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Tree height of jack pine full-sib families, originating from all possible combinations of three parental provenances
and growing on three sites, was analyzed with 1 classical model and 11 nearest-neighbour spatial process models. Extension
of the classical linear model with spatial interaction terms was deemed necessary in light of significant neighbourhood
correlations among effect-free observations (residuals) on two of the three sites. The strength and extent of spatial
and temporal correlations are demonstrated in both visual and tabular form. Only 4 of the 11 spatial models provided
a substantial reduction (5-20%) in the significant difference between two estimates of full-sib family tree height. Spatial
adjustments averaged 1-3% at the family level, with few families adjusted by more than 10%. The cumulative (temporal)
effect of spatial covariance was demonstrated in rank correlations between adjusted and observed family means. No simple
trends were obtained when adjusted variance components and heritabilities were compared with their unadjusted counter-
parts, but most models tended to deflate genetic effects and reduce heritabilities. It is concluded that although spatial
analyses provide an attractive tool for the experimenter, the lack of a cause and effect hypothesis in forest genetic
trials necessitates model searching without the guarantee of true treatment effects. Spatial analysis provides good indicators
of the need to collect additional site information for more powerful analyses. Careful planning and intensive site prep-
aration may greatly reduce spatial covariances and the need for spatial analyses.

MAGNUSSEN, S. 1990. Application and comparison of spatial models in analyzing tree-genetics field trials Can. J. For.
Res. 20 : 536-546.

La hauteur des familles bi-parentales de Pin gris originant de toutes les combinaisons possibles de trois provenances
parentales et croissant sur trois sites ont été analysées avec 1 modéle classique et 11 modéles spatiaux de plus proche
voisin. L’extension du modéle classique linéaire avec les termes de ’interaction spatiale a été jugée nécessaire a la lumiere
des corrélations significatives de voisinage entre les observations sans effets sur deux des trois sites. La force et I’étendue
des corrélations spatiales et temporelles sont démontrées sous forme visuelle et en tableaux. Seulement 4 des 11 modéles
spatiaux conduisaient a une réduction substantielle (5-20%) de la différence significative entre deux estimations des
familles de hauteur. Les ajustements spatiaux exprimaient en moyenne 1-3% du niveau de la famille avec quelques
familles ajustées par plus de 10%. L’effet cumulatif temporel de la covariance spatiale a été démontrée dans les cor-
rélations de rang entre les moyennes de famille ajustées et observées. Aucune tendance linéaire n’a été obtenue lorsque
les composantes ajustées de la variance et les facteurs héréditaires ont été comparés avec leurs contreparties non ajustées
mais la plupart des modéles tendent a diminuer les effets génétiques et réduire les facteurs héréditaires. Nous concluons
que méme si les analyses spatiales procurent un outil attrayant pour le chercheur, le manque de cause et d’effets hypothé-
tiques dans les essais en génétique forestiére nécessitent des modeles de recherche sans garantie de vrais effets de
traitements. I’analyse spatiale fournit de bons indicateurs de la nécessité d’obtenir de I’information additionnelle sur
les sites pour une analyse plus puissante. La préparation intensive de sites et une planification soignée peuvent réduire
de beaucoup les covariances spatiales et le besoin d’analyses spatiales.

[Traduit par la revue]

Introduction

Environmental gradients (physical factors, topography,
etc.) within replicated blocks and competition among
neighbouring treatment units pose a serious impediment to
reliable (precise) estimations of treatment effects in most
field trials (Binns 1987; Correll and Cellier 1987; Hiihn 1973;
Loo-Dinkins and Tauer 1987; Love 1936; Smith 1938; Stern
1968). One of the most effective countermeasures to ame-
liorate such effects has been the use of incomplete block
designs (Cochran and Cox 1957), or a reduction in plot size
and hence, block sizes (Cochran and Cox 1957; Cotterill and
James 1984; Lambeth and Gladstone 1983; Libby and
Cockerham 1980; Loo-Dinkins and Tauer 1987; Wright and
Freeland 1960). Reduction of plot sizes, however, leads
inevitably to increased interaction among plants receiving
different treatments and in the case of interplant competi-
tion, to the less efficient designs (Cochran and Cox 1957;
Hithn 1974; Magnussen 1989a). Genetics trials with forest
trees are especially faced with problems of this nature.
Patchy microsite patterns in forest soils and large numbers
of genetic entries have complicated experimental designs.
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Although various lattice and incomplete block designs (Yates
1937) have greatly improved the situation, persistent prob-
lems remain owing to strong temporal modifications of
spatial processes in forest stands with pronounced environ-
mental gradients over short distances (Correll and Cellier
1987; Leps and Kindlmann 1987; Loo-Dinkins and Tauer
1987; Modjeska and Rawlings 1983; Stern 1965; Reed and
Burkhart 1985).

