, RF, SVM, ANN, and
KLR for fire-susceptibility mapping in the Yunnan province of
China. This was the only application of DL that we could find for
fire-susceptibility mapping. The authors found that a CNN outper-
formed the other algorithms, with an overall accuracy of 87.92%
compared with RF (84.36%), SVM (80.04%), MLP (78.47%), and KLR
(81.23%). They noted that the benefit of CNNs is that they incorpo-
rate spatial correlations so that they can learn spatial features;
however, the downside is that DL models are not as easily inter-
preted as other ML methods (e.g., RF and BRT).

4.3.4. Landscape controls on fire
Many of the ML methods used in fire-susceptibility mapping

have also been used to examine landscape controls — the relative
importance of weather, vegetation, topography, and structural
and anthropogenic variables, on fire activity — which may facili-
tate hypothesis formation and testing or model building. From
Table 3, the most commonly used methods in this section were

MaxEnt, RF, BRT, and ANN. These methods all allow for the deter-
mination of variable importance (i.e., the relative influence of
predictor variables in a given model on a response variable). A
commonly used method to ascertain variable importance is
through the use of partial-dependence plots (Hastie et al. 2009).
This method works by averaging over models that exclude the
predictor variable of interest, with the resulting reduction in AUC
(or other performance metrics) representing the marginal effect
of the variable on the response. Partial-dependence plots have the
advantage of being able to be applied to a wide range of ML meth-
ods. A related method for determining variable importance, often
used for RFs, is a permutation test that involves random permu-
tation of each predictor variable (Strobl et al. 2007). Another
model-dependent approach used for ANN is the use of partial
derivatives (of the activation functions of hidden and output
nodes) as outlined by Vasilakos et al. (2009). It should be noted
that while many other methods for model interpretation and vari-
able dependence exist, a discussion of these methods is outside
the scope of this paper.

In general, the drivers of fire occurrence or area burned varied
greatly by the study area considered (including the size of area)
and the methods used. Consistent with other work on “top down”
and “bottom up” drivers of fire activity at large scales, climate
variables were often determined to be the main drivers of fire
activity, whereas at smaller scales, anthropogenic or structural
factors exerted a larger influence. Here we discuss some of the
papers that highlight the diversity of results for different study
areas and spatial scales (global, country, ecoregion, urban) but
refer the reader to section S.3.4 of Supplementary material1 for a
full listing of papers in this section. Note that many of the papers
listed under section S.3.4 also belong to the fire-susceptibility
mapping section and have already been discussed there.

Aldersley et al. (2011) considered drivers of monthly area burned
at global and regional scales using both regression trees and RF.
They found that climate factors (high temperature, moderate pre-
cipitation, and dry spells) were the most important drivers at the
global scale, although at the regional scale, the models exhibited
higher variability due to the influence of anthropogenic factors.
At a continental scale, Mansuy et al. (2019) used MaxEnt to show
that climate variables were the dominant controls (over landscape
and human factors) on area burned for most ecoregions for both
protected areas and outside these areas, although anthropogenic
factors exerted a stronger influence in some regions such as the
Tropical Wet Forests ecoregion. Masrur et al. (2018) used RF to
investigate controls on circumpolar Arctic fire and found that
June surface temperature anomalies were the most important
variable for determining the likelihood of wildfire occurrence on
an annual scale. Chingono and Mbohwa (2015) used MaxEnt to
model fire occurrences in southern Africa where most fires are
human-caused and found that vegetation (i.e., dry mass produc-
tivity and NDVI) was the main driver of biomass burning. Curt
et al. (2015) used BRT to examine drivers of fire in New Caledonia.
Interestingly, they found that human factors (such as distance to
villages, cities, or roads) were dominant influences for predicting
fire ignitions, whereas vegetation and weather factors were most
important for area burned. Curt et al. (2016) modeled fire proba-
bilities by different fire ignition causes (lightning, intentional,
accidental, professional negligence, and personal negligence) in
southeastern France. They found that socioeconomic factors (e.g.,
housing and road density) were the dominant factors for ignitions
and area burned for human-caused fires. Fernandes et al. (2016)
used BRT to examine large fires in Portugal and found that high
pyrodiversity (i.e., spatial structure due to fire recurrence) and low
landscape fuel connectivity were important drivers of area
burned. Leys et al. (2017) used RF to find the drivers that determine
sedimentary charcoal counts to reconstruct grassfire history in
the US Great Plains. Not surprisingly, they found that fire regime
characteristics (e.g., area burned and fire frequency) were the
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most important variables and concluded that charcoal records
can therefore be used to reconstruct fire histories. L.M. Li et al.
(2009) used ANNs to show that wildfire probability was strongly
influenced by population density in Japan, with a peak deter-
mined by the interplay of positive and negative effects of human
presence. This relationship, however, becomes more complex
when weather parameters and forest cover percentage are added
to the model. Liu et al. (2013) used BRT to study factors influencing
fire size in the Great Xingan Mountains in northeastern China.
Their method included a “moving window” resampling technique
that allowed them to look at the relative influence of variables at
different spatial scales. They showed that the most dominant fac-
tors influencing fire size were fuel and topography for small fires,
but fire weather became the dominant factor for larger fires. For
regions of high population density, anthropogenic or structural
factors are often dominant for fire susceptibility. For example,
Molina et al. (2019) used MaxEnt to show that distance to roads,
settlements, or powerlines were the dominant factors for fire oc-
currence probability in the Andalusia region in southern Spain.
MaxEnt has also been used for estimating spatial fire probability
under different scenarios such as future projections of housing
development and private land conservation (Syphard et al. 2016).
One study in China using RF found that mean spring temperature
was the most important variable for fire occurrence, whereas for-
est stock was most important for area burned (Ying et al. 2018).

Some authors examined controls on fire severity using high
resolution data for a single large fire. For example, several studies
used RF to examine controls on burn severity for the 2013 Rim fire
in the Sierra Nevada (Lydersen et al. 2014, 2017; Kane et al. 2015). At
smaller spatial scales, fire weather was the most important vari-
able for fire severity, whereas fuel treatments were most impor-
tant at larger spatial scales (Lydersen et al. 2017). A similar study by
Harris and Taylor (2017) showed that previous fire severity was an
important factor influencing fire severity for the Rim fire. For the
2005 Riba de Saelices fire, Viedma et al. (2015) looked at factors
contributing to burn severity using a BRT model and found that
burning conditions (including fire weather variables) were more
important than stand structure and topography. For burn sever-
ity, these papers all used the relative differenced normalized burn
ratio (RdNBR) metric, derived from Landsat satellite images,
which allowed spatial modeling at high resolutions (e.g., 30 m ×
30 m). In addition to the more commonly used ML methods, one
paper by Wu et al. (2015) used KNN to identify spatially homoge-
neous fire environment zones by clustering climate, vegetation,
topography, and human activity related variables. They then used
CART to examine variable importance for each of three fire envi-
ronment zones in south-eastern China. For landscape controls on
fire, there were few studies comparing multiple ML methods. One
such study by Nelson et al. (2017) compared CART, BRT, and RF for
classifying different fire size classes in British Columbia, Canada.
For both central and periphery regions, they found the best per-
forming model to be BRT followed by CART and RF. For example,
in the central region, BRT achieved a classification accuracy of 88%
compared with 82.9% and 49.6% for the CART and RF models,
respectively. It is not clear from the study why RF performed
poorly, although it was noted that variable importance differed
appreciably among the three models.

4.4. Fire behavior prediction
In general, fire behavior includes physical processes and char-

acteristics at a variety of scales, including combustion rate, flam-
ing, smouldering residence time, fuel consumption, flame height,
and flame depth; however, the papers in this section deal mainly
with larger scale processes and characteristics such as the predic-
tion of fire spread rates, fire growth, burned area, and fire sever-
ity, conditional on the occurrence (ignition) of one, or more,
wildfires. Here, our emphasis is on prognostic applications, in
contrast to the problem domain in section 4.1 (Fuels characteriza-

tion, fire detection, and mapping) in which we focused on diag-
nostic applications.

4.4.1. Fire spread and growth
Predicting the spread of a wildland fire is an important task for

fire management agencies, particularly to aid in the deployment
of suppression resources or to anticipate evacuations one or more
days in advance. Thus, a large number of models have been devel-
oped using different approaches. In a series of reviews, Sullivan
(2009a, 2009b, 2009c) described fire spread models that he classi-
fied as being of physical or quasi-physical nature or empirical or
quasi-empirical nature, as well as mathematical analogues and
simulation models. Many fire growth simulation models convert
one-dimensional empirical or quasi-empirical spread rate models
to two dimensions and then propagate a fire perimeter across a
modelled landscape.

A wide range of ML methods have been applied to predict fire
growth. For example, Markuzon and Kolitz (2009) tested several
classifiers (RF, BNs, and KNN) to estimate if a fire would become
large either one or two days following its observation; they found
that each of the tested methods performed similarly, with RF
correctly classifying large fires at a rate over 75%, albeit with a
number of false positives. Vakalis et al. (2004) used an ANN in
combination with a fuzzy logic model to estimate the rate of
spread in the mountainous region of Attica in Greece. A number
of papers used GAs to optimize input parameters to a physics or
empirically based fire simulator to improve fire spread predic-
tions (Abdalhaq et al. 2005; Rodriguez et al. 2008, 2009; Artés et al.
2014, 2016; Carrillo et al. 2016; Denham et al. 2012; Cencerrado
et al. 2012, 2013, 2014; Artés et al. 2017; Denham and Laneri 2018).
For example, Cencerrado et al. (2014) developed a framework
based on GAs to shorten the time needed to run deterministic fire
spread simulations. They tested the framework using the FARSITE
(Finney 2004) fire spread simulator with different input scenarios
sampled from distributions of vegetation models, wind speed–
direction, and dead–live fuel moisture content. The algorithm
used a fitness function that discarded the most time-intensive
simulations but did not lead to an appreciable decrease in the
accuracy of the simulations. Such an approach is potentially use-
ful for fire management where it is desirable to predict fire behav-
ior as far in advance as possible so that the information can be
enacted upon. This approach may greatly reduce overall simula-
tion time by reducing the input parameter space as also noted by
Artés et al. (2016) and Denham et al. (2012) or through paralleliza-
tion of simulation runs for stochastic approaches (Artés et al. 2017;
Denham and Laneri 2018). A different goal was considered by
Ascoli et al. (2015), who used a GA to optimize fuel models in
southern Europe by calibrating the model with respect to rate of
spread observations.

Kozik et al. (2013) presented a fire spread model that used a
novel ANN implementation that incorporated a Kalman filter for
data assimilation that could potentially be run in real time, the
resulting model more closely resembling that of complex cellular
automata (CA) than a traditional ANN. The same authors later
implemented this model and simulated fire growth under various
scenarios with different wind speeds and directions, although a
direct comparison with real fire data was not possible (Kozik et al.
2014).

Zheng et al. (2017) simulated fire spread by integrating a CA
model with an extreme learning machine (ELM; a type of feed-
forward ANN). Transition rules for the CA were determined by the
ELM trained with data from historical fires, as well as vegetation,
topographic, and meteorological data. Likewise, Chetehouna
et al. (2015) used ANNs to predict fire behavior, including rate of
spread and flame height and angle. In contrast, Subramanian and
Crowley (2017) formulated the problem of fire spread prediction
as a Markov decision process in which they proposed solutions
based on both a classic RL algorithm and a deep RL algorithm; the
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authors found that the DL approach improved on the traditional
approach when tested on two large fires in Alberta, Canada. The
authors further developed this work to compare five widely used
reinforcement learning algorithms (Subramanian and Crowley
2018) and found that the asynchronous advantage actor–critic
(A3C) and Monte Carlo tree search (MCTS) algorithms achieved the
best accuracy. Meanwhile, Khakzad (2019) developed a fire spread
model to predict the risk of fire spread in wildland–industrial
interfaces, using dynamic Bayesian networks (DBN) in combina-
tion with a deterministic fire spread model. The Canadian Fire
Behavior Prediction (FBP) System, which uses meteorological and
fuel conditions data as inputs, determined the fire spread proba-
bilities from one node to another in the aforementioned DBN.

More recently, Hodges and Lattimer (2019) trained a (deep-
learning) CNN to predict fire spread using environmental vari-
ables (topography and weather- and fuel-related variables).
Outputs of the CNN were spatial grids corresponding to the prob-
ability that the burn map reached a pixel and the probability that
the burn map did not reach a pixel. Their method achieved a
mean precision of 89% and mean sensitivity of 80% with reference
6 hourly burn maps computed using the physics-based FARSITE
simulator. Radke et al. (2019) also used a similar approach to pre-
dict daily fire spread for the 2016 Beaver Creek fire in Colorado.

4.4.2. Burned-area and fire-severity prediction
There are a number of papers that focus on using ML ap-

proaches to directly predict the final area burned from a wildfire.
Cortez and Morais (2007) compared multiple regression and four
different ML methods (DT, RF, ANN, and SVM) to predict area
burned using fire and weather (i.e., temperature, precipitation,
relative humidity, and wind speed) data from the Montesinho
Natural Park in northeastern Portugal and found that SVM dis-
played the best performance. A number of publications subse-
quently used the data from Cortez and Morais (2007) to predict
area burned using various ML methods, including ANN (Safi and
Bouroumi 2013; Storer and Green 2016), GAs (Castelli et al. 2015),
both ANN and SVM (Al Janabi et al. 2018), and DTs (Alberg 2015;
H. Li et al. 2018). Notably, Castelli et al. (2015) found that a GA
variant outperformed other ML methods including SVM. Xie and
Shi (2014) used a similar set of input variables with SVM to predict
burned area in the area around Guangzhou City in China. In ad-
dition to these studies, Toujani et al. (2018) used hidden Markov
models (HMM) to predict burned area in northwestern Tunisia,
where the spatiotemporal factors used as inputs to the model
were initially clustered using SOMs. Liang et al. (2019) compared
back-propagation ANNs, RNN, and LSTM ANNs to predict wildfire
scale, a quantity related to area burned and fire duration, in Al-
berta, Canada. They found that the highest accuracy (90.9%) was
achieved with LSTM.