Uniformity trials (Love 1936; Modjeska and Rawlings
1983; Smith 1938; Stern 1968) have often demonstrated that
observations taken on neighbouring plots are more similar
than observations taken at random, an indication of posi-
tive spatial covariances. The presence of positive, or for that
matter negative, spatial covariances may cause a serious
violation of the assumption of independent observation, a
cornerstone in the analysis of variance (Searle 1987). To
apply ordinary least-squares techniques to a data set in the
presence of significant spatial covariances, or autocorrela-
tions as they are usually referred (Cliff and Ord 1981), may
introduce a serious loss of precision in estimates of effects
and variance components (Besag and Kempton 1986). Inter-
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Fi1G. 1. Geographic location of test sites and parental jack pine provenances. Open circles, provenances; stars, test sites.

est is strong, therefore, in analytical methods that can reduce
the loss of precision due to spatial correlations of observed
values (i.e., observations are not indepenent) (Magnussen
1989a). Fortunately, rapid developments have been made
over the last 2 decades in our capablity to model and statis-
tically analyze environmental variation in space (Bartlett
1978; Besag 1974; Besag and Kempton 1986; Cliff and Ord
1981; Draper and Guttmann 1980; Green et al. 1985;
Kempton and Howes 1981; Wilkinson et al. 1983).

The present study illustrates how, by proper model choice,
nearest-neighbour (NN) analyses may reduce the effects of
spatial autocorrelation in data from three forest-genetics
trials in Ontario (Canada). A total of 11 spatial models are
analyzed in this study and compared with classical two-way
analysis of variance. The chosen models represent all the
various types of spatial models that may prove useful in
forestry trials. The purpose of presenting several models is
twofold: first, to heighten the awareness of field
experimenters about potentially powerful models, many of
which are still not widely accepted, and second, to demon-
strate that model choice is important. Model choice is espe-
cially difficult in forest-genetics trials where there is no clear
distinction between effects and treatment and where genetic
effects cannot be estimated without errors. These unique
problems tend to blur the distinction between model types.
An apparent uncritical testing of various model types is
therefore warranted in forest-genetics trials. A detailed or
thorough statistical description of the models is beyond the
scope of this study. Effects of analytical model choice on
estimates of genetic variances and heritabilities are
demonstrated.

Height growth data, genetic identifiers (labels), and spatial
locations (plot, rows, and column numbers) were the only
sources of information available for spatial analyses.
Evaluation of the merits of each spatial model was therefore
limited to the magnitude of error variances, effects on
genetic variances, and the significance of treatment dif-

ferences. Other worthwhile criteria such as fit to biological
reality, mapping of soil variation, and interpretable biolog-
ical parameters could not be part of the evaluation owing
to the lack of appropriate data.

Material and study area

Tree height of 49! jack pine (Pinus banksiana Lamb.)
full-sib families was studied at Sturgeon Lake, Fraserdale,
and Swastika, Ontario, Canada (cf. Fig. 1). A randomized
block design with 3 X 3 square plots (1.5 X 1.5 m tree
spacing) and four replications was implemented on each site.
Double surround rows planted with a local provenance
served to eliminate possible edge effects along outside block
borders. All sites were typical jack pine sites of low fertility
(flat to undulating sandy soils) with a history of natural jack
pine cover. The full-sib progenies originated from controlled
pollinations within and between representative trees from
three jack pine provenances (Big Rivers, Petawawa, Fife
Lake) (Fig. 1). Parental trees were random selections from
a provenance trial at the Petawawa National Forestry
Institute (Holst 1967). An average of five full-sib families
from each of the nine possible provenance combinations
were outplanted for field testing on the three sites. Tree
height and survival were assessed at ages 6, 7, and 8 years
from seed. Plot means were used as entries in the statistical
analysis and spatial models, and a pooled estimate of the
within-plot variance was used in the heritability estimates.
All experiments were balanced at the plot mean level.
A detailed description of height results and survival is given
by Magnussen and Yeatman (1988).

Family heritability was derived separately for each prov-
enance combination (i.e., based on an average of only five
full-sib families) as

h% = o¥/(s? + 0%,/4 + ok/4ny)

'On a third site (Sturgeon) 50 families were tested.
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where o, 0%, and o3 are the maximum likelihood estimates
of family, plot, and within-plot variances, respectively, and
ny is the harmonic mean of trees per plot 2 < ny < 9).