Most recently, Xie and Peng (2019) compared a number of ML
methods for estimating area burned (regression) and binary clas-
sification of fire sizes (>5 ha) in Montesinho Natural Park, Portu-
gal. For the regression task, they found that a tuned RF algorithm
performed better than a standard RF, tuned and standard gradient
boosted machines, tuned and standard GLMs, and DL. For the
classification problem, they found that extreme gradient boosting
and DL had a higher accuracy than CART, RF, SVM, ANN, and LR.

By attempting to predict membership of burned-area size classes,
a number of papers were able to recast the problem of burned-area
prediction as a classification problem. For example, Yu et al. (2011)
used a combination of SOMs and back-propagation ANNs to classify
forest fires into size categories based on meteorological variables.
This approach gave Yu et al. (2011) better accurary (90%) when
compared with a rules-based method (82%). Özbayoğlu and Bozer
(2012) estimated burned-area size classes using geographical and
meteorological data using three different ML methods: (i) MLP;
(ii) radial basis function networks (RBFN); and (iii) SVM. Overall, the
best-performing method was MLP, which achieved a 65% success rate

using humidity and wind speed as predictors. Zwirglmaier et al.
(2013) used a BN to predict area-burned classes using historical fire
data, fire weather data, fire behavior indices, land cover, and top-
ographic data. Shidik and Mustofa (2014) used a hybrid model
(fuzzy C-means and back-propagation ANN) to estimate fire size
classes using data from Cortez and Morais (2007); the hybrid
model performed best, with an accuracy of 97.50% when com-
pared with naïve Bayes (55.5%), DT (86.5%), RF (73.1%), KNN (85.5%),
and SVM (90.3%). Mitsopoulos and Mallinis (2017) compared BRT,
RF, and LR to predict three burned-area classes for fires in Greece.
They found that RF led to the best performance of the three tested
methods and that fire suppression and weather were the two most
important explanatory variables. Coffield et al. (2019) compared
CART, RF, ANN, KNN, and gradient boosting to predict three
burned-area classes at time of ignition in Alaska. They found that
a parsimonious model using CART with vapor pressure deficit
(VPD) provided the best performance of the models and variables
considered.

We found only one study that used ML to predict fire behavior
related to fire severity, which is important in the context of fire
ecology, suggesting that there are opportunities to apply ML in
this domain of wildfire science. In that paper, Zald and Dunn
(2018) used RF to determine that the most important predictor of
fire severity was daily fire weather, followed by stand age and
ownership, with less predictability given by topographic features.

4.5. Fire effects
Fire effects prediction studies have largely used regression-

based approaches to relate costs, losses, or other impacts (e.g.,
soils, post-fire ecology, wildlife, and socioeconomic factors) to
physical measures of fire severity and exposure. Importantly, this
category also includes wildfire smoke and particulate modelling
(but not smoke detection, which was previously discussed in sec-
tion 4.1.2, Fire detection).

4.5.1. Soil erosion and deposits
Mallinis et al. (2009) modelled potential post-fire soil erosion

risk following a large intensive wildfire in the Mediterranean area
using CART and KM algorithms. In that paper, before wildfire, 55%
of the study area was classified as having severe or heavy erosion
potential compared with 90% after fire, with an overall classifica-
tion accuracy of 86%. Meanwhile, Buckland et al. (2019) used ANNs
to examine the relationships between sand deposition in semi-
arid grasslands and wildfire occurrence, land use, and climatic
conditions. The authors then predicted soil erosion levels in the
future given climate change assumptions.

4.5.2. Smoke and particulate levels
Smoke emitted from wildfires can seriously lower air quality

with adverse effects on the health of both humans and animals, as
well as other impacts. Thus, it is not surprising that ML methods
have been used to understand the dynamics of smoke from wild-
land fire. For example, Yao et al. (2018b) used RF to predict the
minimum height of forest fire smoke using data from the
CALIPSO satellite. More commonly, ML methods have also been
used to estimate population exposure to fine particulate matter
(e.g., PM2.5: atmospheric particulate matter with diameter less
than 2.5 �m), which can be useful for epidemiological studies and
for informing public health actions. One such study by Yao et al.
(2018a) also used RF to estimate hourly concentrations of PM2.5 in
British Columbia, Canada. Zou et al. (2019) compared RF, BRT, and
MLR to estimate regional PM2.5 concentrations in the Pacific
Northwest and found that RF performed much better than the
other algorithms. In another very broad study covering several
datasets and ML methods, Reid et al. (2015) estimated spatial dis-
tributions of PM2.5 concentrations during the 2008 northern Cal-
ifornia wildfires. The authors of the aforementioned study used
29 predictor variables and compared 11 different statistical mod-
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els, including RF, BRT, SVM, and KNN. Overall, the BRT and RF
models displayed the best performance. Emissions other than par-
ticulate matter have also been modelled using ML, as Lozhkin
et al. (2016) used an ANN to predict carbon monoxide concentra-
tions emitted from a peat fire in Siberia, Russia. In another study,
the authors used 10 different statistical and ML methods and
21 covariates (including weather, geography, land use, and atmo-
spheric chemistry) to predict ozone exposures before and after
wildfire events (Watson et al. 2019). Here, gradient boosting gave
the best results with respect to both root mean square error and R2

values, followed by RF and SVM. In a different application related
to smoke, Fuentes et al. (2019) used ANNs to detect smoke in
several different grape varietals used for wine making.

4.5.3. Post-fire regeneration, succession, and ecology
The study of post-fire regeneration is an important aspect of

understanding forest and ecosystem responses and resilience to
wildfire disturbances, with important ecological and economic
consequences. RF, for example, has been a popular ML method for
understanding the important variables driving post-fire regener-
ation (João et al. 2018; Vijayakumar et al. 2016). Burn severity is an
important metric for understanding the impacts of wildfire on
vegetation and post-fire regeneration, soils, and potential succes-
sional shifts in forest composition and, as such, has been included
in many ML studies in this section, including Barrett et al. (2011),
Cai et al. (2013), Cardil et al. (2019), Chapin et al. (2014), Divya and
Vijayalakshmi (2016), Fairman et al. (2017), Han et al. (2015),
Johnstone et al. (2010); Liu and Yang 2014; Martín-Alcón and Coll
2016, Sherrill and Romme (2012), and Thompson and Spies (2010).
For instance, Cardil et al. (2019) used BRT to demonstrate that
remotely sensed data (i.e., the RdNBR index) can provide an ac-
ceptable assessment of fire-induced impacts (i.e., burn severity) on
forest vegetation, while Fairman et al. (2017) used RF to identify
the variables most important in explaining plot-level mortality
and regeneration of Eucalyptus pauciflora in Victoria, Australia, af-
fected by high-severity wildfires and subsequent re-burns. Debouk
et al. (2013) assessed post-fire vegetation regeneration status using
field measurements, a canopy height model, and Lidar (i.e., three-
dimensional laser scanning) data with a simple ANN. Post-fire
regeneration also has important implications for the successional
trajectories of forested areas, and a few studies have examined
this using ML approaches (Barrett et al. 2011; Cai et al. 2013;
Johnstone et al. 2010). For example, Barrett et al. (2011) used RF to
model fire severity from which they made an assessment of the
area susceptible to a shift from coniferous to deciduous forest
cover in the Alaskan boreal forest, while Cai et al. (2013) used BRT
to assess the influence of environmental variables and burn sever-
ity on the composition and density of post-fire tree recruitment
and thus the trajectory of succession in northeastern China.
In other studies not directly related to post-fire regeneration,
Hermosilla et al. (2015) used RF to attribute annual forest change
to one of four categories, including wildfire, in Saskatchewan,
Canada, while Jung et al. (2013) used GA and RF to estimate the
basal area of post-fire residual spruce (Picea obovate) and fir (Abies
sibirica) stands in central Siberia using remotely sensed data.
Magadzire et al. (2019) used MaxEnt to demonstrate that fire re-
turn interval and species life history traits affected the distribu-
tion of plant species in South Africa. ML has also been used
to examine fire effects on the hydrological cycle, as Poon and
Kinoshita (2018) used SVM to estimate both pre- and post-wildfire
evapotranspiration using remotely sensed variables.