Spatial correlation analysis

The experimental design and field layout on all three sites
aimed at minimizing the site variation within blocks. Any
within-block variation due to environmental gradients tends
to make observations from neighbouring plots more similar
than observations from more distant plots (Bartlett 1978;
Smith 1938; Wright and Freeland 1960). This prevailing
tendency of neighbouring plot observations to be more
similar than observations drawn at random from within the
block can be so strong that the assumption of independent
observations within the block is violated. A measure of the
spatial similarity is obtained through correlation analyses
of effect-free growth data. Correlation coefficients (o) are
computed in the usual manner for neighbouring observa-
tions and compared with values expected under the assump-
tions of random association of values (Cliff and Ord 1981).
Coefficients exceeding expected values (under the null
hypothesis) by a significant margin supports the contention
of significant spatial association or spatial autocorrelation
among neighbouring values. A directional breakdown of
correlations may help identify the source of the autocorrela-
tion. In an attempt to assess the extent of autocorrelations,
it is customary to compute correlation coefficients for first-,
second-, and third-order neighbours. (The order of the rela-
tionship refers to the spatial closeness of the observations.
First-order neighbours share common borders, second-order
neighbours have common first-order neighbours, etc.
Diagonal plots are in the present context not considered as
neighbours.) However, higher order autocorrelations suf-
fer from the confounding effects of spatially intermediate
observations (Besag 1974; Cliff and Ord 1981); it is therefore
desirable to express higher order correlations conditional on
the intermediate results. The partial autocorrelation coeffi-
cients (¢) are such conditional estimates. For example, a
second-order partial coefficient estimates the correlation
between two second-order neighbours after the effect of their
common first-order neighbour has been removed (Ander-
son 1976).

Interpretation of the autocorrelations helps determine
whether a classical analysis that assumes independent obser-
vations is appropriate. If it is decided that the pattern of
spatial autocorrelation is significant, then the aforemen-
tioned assumption of independent observation is invalid, and
an improved model that incorporates this spatial dependency
must be formulated. Spatial and partial autocorrelations
may prove helpful in the search for an appropriate spatial
model (Anderson 1976).

In the present study, effect-free observations were resid-
uals from an analysis of variance of tree height, with blocks
and families (here assumed fixed) as explanatory effects.

Analytical models
General
The basic linear models for analyzing tree heights reads
[1] Yijp = u + 5,’ + Tj + e,'jp + SI,’jp
where Yj;, is the mean tree height of family j growing in the
pth plot in replicate (block) i, u is the grand mean, §; is the
additive effect of block i (E 6 = 0), and 7; denotes the

Il

additive effect of family j (E 7; = 0). The term ¢, is a
J

random residual (innovation term) assumed independent and
normally distributed with mean zero and variance o2
Finally, SI;, stands for a model-dependent spatial inter-
action term that is used to describe the assumed spatial rela-
tionship of the observations. Replicates and families in [1]
are treated as fixed effects.

The preceding analysis of spatial autocorrelations
indicated that the spatial interaction term in [1] would be
significant in Sturgeon and in Fraserdale, but not in
Swastika. Examples of various applied spatial interaction
terms are provided in Table 1 (subscripts referring to blocks
and families have been dropped to simplify the notation).
In theory, at least, an inspection of the spatial correlations
and the partial autocorrelation coefficients ought to aid the
selection of an appropriate spatial interaction extension of
[1] (Anderson 1976; Fomby et al. 1980). However in this
data set, little support was evident for a specific model.
Rather, an array of plausible models suggested themselves.
A brief description of these models appears in the follow-
ing section on spatial models. Basically, the spatial inter-
action terms in the models of Table 2 allow estimation of
a dispersion (variance-covariance) matrix V of the observa-
tions (Y). V, in turn, is used to weight the observations
(Searle 1987) before the family and block effects (param-
eters 7 and §) are estimated. Once Vis determined, the solu-
tions are in most cases derived by weighted least squares, i.e.

21 Bl =&V-x)1(XV-Y

where X symbolizes the design matrix (incidence matrix of
families and blocks) of the experiment (the superscript T
denotes a transposed matrix, whereas — denotes the
Moore-Penrose generalized inverse of a matrix).
Generalized least-squares estimates (Searle 1987) of family
means (Y; ) were obtained via [2] as
Bl Y. =4+7%
For each of the nine provenance combinations a provenance-
cross estimate was obtained as the grand mean (i) plus the
average effect (7)) of the families belonging to the particu-
lar provenance combination. The variance among full-sib
families within a specific provenance combination was com-
puted as the variance of the family estimates (Yj__). It is
assumed that this variance estimates one-half of the additive
variance plus one-quarter of the nonadditive (dominance)
variance (Falconer 1981).

Spatial models

All spatial models aspire to eliminate or at least reduce
the observed spatial autocorrelations in a data set by super-
imposing a hypothetical relationship between observations
of known spatial positions. Generally, the classical two-way
model (blocks and treatments) is extended to allow inter-
actions among immediate neighbours (plant or plots) in the
experiments. Spatial correlations of observations can occur
due to either overlap of treatment effects, microsite effects,
or a combination thereof. A priori knowledge of cause and
effect will of course assist in the choice of an appropriate
model.

Spatial interaction models are usually categorized into
three groups: (i) There is no competition between plots; but
the fact that neighbouring plots are side by side means that
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TABLE 1. Spatial models used in the analysis of plot means from three replicated randomized block trials (subscripts referring to blocks
and families (see example) have been omitted to improve clarity)

Reference

Description
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(6)
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®

9

(10)

(1

Model
Yo=t+ b + e t &
Y, = u + 7y + A Ecol(p) T
+ )\row Erow(ﬂ) Tkt * ep
Yy = 1+ dopy + Tepy + Aol Ecol(ﬂ) T
+ )\row Erow(p) Tk * ep
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-1 0 !
- NroW(P) (Erow(p)Yp” e Tk”) ! ep
p— _1 0
yg =1+ Ty + Aot N (Ecol(p) €5)
—1 0
+ )\mw Nrow(p) (Erow(p) €p) * €
where Y2 = - X R
ere p Yp )‘col Ecol(ﬂ) Tk )\mw ErOW(p)
0 _ R R O
and €, = Y, — pu Tk = Aeol Ecol(p) T
0
— Tk
)‘row Erow([)) k
Yp =0+ Tup) + Mot €p1 + U
Yp =B+ T t+ Arow Ep1 T U,
s
Yo =1+ 7y + Mol €51 + Mot €52 + U,
Yp = u + Ti(p) + )‘row €y + )\15'0w €p-2 * “r
Yp =pu+ Tk(p) + Ep + )\col ep‘l
Yo =0+ Ty + € + Now €51
Yo = 7 + 0N + &

Main effects
p is the grand mean
Y, is the observed mean in plot p
Y, is the observed mean in neighbouring column plot
« is the observed mean in neighbouring row plot
dy(p) is the block effect associated with plot p
Ti(p) 18 the treatment effect (full-sib family) associated with plot p
74+ 1s the treatment effect associated with plot in neighbouring column
74 is the treatment effect associated with plot in neighbouring row

Y,

Notation
L ow(p) is the summation over p’s row neighbours;

col(p

Snedecor and Cochran 1971

Draper and Guttman 1980

Besag and Kempton 1986

Besag and Kempton 1986
Besag and Kempton 1986

Besag and Kempton 1986

Wright 1978

Correll and Anderson 1983

Fomby et al. 1980

Fomby et al. 1980

Fomby et al. 1980

Green et al. 1985

Definitions

y = summation over p’s column neighbours

Generalized least squares

Effect overlap

Effect overlap

First difference

First difference with errors-
in-variables

Yield interference

Moving plot averages (Papadakis)

Effect overlap and yield
interference

First-order autoregressive
scheme

Second-order autoregressive
scheme

Moving average scheme
(first order)

Least squares smoothing (two
dimensional)

N is the number of neighbouring plots surrounding plot p (interior plots have a total of four first-order neighbours)
0 as a superscript denotes initial generalized least squares solutions to a reduced model
s as a superscript denotes effects associated with second-order neighbours

p is plot number. Plots are arranged row-wise (or column-wise) as a continuous sequence of spatially contiguous plots (i.e., plot p and p — 1 are

Spatial effects and residuals
N is the coefficient of plot interference (—1/N < A < 1/N). Directional interference terms are indicated by subscripts

is the difference between expected and observed plot means (random error). The residuals €, may be spatially correlated

v is the error associated with observations (y) in plot p

u, is the independent plot error or term (these terms have zero spatial autocorrelation)

&, is the environmental value of plot p

&

P

first-order neighbours and p and p — 2 are second-order neighbours)
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the yields will be similar. (i/) There is competition; the treat-
ment on a neighbouring plot affects the plot yield. (iii) There
is competition; the plant(s) on a neighbouring plot affects
the plot yield. Of course, all three types of neighbour effects
are possible simultaneously, but one is likely to be predom-
inant. In genetics trials, ii and iii would be inseparable.
It may be impossible to distinguish in practice when more
than one effect is present, however complicated and sophis-
ticated the model may be. The neighbour effect may operate
in one or two dimensions, but this is not mathematically
important; the models are similar.