Considering the potential impacts of wildfires on wildlife, it is
perhaps surprising that relatively few of such studies have ad-
opted ML approaches; however, ML methods have been used to
predict the impacts of wildfire and other drivers on species distri-
butions and arthropod communities. Hradsky et al. (2017), for
example, used nonparametric BNs to describe and quantify the
drivers of faunal distributions in wildfire-affected landscapes in

southeastern Australia. Similarly, Reside et al. (2012) used MaxEnt
to model bird species distributions in response to fire regime
shifts in northern Australia, which is an important aspect of con-
servation planning in the region. ML has also been used to look at
the effects of wildfire on fauna at the community level, as Luo
et al. (2017) used DTs, association rule mining, and AdaBoost to
examine the effects of fire disturbance on spider communities in
Cangshan Mountain, China.

4.5.4. Socioeconomic effects
ML methods have been little used to model socioeconomic im-

pacts of fire to date. We found one study in which BNs were used
to predict the economic impacts of wildfires in Greece from 2006–
2010 due to housing losses (Papakosta et al. 2017). The authors did
this by first defining a causal relationship between the participat-
ing variables and then using BNs to estimate housing damages. It
is worth noting that the problem of detecting these causal rela-
tionships from data is a difficult task and remains an active area
of research in AI.

4.6. Fire management
The goal of contemporary fire management is to have the ap-

propriate amount of fire on the landscape, which may be accom-
plished through the management of vegetation, including
prescribed burning, the management of human activities (preven-
tion), and fire suppression. Fire management is a form of risk
management that seeks to maximize fire benefits and minimize
costs and losses (Finney 2005). Fire management decisions have
a wide range of scales, including long-term strategic decisions
about the acquisition and location of resources or the application
of vegetation management in large regions, medium-term tactical
decisions about the acquisition of additional resources, reloca-
tion, or release of resources during the fire season, and short-term
real-time operational decisions about the deployment and utiliza-
tion of resources on individual incidents. Fire preparedness and
response is a supply chain with a hierarchical dependence. Taylor
(2020) describes 20 common decision types in fire management
and maps the spatiotemporal dimensions of their decision spaces.

Fire management models can be predictive, for example, the
probability of initial attack success, or prescriptive as in maximiz-
ing or minimizing an objective function (e.g., optimal helicopter
routing to minimize travel time in crew deployment). While ad-
vances have been made in the domain of wildfire management
using ML techniques, there have been relatively few studies in this
area compared with other wildfire problem domains. Thus, there
appears to be great potential for ML to be applied to wildfire
management problems, which may lead to novel and innovative
approaches in the future.

4.6.1. Planning and policy
An important area of fire management is planning and policy,

and various ML methods have been applied to address pertinent
challenges. For example, Bao et al. (2015) used GA, which are
useful for solving multi-objective optimization problems, to opti-
mize watchtower locations for forest fire monitoring. Bradley
et al. (2016) used RF to investigate the relationship between the
protected status of forest in the western US and burn severity.
Likewise, Ruffault and Mouillot (2015) also used BRTs to assess the
impact of fire policy introduced in the 1980s on fire activity in
southern France and the relationships between fire and weather,
and Penman et al. (2011) used BNs to build a framework to simul-
taneously assess the relative merits of multiple management
strategies in Wollemi National Park, NSW, Australia. McGregor
et al. (2016) used MDP and a model-free Monte Carlo method to
create fast-running simulations (based on the FARSITE simulator)
and interactive visualizations of forest futures over 100 years
based on alternate high-level suppression policies. McGregor et al.
(2017) demonstrated ways in which a variety of ML and optimiza-
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tion methods could be used to create an interactive approximate
simulation tool for fire managers. The authors of the aforemen-
tioned study utilized a modified version of the FARSITE fire-spread
simulator, which was augmented to run thousands of simulation
trajectories while including new models of lightning-strike occur-
rences, fire duration, and a forest vegetation simulator. McGregor
et al. (2017) also clearly showed how DTs could be used to analyze
a hierarchy of decision thresholds for deciding whether or not to
suppress a fire; their hierarchy splits on fuel levels, then intensity
estimations, and finally weather predictors to arrive at a general-
izable policy.

4.6.2. Fuel treatment
ML methods have also been used to model the effects of fuel

treatments to mitigate wildfire risk. For example, Penman et al.
(2014) used a BN to examine the relative risk reduction of using
prescribed burns on the landscape versus within the 500 m inter-
face zone adjacent to houses in the Sydney Basin, Australia. Lauer
et al. (2017) used approximate dynamic programming (also
known as RL) to determine the optimal timing and location of
fuel treatments and timber harvest for a fire-threatened land-
scape in Oregon, US, with the objective of maximizing wealth
through timber management. Similarly, Arca et al. (2015) used GA
for multi-objective optimization of fuel treatments.

4.6.3. Wildfire preparedness and response
Wildfire preparedness and response issues have also been ex-

amined using ML techniques. Costafreda Aumedes et al. (2015)
used ANNs to model the relationships among daily fire load, fire
duration, fire type, fire size, and response time, as well as person-
nel and terrestrial and (or) aerial units deployed for individual
wildfires in Spain. Most of the models in Costafreda Aumedes
et al. (2015) highlighted the positive correlation of burned area
and fire duration with the number of resources assigned to each
fire, and some highlighted the negative influence of daily fire
load. In another study, Penman et al. (2015) used BNs to assess the
relative influence of preventative and suppression management
strategies on the probability of house loss in the Sydney Basin,
Australia. O’Connor et al. (2017) used BRT to develop a predictive
model of fire control locations in the northern Rocky Mountains,
US, based on the likelihood of final fire perimeters, while
Homchaudhuri et al. (2010) used GAs to optimize fire-line genera-
tion. Rodrigues et al. (2019) modelled the probability that wildfire
will escape initial attack using a RF model trained with fire loca-
tion, detection time, arrival time, weather, fuel types, and avail-
able resources data. Important variables in Rodrigues et al. (2019)
included fire weather and simultaneity of events. Julian and
Kochenderfer (2018) used two different RL algorithms to develop a
system for autonomous control of one or more aircraft to monitor
active wildfires.