A common feature of most spatial models is the use of
one or two constants (A, and A, in Table 1) to describe
the average spatial relationship among neighbouring units
(Magnussen 1989¢). This rigid structure is a necessary
simplification to ensure a solution to the problem. In real-
ity, the spatial process can be far more complex. In an
attempt to relax rigid spatial assumptions, so-called errors-
in-variables models (model 4 in Table 1) have been intro-
duced. In most forest-genetics applications, however, the
source of spatial interaction in unknown and the choice of
a spatial model may, as a result, be somewhat arbitrary.
Experience in agriculture seems to indicate that a more
orderly model choice is possible and that models of a cer-
tain type tend to yield comparable estimates of spatial terms
(Kempton 1984).

Spatial relationships (\) will within the current model con-
text operate on (/) plot means (Y},), (ii) genetic effects (7;),
or (i) residuals (phenotypic) (£). Spatially, these relation-
ships will extend in one or two directions (columns and rows)
and include one or two neighbouring plots in each direc-
tion (diagonals excluded).

Eleven different spatial models and 1 reference model
(model 0) were chosen to analyze the three field experiments.
All models of potential use in forestry have been included.
Model 0 is the classical linear model for a two-way analysis
of variance that ignores any spatial autocorrelation of
residuals. Results from all other models are compared with
this model. Models 1 and 2 postulate that spatial covariances
arise through effect overlap among neighbouring plots, i.e.,
not only will the genetic value of a seed lot that happens
to be growing on above-average plots be overestimated, but
also the effects of seed lots growing in adjacent plots (and
vice versa). Competition effects are another example of
effect overlap, where the effects of suppressors are over-
estimated and those of the suppressed plots are under-
estimated (Magnussen and Yeatman 1987; Magnussen
19895). The likelihood of significant effect overlap will, of
course, decrease rapidly with the number of randomized
replicates. Solutions to models 1 and 2 are found by dif-
ferent techniques; whereas model 1 uses a direct search, a
simultaneous solution to both the treatment and interference
coefficient (\) is employed in model 2.

Model 3 describes all spatial covariances (phenotypic) as
being explainable by the shared microsite of two neighbour-
ing plots. Independent residuals are thus obtained by a
simple difference scheme (Besag and Kempton 1986). A
relaxation of this scheme is provided in model 4 by adding
a new error term. Model 5 limits the spatial interactions to
a fraction, —1/N < N < 1/N, of the observed field values
(N = number of considered neighbouring plots). The frac-
tion A is found by analysis of covariance (iterated) or maxi-

mum likelihood estimation. Model 6 (Papadakis; Bartlett
1978) assumes that residuals from a classical two way anal-
ysis of variance provides reliable estimates of microsite fer-
tility. When used subsequently as a covariate, these residuals
may remove bias and environmental covariances from the
treatment estimates. Model 7 combines effect overlap with
spatial correlations (phenotypic) arising from a shared
microsite. First, effects overlap are estimated and in a second
pass, the effects of spatial correlations are estimated.
Models 8 to 10 limit the spatial associations to residuals (g).
They differ in the extent of spatial correlation and in whether
a truly independent error term (u) exists or not. Model 11
assigns an environmental value to each plot, under the
assumption that the environment changes gradually and in
a smooth fashion among neighbouring plots (i.e., the
response surface is almost linear within an area covered by
a plot and its four neighbours). Environmental values are
found by simultaneously minimizing the squared deviations
from a smoothed response surface of estimated environmen-
tal values (the smoothing depends on a tuning constant \)
and the estimated error sum of squares (see Green et al.
1985).

Parameter estimation for all models followed procedures
outlined in the cited references. Where applicable, the min-
imum standard deviation of a treatment difference served
as a stopping criterion for direct search (enumeration) algo-
rithms. Step size in any search algorithm was kept suffi-
ciently small to allow estimation of a minimum error
variance within 0.5% of its global minimum (ex post facto).
Included models have, whenever possible, been expanded
to accommodate spatial interactions along two major axes
of the field trials. Programming software has been written
in SAS® Interactive Matrix Language.

Results

Observed spatial autocorrelations

Residuals in a two-way (families, replicates) analysis of
variance of plot means revealed a positive and significant
correlation among values obtained from neighbouring plots
on two sites. Positive correlations indicated that competi-
tion was minimal at all ages in agreement with the average
height of the trees (age 8: 3.0 m at Sturgeon, 2.1 m at
Swastika, and 1.6 m at Fraserdale). When residuals of
8-year-old height were subdivided into three classes of equal
width (1.3 SD) and plotted as moving four-plot averages,
the configurations shown in Fig. 2 emerged.