4.6.4. Social factors
Recently, the use of ML in fire management has grown to en-

compass more novel aspects of fire management, even including
the investigation of criminal motives related to arson. Delgado
et al. (2018) used BNs to characterize wildfire arsonists in Spain,
thereby identifying five motivational archetypes (i.e., slight neg-
ligence, gross negligence, impulsivness, profit, and revenge).

5. Discussion
ML methods have seen a spectacular evolution in development,

accuracy, computational efficiency, and application in many
fields since the 1990s. It is therefore not surprising that ML has
been helpful in providing new insights into several critical sus-
tainability and social challenges in the 21st century (Gomes 2009;
Sullivan et al. 2014; Butler 2017). The recent uptake and success of
ML methods has been driven in large part by ongoing advances in
computational power and technology. For example, the recent

use of bandwidth-optimized graphics processing units (GPUs)
takes advantage of parallel processing for simultaneous execution
of computationally expensive tasks, which has facilitated a wider
use of computationally demanding but more accurate methods
such as DNNs. The advantages of powerful but efficient ML meth-
ods are therefore widely anticipated as being useful in wildfire
science and management.

However, despite some early papers suggesting that data-driven
techniques would be useful in forest fire management (Latham
1987; Kourtz 1990, 1993), our review has shown that there was
relatively slow adoption of ML-based research in wildfire science
up to the 2000s compared with other fields, followed by a sharp
increase in publication rate in the last decade. In the early 2000s,
data-mining techniques were quite popular, and classic ML meth-
ods such as DTs, RF, and bagging and boosting techniques began
to appear in the wildfire science literature (e.g., Stojanova et al.
2006). In fact, some researchers started using simple feed-forward
ANNs for small-scale applications as early as the mid-1990s and
early 2000s (e.g., Mccormick et al. (1999); Al-Rawi et al. (2002)). In
the last three decades, almost all major ML methods have been
used in some way in wildfire applications, although some more
computationally demanding methods such as SOMs and cellular
automata have only been actively experimented with in the last
decade (Toujani et al. 2018; Zheng et al. 2017). Furthermore, the
recent development of DL algorithms, with a particular focus on
extracting spatial features from images, has led to a sharp rise in
the application of DL for wildfire applications in the last decade. It
is evident, however, from our review that while an increasing
number of ML methodologies have been used across a variety of
fire research domains over the past 30 years, this research is un-
evenly distributed among ML algorithms, research domains, and
tasks and has had limited application in fire management.

Many fire science and management questions can be framed
within a fire risk context. Xi et al. (2019) discussed the advantages
of adopting a risk framework with regard to statistical modeling
of wildfires. There the risk components of hazard, vulnerability,
and exposure are replaced by fire probability, fire behavior, and
fire effects, respectively. Most fire management activities can be
framed as risk controls to mitigate these components of risk.
Traditionally, methods used in wildfire fire science to address
these various questions have included physical modeling (e.g.,
Sullivan 2009a, 2009b, 2009c), statistical methods (e.g., Taylor
et al. 2013; Xi et al. 2019), simulation modeling (e.g., Keane et al.
2004), and operations research methods (e.g., Martell 2015; Minas
et al. 2012).

In simple terms, any analytical study begins with one or more of
four questions: what happened?; why did it happen?; what will
happen?; or what to do? Corresponding data-driven approaches to
address these questions are called descriptive, diagnostic, predic-
tive, and prescriptive analytics, respectively. The type of analytical
approach adopted then circumscribes the types of methodologi-
cal approaches (e.g., regression, classification, clustering, dimen-
sionality reduction, decision-making) and sets of possible
algorithms appropriate to the analysis.

In our review, we found that studies incorporating ML methods
in wildland fire science were predominantly associated with de-
scriptive or diagnostic analytics, reflecting the large body of work
on fire detection and mapping using classification methods and
on fire-susceptibility mapping and landscape controls on fire us-
ing regression approaches. In many cases, the ML methods iden-
tified in our review are an alternative to statistical methods used
for clustering and regression. While the aforementioned tasks are
undoubtedly very important for understanding wildland fire, we
found much less work associated with predictive or prescriptive
analytics such as fire occurrence prediction (predictive), fire be-
havior prediction (predictive), and fire management (prescrip-
tive). This may be because (i) specific domain knowledge is
required to frame fire management problems, (ii) fire manage-
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ment data are often not publicly available, need a lot of work to
transform into an easily analyzable form, or do not exist at the
scale of the problem, and (iii) some fire management problems are
not suited or cannot be fully addressed by ML approaches. We
note that much of the work on fire risk in the fire-susceptibility
and mapping domain used historical fire and environmental data
to map fire susceptibility; therefore, while that work aims to in-
form future fire risk, it cannot be considered to be predictive
analytics, except, for example, when it was used in combination
with climate change projections. It appears then that, in general,
wildfire science research is currently more closely aligned with
descriptive and diagnostic analytics, whereas wildfire manage-
ment goals are aligned with predictive and prescriptive analytics.
This fundamental difference identifies new opportunities for re-
search in fire management, which we discuss later in this paper.

In the remainder of the paper, we examine some considerations
for the use of ML methods, including data considerations, model
selection and accuracy, implementation challenges, interpreta-
tion, opportunities, and implications for fire management.

5.1. Data considerations
ML is a data-centric modeling paradigm concerned with finding

patterns in data. Importantly, data scientists need to determine,
often in collaboration with fire managers or domain experts,
whether there are suitable and sufficient data for a given model-
ing task. Some of the criteria for suitable data include whether
(i) the predictands and covariates are or can be wrangled into the
same temporal and spatial scale, (ii) the observations are a repre-
sentative sample of the full range of conditions that may occur in
application of a model to future observations, and (iii) whether the
data are at a spatiotemporal scale appropriate to the fire science
or management question. The first of these criteria can be relaxed
in some ML models such as ANNs and DNNs in which inputs and
outputs can be at different spatial or temporal scales for appro-
priately designed network architectures, although data normal-
ization may still be required. The second criterion also addresses
the important question of whether enough data exists for training
a given algorithm for a given problem. In general, this question
depends on the nature of the problem, complexity of the under-
lying model, data uncertainty, and many other factors (for a fur-
ther discussion of data requirements for ML, see Roh et al. 2018). In
any case, many complex problems require a substantive data
wrangling effort to acquire, perform quality assurance on, and
fuse data into sampling units at the appropriate spatiotemporal
scale. An example of this is in daily fire occurrence prediction in
which observations of a variety of features (e.g., continuous mea-
sures such as fire arrival time and location or lightning strike
times and locations) are discretized into three-dimensional (e.g.,
longitude, latitude, and day) cells called voxels. Another impor-
tant consideration for the collection and use of data in ML is
selection bias. A form of spatial selection bias called preferential
sampling occurs when sampling occurs preferentially in locations
where one expects a certain response (Diggle et al. 2010). For ex-
ample, preferential sampling may occur in air monitoring, be-
cause sensors may be placed in locations where poor air quality is
expected (Shaddick and Zidek 2014). In general, preferential sam-
pling or other selection biases may be avoided altogether by se-
lecting an appropriate sampling strategy at the experimental
design phase or, when this is not possible, by taking it into ac-
count in model evaluation (Zadrozny 2004).

For the problem domain fire detection and mapping, most ap-
plications of ML used some form of imagery (e.g., remotely sensed
satellite images or terrestrial photographs). In particular, many
papers used satellite data (e.g., Landsat, MODIS) to determine veg-
etation differences before and after a fire and so were able to map
area burned. For fire detection, many applications considered ei-
ther remotely sensed data for hotspot or smoke detection or pho-
tographs of wildfires (used as inputs to an image classification

problem). For fire weather and climate change, the three main
sources of data were weather station observations, climate re-
analyses (modelled data that include historical observations), or
GCMs for future climate projections. Re-analyses and GCMs are
typically highly dimensional large gridded spatiotemporal data-
sets that require careful feature selection and (or) dimensional
reduction for ML applications. Fire occurrence prediction, suscep-
tibility, and risk applications use a large number of different
environmental variables as predictors, but almost all use fire lo-
cations and associated temporal information as predictands. Fire
data itself is usually collated from fire management agencies in
the form of georeferenced points or perimeter data, along with
reported dates, ignition cause, and other related variables. Care
should be taken using such data because changes in reporting
standards or accuracy may lead to data inhomogeneity. As well as
fire locations and perimeters, fire severity is an attribute of much
interest to fire scientists. Fire severity is often determined from
remotely sensed data and represented using variables such as the
differenced normalized burn ratio (dNBR) and variants or through
field sampling; however, remotely sensed estimates of burn sever-
ity should be considered as proxies as they have low skill in some
ecosystems. Other fire ecology research historically relies on
in situ field sampling, although many of the ML applications at-
tempt to resolve features of interest using remotely sensed data.
Smoke data can also be derived from remotely sensed imagery or
from air quality sensors (e.g., PM2.5).

Continued advances in remote sensing, as well as the quality
and availability of remotely sensed data products, in weather and
climate modeling have led to increased availability of large spa-
tiotemporal datasets, which presents both an opportunity and
challenge for the application of ML methods in wildfire research
and management. The era of “big data” has seen the development
of cloud computing platforms to provide the computing and data
storage facilities to deal with these large datasets. For example, in
our review, we found two papers (Crowley et al. 2019; Quintero
et al. 2019) that used Google Earth Engine, which integrates
geospatial datasets with a coding environment (Gorelick et al.
2017). In any case, data processing and management plays an im-
portant role in the use of large geospatial datasets.

5.2. Model selection and accuracy
Given a wildfire science question or management problem and

available relevant data, a critical question to ask is what is the
most appropriate modeling tool to address the problem? Is it a
standard statistical model (e.g., linear regression or LR), a physical
model (e.g., FIRETEC or other fire simulator), a ML model, or a
combination of approaches? Moreover, which specific algorithm
will yield the most accurate classification or regression? Given the
heterogeneity of research questions, study areas, and datasets
considered in the papers reviewed here, it is not possible to com-
prehensively answer these questions with respect to ML ap-
proaches. Even when multiple studies used the same dataset
(Cortez and Morais 2007; Safi and Bouroumi 2013; Storer and
Green 2016; Castelli et al. 2015; Al Janabi et al. 2018; Alberg 2015;
H. Li et al. 2018), the different research questions considered
meant that a direct comparison of ML methods was not possible
between research studies. However, a number of individual stud-
ies did make comparisons between multiple ML methods or be-
tween ML and statistical methods for a given wildfire modeling
problem and dataset. Here we highlight some of their findings to
provide some guidance with respect to model selection. In our
review, we found 29 papers comparing ML and statistical meth-
ods, and in the majority of these cases, ML methods were found to
be more accurate than traditional statistical methods (e.g., GLMs)
or displayed similar performance (Pu and Gong 2004; Bates et al.
2017; de Bem et al. 2018). In only one study on climate change by
Amatulli et al. (2013), MARS was found to be superior to RF for
their analytical task. A sizable number of the comparative studies
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(14) involved classification problems that used LR as a benchmark
method against ANN or ensemble tree methods. For studies com-
paring multiple ML methods, there was considerable variation in
the choice of most accurate method; however, in general, ensem-
ble methods tended to outperform single classifier methods (e.g.,
Stojanova et al. 2012; Dutta et al. 2016; Mayr et al. 2018; Nelson
et al. 2017; Reid et al. 2015; Watson et al. 2019), except in one case
in which the most accurate model (CART) was also the most par-
simonious (Coffield et al. 2019). A few more recent papers also
highlighted the advantages of DL over other methods. In particu-
lar, for fire detection, Zhang et al. (2018) compared CNNs with SVM
and found that CNNs were more accurate, while Zhao et al. (2018)
similarly found CNNs superior to SVMs and ANNs. For fire-
susceptibility mapping, Zhang et al. (2019) found CNNs to be more
accurate than RF, SVMs, and ANNs. For time series forecasting
problems, Liang et al. (2019) found that LSTMs outperformed
ANNs. Finally, Cao et al. (2019) found that using an LSTM com-
bined with a CNN led to better fire detection performance from
video compared with CNNs alone.

In any case, more rigorous intermodel comparisons are needed
to reveal under which conditions and in what sense are particular
methods more accurate, as well as to establish procedures for
evaluating accuracy. ML methods are also prone to overfitting, so
it is important to evaluate models with robust test datasets using
appropriate cross-validation strategies. For example, the naïve ap-
plication of cross-validation to data that have spatial or spatiotem-
poral dependencies may lead to overly optimistic evaluations
(Roberts et al. 2017). In general, one also desires to minimize er-
rors associated with either under- or over-specification of the
model, a problem known as the bias–variance trade-off (Geman
et al. 1992); however, several recent advances have been made to
reduce overfitting in ML models, e.g., regularization techniques in
DNNs (Kukačka et al. 2017). Moreover, when interpreting compar-
isons between ML and statistical methods, we should be cognizant
that just as some ML methods require expert knowledge, the ac-
curacy of statistical methods can also vary with the skill of the
practitioner. Thompson and Calkin (2011) also emphasize the
need for identifying sources of uncertainty in modeling so that
they can be better managed.