High and low residual values were clearly concentrated
in patches on the Sturgeon and the Fraserdale sites.
Residuals in the Swastika site indicated a far less contiguous
distribution of microsite residuals. A quantitative impres-
sion of the average correlations among the actual plot
residuals is provided by the spatial autocorrelations in
Table 2. An increase in the spatial correlations over time
mirrors the cumulative effect of good sites on tree growth.
Second- and third-order correlations were, as expected, far
less important than first-order correlations. The nonsignif-
icance of virtually all second- and higher order partial
autocorrelations suggests that the spatial process can be
adequately described by considering only the first-order
correlations (Anderson 1976).

Plot residuals of total height were strongly correlated over
time. Residuals 1 year apart were correlated with a product-
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Fi1G. 2. Contour maps of moving four-plot averages of plot tree
height residuals (age 8) on three sites. The residual classes high,
medium, and low each represent an interval of a width equal to
1.3 times the site-specific standard deviation of the residuals.

moment correlation coefficient of 0.95 (significant at
P < 0.05). Two years apart, the correlation among residuals
dropped to 0.86.

Evaluations of spatial models

Evaluations of the various spatial models are based on
their reduction of the standard error of a difference (SED)
between two treatments (i.e., full-sib families) when com-
pared with the SED derived from a classic two-way anal-
ysis of variance (e.g., using [1] without the spatial interaction
term). It must be emphasized, however, that the calculation
of SED is not without problems inasmuch as the exact
degrees of freedom in many models are unknown. Only
intuitively appealing approximations are available (Besag
and Kempton 1986). Comparison of the effectiveness of the
various spatial models with reduced observed spatial cor-
relations of ordinary least-squares residuals (not shown)
indicated that only models that substantially reduced SED
were successful correlation breakers. Basically, the reduc-
tion in spatial correlations followed the trend in SED.
Hence, only SED is taken as an indicator of model
performance.

Seven of the 11 spatial models reduced the average SED
between the mean tree height of two full-sib families by
5-20%, compared with the error estimated from the classical
analysis of variance of a randomized block design (Table 3).
The models that failed to produce any marked error reduc-
tion were the effect-interference models (1 and 2), the first-
difference model (3), and the least-squares smoothing model
(11).

Random allocation of full-sib families to plots within
blocks effectively prevented the emergence of any signifi-
cant spatial covariance among family effects obtained from
neighbouring plots. The absence of strong interplot com-
petition, as indicated by the positive autocorrelations of
ordinary least-squares residuals (Table 2), acted in a similar
fashion. The failure of the first difference method, on the
other hand, rests with its rigid and rather unrealistic assump-
tion of a perfect linear relationship between residuals from
adjacent plots within a single row. Its extension with errors-
in-variables, however, proved much more successful
(model 4).

Least-squares smoothing proved unsuccessful because too
many degrees of freedom were used to fit the microsite qual-
ity response surface (£ in model 11). Microsite quality pat-
terns as complex as those illustrated in Fig. 2 can best be
described mathematically by higher order polynominals or
Fourier transforms. Even when more than 100 df were used
to determine trends in plot fertilities by higher order
polynomials (A\ < 0.1), the fertility estimates correlated
poorly (0.03 < r < 0.28) with the original residuals from
the two-way analysis of variance.

Greatest benefits (in terms of SED) from applying spatial
models arose in the analysis of plot means from Sturgeon and
Fraserdale, as expected (see Table 2). In Swastika, blocks
accounted for 25-29% of the total variation, and blocking
efficiency (BE) (i.e., the reduction factor of the residual
mean square due to blocking; Snedecor and Cochran 1971)
was much higher (BE = 11.5) than on the two other sites
(BE < 1.12). By ignoring blocks in Swastika, most spatial
models performed (in terms of SED) less well than the
randomized block model.



Can. J. For. Res. Downloaded from www.nrcr&arcgf)rees.com by Natural Resources Canada on 05/14/18

542 CAN. J. FOR. RES. VOL. 20, 1990

TABLE 2. Spatial (p) and partial spatial (¢) autocorrelation of tree height plot residuals from a two-way analysis of variance

Sturgeon Swastika Fraserdale
Age
(years) p ) Ps b, o2 Py [27) p3 b, (o P ) D3 b, (o
North-south 0.26* 0.10 0.09 0.04 0.06 0.18* —0.05 0.11 0.09 0.09 0.27* 0.15 0.04 0.08 —-0.02
0.33* 0.19* 0.12 0.09 0.04 0.19* —0.09 —-0.14 -0.13 —-0.10 0.29* 0.17* 0.06 0.09 -0.01
0.36* 0.23* 0.20* 0.12. 0.10 0.21* -0.11 —-0.02 —0.16* 0.04 0.39* 0.20* 0.04 0.10 —0.06

East-west 0.22* 0.12 0.03 0.08 —0.12 0.0l
0.40* 0.22* 0.07 0.07 —-0.05 —0.01
Total 0.24* 0.11 0.05 0.06 0.01 0.10

0.31* 0.19* 0.08 0.10 —0.01 0.10

6
7
8
6
7 0.30* 0.18* 0.06 0.10 —0.02 0.01
8
6
7
8 0.38* 0.22* 0.13 0.09 0.02 0.10

-0.00 0.03 0.00 0.03 0.24* —0.11
0.04 0.06 0.04 0.06 0.19* —0.10
-0.06 0.12 -0.06 0.12 0.27* —-0.11

—-0.03 -0.04 -0.04
-0.02 -0.04 -0.01 0.06 0.24* 0.04
-0.09 0.05 -0.10 0.07 0.30* 0.05

—-0.04 -0.18 0.04
-0.09 -0.14 -0.04
-0.07 -0.19 -0.02

-0.03 0.25* 0.03 0.01 -0.04 0.01
-0.01 -0.02 -0.02
-0.01 -0.04 -0.01

Note: Computation and significance (p = 0.05) testing of p and ¢ followed formulae given by, for example,Anderson 1976, Cliff and Ord 1981. Order (lag) of correlations

is indicated by subscripts.
*Significant at the 5% risk level (or lower).

Four models (first difference extended with errors-in-
variable (4), yield interference model (5), moving block aver-
age or Papadakis (6), and the first-order autoregression
model (8)) provided attractive reductions of SED at Sturgeon
and Fraserdale. Henceforth, only these four models applied
to the analysis of Sturgeon and Fraserdale plot means will
be dealt with. The modified Papadakis model (7), the
second-order autoregression model (9), and the moving-
average model (10) have proven their effectiveness in other
trials, but the patchy character of microsites in the present
study rendered them less efficient.

Adjustments of spatial effects led to estimates of family
means different from those arising from an ordinary least-
squares analysis of a randomized block design (model 0).
A quantification of these differences is provided in Table 4.
Analysis with models 4, 6, or 8 leads to an average 2.3%
adjustment of family means in Sturgeon and 3.7% in
Fraserdale. The yield interference model (5) resulted in about
one-half of these adjustments. From the underlying simi-
larities of the models, one could have expected the yield
interference model to conform with models 4, 6, and 8.

In Sturgeon, all adjustments were below 10%, whereas
up to 16% of the families received an adjustment of more
than 10% in Fraserdale. The majority of families were only
marginally adjusted (<3%). Compared with an average
standard error of a family mean difference of approximately
9% in Sturgeon and 11% in Fraserdale, most adjustments
should be considered trivial. Significant differences (#-test
at the 5% risk level) among families increased as a result
of spatial adjustments (Table 4). Compared with the number
of significant differences claimed with ordinary randomized
block design analysis, 30-40% more were claimed follow-
ing a spatial analysis, with the first difference extended with
the errors-in-variables model. A more modest increase of
4-20% followed from application of model 5 (yield inter-
ference), 6 (moving average), or 8 (autoregressive scheme).
Spatially adjusted and nonadjusted family means of total
tree height were strongly correlated (Table 5), but the
correlation decreased with age. Similar results were obtained
with height increments. This decrease reflects the cumulative
nature of tree growth, and hence a buildup of bias due to
environmental covariances.

When family means were averaged by provenance cross,
the influence of spatial adjustments almost disappeared

(adjustments of cross means < 1%). Robustness at this level
was due to the effective sampling of microsites within each
replicate (4-6 plots per cross).

Family variances and estimated family heritabilities were
model dependent (Table 6). The first difference extended
with errors-in-variables method increased the variance and
heritability estimates, in most cases, by more than 10%;
results with models 5-7 generally deflated both family
variances and heritabilities. A single model (model 8, for
example) could produce estimates that (depending on site
and year) were either above or below estimates from a ran-
domized block design. Without the nested design structure
(families in crosses), the effect of spatial adjustments on
genetic (family) variance components would have been a
predictable increase, inasmuch as the treatment mean
squares generally increased at the expense of the error mean
squares. Normally, this would also translate into a slightly
higher family repeatability.