5.3. Implementation challenges
Beyond data and model selection, two important consider-

ations for model specification are feature selection and spatial
autocorrelation. Knowledge of the problem domain is extremely
important in identifying a set of candidate features. However,
while many ML methods are not limited by the number of fea-
tures, more variables do not necessarily make for a more accurate,
interpretable, or easily implemented model (Schoenberg 2016;
Breiman 2001) and can lead to overfitting and increased computa-
tional time. Two different ML methods to enable selection of a
reduced and more optimal set of features include GAs and particle
swarm optimization (PSO). Sachdeva et al. (2018) used a GA to
select input features for BRT and found that this method gave the
best accuracy compared with ANN, RF, SVM, SVM with PSO (PSO-
SVM), DTs, LR, and NB. Hong et al. (2018) employed a similar
approach for fire-susceptibility mapping and found that this led to
improvements for both SVM and RF compared with their non-
optimized counterparts. Tracy et al. (2018) used a novel random
subset feature selection algorithm for feature selection, which
they found led to higher AUC values and lower model complexity.
Jaafari et al. (2019) used a NFM combined with the imperialist
competitive algorithm (a variant of GA) for feature selection,
which led to very high model accuracy (0.99) in their study. Bui
et al. (2017) used PSO to choose inputs to a neural fuzzy model and
found that this improved results. Zhang et al. (2019) also consid-
ered the information gain ratio for feature selection. As noted in
Moritz et al. (2012) and Mayr et al. (2018), one should also take
spatial autocorrelation into account when modeling fire probabil-

ities spatially. In general, the presence of spatial autocorrelation
violates the assumption of independence for parametric models,
which can degrade model performance. One approach to deal
with autocorrelation requires subsampling to remove any spatial
autocorrelation (Moritz et al. 2012). It is also often necessary to
subsample from non-fire locations due to class imbalance be-
tween ignitions and non-ignitions (e.g., Cao et al. 2017; Zhang et al.
2019). Song et al. (2017) considered spatial econometric models
and found that a spatial autocorrelation model worked better
than RF, although Kim et al. (2019) noted that RF may be robust to
spatial autocorrelation with large samples. In contrast to many
ML methods, a strength of CNN is its ability to exploit spatial
correlation in the data to enable the extraction of spatial features.

5.4. Interpretation
A major obstacle for the adoption of ML methods to fire model-

ing tasks is the perceived lack of interpretability or explainability
of such methods, which are often considered to be “black box”
models. Users (in this case, fire fighters and managers) need to
trust ML model predictions and so have the confidence and justi-
fication to apply these models, particularly when proposed solu-
tions are considered novel. Model interpretability should therefore
be an important aspect of model development if models are to be
selected and deployed in fire management operations. Model in-
terpretability varies significantly across the different types of ML.
For example, conventional thinking is that tree-based methods
are more interpretable than neural network methods. This is be-
cause a single DT classifier can be rendered as a flow chart corre-
sponding to if-then-else statements, whereas an ANN represents a
nonlinear function approximated through a series of nonlinear
activations. However, because they combine multiple trees in an
optimized way, ensemble tree classifiers are less interpretable
than single tree classifiers. On the other hand, BNs are one exam-
ple of an ML technique in which good explanations for results can
be inferred due to their graphical representation; however, full
Bayesian learning on large-scale data is very computationally ex-
pensive, which may have limited early applications; however, as
computational power has increased, we have seen an increase in
the popularity of BNs in wildfire science and management appli-
cations (e.g., Penman et al. 2015; Papakosta et al. 2017).

DL-based architectures are widely considered to be among the
least interpretable ML models, despite that they can achieve very
accurate function approximation (Chakraborty et al. 2017). In fact,
this is demonstrative of the well-known trade-off between predic-
tion accuracy and interpretability (for an in-depth discussion, see
Kuhn and Johnson 2013). The ML community, however, recog-
nizes the problem of interpretability and work is underway to
develop procedures that allow for greater interpretability of ML
methods, including for DL (see, for example, McGovern et al. 2019)
or model-agnostic approaches (Ribeiro et al. 2016). Runge et al.
(2019) further argue that casual inference methods should be used
in conjunction with predictive models to improve our under-
standing of physical systems. Finally, it is worth noting that as-
sessing variable importance (see section 4.3.4) for a given model
can play a role in model interpretation.

5.5. Opportunities
Our review highlights a number of potential opportunities in

wildfire science and management for ML applications where ML
has not yet been applied or is underutilized. Here we examine ML
advances in other areas of environmental science that have anal-
ogous problems in wildland fire science and that may be useful for
identifying further ML applications. For instance, J. Li et al. (2011)
compared ML algorithms for spatial interpolation and found that
a RF model combined with geostatistical methods yielded good
results; a similar method could be used to improve interpolation
of fire weather observations from weather stations and so en-
hance fire danger monitoring. Rasp and Lerch (2018) showed that
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ANNs could improve weather forecasts by post-processing ensem-
ble forecasts, an approach that could similarly be applied to im-
prove short-term forecasts of fire weather. Belayneh et al. (2014)
used ANNs and SVMs combined with wavelet transforms for long-
term drought forecasting in Ethiopia; such methods could also
be useful for forecasting drought in the context of fire danger
potential. In the context of numerical weather prediction, Cohen
et al. (2019) found better predictability using ML methods than
dynamical models for subseasonal to seasonal weather forecast-
ing, suggesting similar applications for long-term fire weather
forecasting. McGovern et al. (2017) discussed how AI techniques
can be leveraged to improve decision-making around high-impact
weather. More recently, Reichstein et al. (2019) have further ar-
gued for the use of DL in the environmental sciences, citing its
potential to extract spatiotemporal features from large geospatial
datasets. Kussul et al. (2017) used CNNs to classify land cover and
crop types and found that CNNs improved the results over stan-
dard ANN models; a similar approach could be used for fuels
classification, which is an important input to fire behavior predic-
tion models. Shi et al. (2016) also used CNNs to detect clouds in
remotely sensed imagery and were able to differentiate between
thin and thick clouds. A similar approach could be used for smoke
detection, which is important for fire detection, as well as in
determining the presence of false negatives in hotspot data (due
to smoke or cloud obscuration). Finally, recent proposals have
called for hybrid models that combine process-based models and
ML methods (Reichstein et al. 2019). For example, ML models may
replace user-specified parameterizations in numerical weather
prediction models (Brenowitz and Bretherton 2018). Other recent
approaches use ML methods to determine the solutions to nonlin-
ear partial differential equations (Raissi and Karniadakis 2018;
Raissi et al. 2019). Such methods could find future applications in
improving fire behavior prediction models based on computa-
tionally expensive physics-based fire simulators in coupled fire–
atmosphere models or in smoke dispersion modeling. In any case,
the applications of ML that we have outlined are meant for illus-
trative purposes and are not meant to represent an exhaustive list
of all possible applications.

5.6. Implications for fire management
We believe that ML has been underutilized in fire management,

particularly with respect to problems belonging to either predic-
tive or prescriptive analytics. Fire management comprises a set of
risk control measures that are often cast in the framework of the
emergency response phases: prevention, mitigation, prepared-
ness, response, recovery, and review (Tymstra et al. 2019). In terms
of financial expenditure, by far the largest percentage is spent in
the response phase (Stocks and Martell 2016). In practice, fire
management is largely determined by the need to manage re-
sources in response to active or expected wildfires, typically for
lead times of days to weeks, or to manage vegetative fuels. This
suggests the opportunity for increased research in areas of fire
weather prediction, fire occurrence prediction, and fire behavior
prediction, as well as optimizing fire operations and fuel treat-
ments. The identification of these areas, as well as the fact that
wildfire is both a spatial and temporal process, further reiterate
the need for ML applications for time series forecasting.

In this review, there were few papers that used time series ML
methods for forecasting problems, suggesting an opportunity for
further work in this area. In particular, RNNs were used for fire
behavior prediction (Cheng and Wang 2008; Kozik et al. 2013,
2014) and fire occurrence prediction (Dutta et al. 2013). The most
common variants of RNNs are LSTM networks (Hochreiter and
Schmidhuber 1997), which have been used for burned-area predic-
tion (Liang et al. 2019) and fire detection (Cao et al. 2019). Because
these methods implicitly model dynamical processes, they should
lead to improved forecasting models compared with standard
ANNs. For example, Gensler et al. (2017) used LSTMs to forecast

solar power and Kim et al. (2017) used CNNs combined with LSTM
for forecasting precipitation. We anticipate that these methods
could also be employed for fire weather, fire occurrence, and fire
behavior prediction.

We note that there are a number of operational research and
management science methods used in fire management research,
including queuing, optimization, and simulation of complex sys-
tem dynamics (e.g., Martell 2015), in which ML algorithms do not
seem to provide an obvious alternative, e.g., planning models to
simulate the interactions between fire management resource con-
figurations and fire dynamics reviewed by Mavsar et al. (2013).
From our review, a few papers used agent-based learning methods
for fire management. In particular, RL was used for optimizing
fuel treatments (Lauer et al. 2017) or for autonomous control of
aircraft for fire monitoring (Julian and Kochenderfer 2018). GAs
were used for generating optimal fire lines for active fires
(Homchaudhuri et al. 2010) and for reducing the time for fire
simulation (Cencerrado et al. 2014). However, more work is
needed to identify where ML methods could contribute to tactical,
operational, or strategic fire management decision-making.

An important challenge for the fire research and management
communities is enabling the transition of potentially useful ML
models to fire management operations. Although we have identi-
fied several papers emphasizing that their ML models could be
deployed in fire management operations (Artés et al. 2016;
Alonso-Betanzos et al. 2002; Iliadis 2005; Stojanova et al. 2012;
Davis et al. 1989, 1986; Liu et al. 2015), it can be difficult to assess
whether and how a study has been adopted by, or influenced by,
fire management agencies. This challenge is often exacerbated by
a lack of resources and (or) funding, as well as the different prior-
ities and institutional cultures of researchers and fire managers.
One possible solution to this problem would be the formation of
working groups dedicated to enabling this transition, preferably
at the research proposal phase. In general, enabling operational
ML methods will require tighter integration and greater collabo-
ration between the research and management communities, par-
ticularly with regards to project design, data compilation and
variable selection, implementation, and interpretation. It is
worth noting, however, that this is not a problem unique to ML; it
is a long-standing and common issue in many areas of fire re-
search and other applied science disciplines in which continuous
effort is required to maintain communications and relationships
between researchers and practitioners.

Finally, we would like to stress that we believe that the wildfire
research and management communities should play an active
role in providing relevant, high-quality, and freely available wild-
fire data for use by practitioners of ML methods. For example,
burned area and fire weather data made available by Cortez and
Morais (2007) was subsequently used by a number of authors in
their work. It is imperative that the quality of data collected by
management agencies be as robust as possible, as the results of
any modelling process are dependent on the data used for analy-
sis. It is worth considering how new data on, for example, hourly
fire growth or the daily use of fire management resources could be
used in ML methods to yield better predictions or management
recommendations — using new tools to answer new questions
may require better or more complete data. Conversely, we must
recognize that despite ML models being able to learn on their
own, expertise in wildfire science is necessary to ensure realistic
modelling of wildfire processes, while the complexity of some ML
methods (e.g., DL) requires a dedicated and sophisticated knowl-
edge of their application (we note that many of the most popular
ML methods used in this study such as RF, MaxEnt, and DTs are
fairly easy to implement). The observation that no single ML algo-
rithm is superior for all classes of problem, an idea encapsulated
by the “no free lunch” theorem (Wolpert 1996), further reinforces
the need for domain-specific knowledge. Thus, the proper imple-
mentation of ML in wildfire science is a challenging endeavor,
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often requiring multidisciplinary teams and (or) interdisciplinary
specialists to effectively produce meaningful results.

5.7. A word of caution
ML holds tremendous potential for a number of wildfire science

and management problem domains. As indicated in this review,
much work has already been undertaken in a number of areas,
although further work is clearly needed for fire management spe-
cific problems. Despite this potential, ML should not be consid-
ered a panacea for all fire research areas. ML is best suited to
problems in which there are sufficient high-quality data, and this
is not always the case. For example, for problems related to fire
management policy, data are needed at large spatiotemporal
scales (i.e., ecosystem–administrative spatial units at time scales
of decades or even centuries), and such data may simply not yet
exist in current inventories. At the other extreme, data are needed
at very fine spatiotemporal scales for fire spread and behavior
modeling, including high-resolution fuel maps and surface
weather variables, which are often not available at the required
scale and are difficult to acquire even in an experimental context.
Another limitation of ML may occur when one attempts to make
predictions where no analog exists in the observed data, such as
may be the case with climate change prediction.

6. Conclusions
Our review shows that the application of ML methods in wild-

fire science and management has been steadily increasing since
their first use in the 1990s, across core problem domains using a
wide range of ML methods. The bulk of work undertaken thus far
has used traditional methods such as RF, BRT, MaxEnt, SVM, and
ANNs, partly due to the ease of application and partly due to their
simple interpretability in many cases; however, problem domains
associated with predictive (e.g., predicted fire behavior) or pre-
scriptive (e.g., optimizing fire management decisions) analytics
have seen much less work with ML methods. We therefore suggest
that opportunities exist for both the wildfire community and ML
practitioners to apply ML methods in these areas. Moreover, the
increasing availability of large spatiotemporal datasets from, for
example, climate models or remote sensing may be amenable to
the use of DL methods, which can efficiently extract spatial or
temporal features from data. Another major opportunity is the
application of agent-based learning to fire management opera-
tions, although many other opportunities exist. We must recog-
nize, however, that despite ML models being able to learn on their
own, expertise in wildfire science is necessary to ensure realistic
modelling of wildfire processes across multiple scales, while the
complexity of some ML methods (e.g., DL) requires a dedicated and
sophisticated knowledge of their application. Furthermore, a ma-
jor obstacle for the adoption of ML methods to fire modeling tasks
is the perceived lack of interpretability of such methods, which
are often considered to be black box models. The ML community,
however, recognizes this problem and work is underway to de-
velop methods that allow for greater interpretability of ML meth-
ods (see, for example, McGovern et al. 2019). Data-driven
approaches are by definition data-dependent — if the fire man-
agement community wants to more fully exploit powerful ML
methods, we need to consider data as a valuable resource and
examine what further information on fire events or operations is
needed to apply ML approaches to management problems. In clos-
ing, wildland fire science is a diverse multifaceted discipline that
requires a multipronged approach, a challenge made greater by
the need to mitigate and adapt to current and future fire regimes.
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