Discussion

The applications and comparisons of spatial models pre-
sented were limited to the common situation in which there
has been no mapping of soil properties, surface vegetation,
or topography (contours). Such auxiliary data would have
permitted formulation of biologically realistic models of the
spatial processes, for example, by using response surfaces
of physical attributes as covariates (Khuri and Cornell 1987).
Alternatively, a systematic dispersion of check plots across
the field test area would also generate a simple basis for
adjusting for within-block site heterogeneities (Lin and
Poushinsky 1983; Yates 1937).

Results obtained with various spatial models and trees
averaging 3 m or less indicated that competition effects in
the three experiments were negligible (effect-interference
models performed poorly) and that local trends in environ-
mental gradients outweighed large-scale patterns in both the
Sturgeon and Fraserdale data. The failure of least-squares
smoothing to fit a simple response surface supports this
contention.

The benefits of a 20% reduction in error mean squares
and of an increase in the number of significant treatment
differences achieved by using spatial methods seem to
justify, once more, the additional analytical work (Wright
1978). Advances in matrix orientated software packages and
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TABLE 4. Relative frequency adjustments (sign ignored) of family means by various spatial models relative to estimates
from a randomized block analysis

Adjustment (rounded to nearest 2%)

Age Significance
(years) 0% 2% 4%, 6% 8% 10% 12% 14% 16%  Avg. (%) ratio”?

Sturgeon

6 21 69 53 31 22 O 2 O 2 O 23 1.0 1.2 1.0

19 28 52 52 24 14 S 6 0 0 24 2.2 1.0 1.0

7 21 62 47 35 28 3 3 0 1 0 2.4 1.1 1.2 1.0

19 22 52 47 21 26 8§ 3 0 2 25 24 1.0 1.0

8 28 64 40 33 28 3 2 0 2 0 2.3 1.1 1.2 1.1

26 28 45 47 19 19 10 5 0 1 2.4 22 1.0 1.1
Fraserdale

6 21 53 45 41 12 6 8 0 8 0 6 0 00 00 0O 3.2 1.3 1.4 1.1

16 22 39 29 23 21 14 12 2 10 4 4 22 00 00 34 3.7 1.0 1.2

7 25 47 29 41 22 12 2 0 8 0 100 20 20 00 39 1.5 1.3 1.1

10 27 43 22 16 21 23 10 2 10 4 6 22 02 00O 3.7 3.9 1.0 1.1

8 22 35 29 53 27 10 6 2 8 0 20 6 0 00 00O 3.7 1.8 1.3 1.2

18 14 29 27 27 33 18 12 2 4 4 4 22 02 0 2 3.6 4.2 1.0 1.0

Note: Each cell displays the results from four models (4 and 5, top line, and 6 and 8, bottom line),
“Ratio of the number of significant family differences in models 4, 5, 6, and 8 to that of the randomized block design analysis.

TABLE 5. Spearman’s rank correlation between ordinary
least-squares estimates of family means and spatially
adjusted estimates

Age
(years) Modeld ModelS Model 6 Model 8

Sturgeon

6 0.91 0.99 0.92 0.93

7 0.88 0.98 0.88 0.88

8 0.86 0.98 0.87 0.88
Fraserdale

6 0.92 0.99 0.92 0.90

7 0.88 0.99 0.88 0.87

8 0.84 0.97 0.86 0.33

Note: No. of families = 50 in Sturgeon and 49 in Fraserdale. All
coefficients are highly significant (risk level 1% or lower).

the power of today’s computers have drastically reduced the
cost and time involved in spatial analyses. A point may soon
be reached where spatial analyses of balanced data will
barely be more demanding than the generalized least-squares
methods. However, severe limitations are expected to persist
in the case of unbalanced data (Green et al. 1985).

Results from the three sites confirmed that spatial adjust-
ments of treatment effects in many cases amount to no more
than a few percentage points (Besag and Kempton 1986;
Correll and Anderson 1983; Wright 1978). It was also shown
that the impact of adjustments on the ranking of effects,
although modest at first, tends to increase over time. Our
nested design with four to six full-sib families per prove-
nance cross were enough to sharply reduce the effects of
within-replicate heterogeneity. All conclusions reached in a
previous paper (Magnussen and Yeatman 1988) about the
performance of provenance hybrids are, therefore, unaffected
by spatial adjustments.

Variance components and heritability estimates in the
nested design revealed no consistent effect of spatial
adjustments. Further evidence is of course needed, but the
implication may well be that classical estimation procedures

of variance components and heritabilities in nested designs
are fairly robust against the influence of spatial heterogen-
eity. It is not possible to reconcile the different trends in
family variances and heritabilities with the underlying
assumptions of the respective models. Without a justified
model preference, we are not able to conclude whether these
estimates have been deflated by environmental interactions.

A direct comparison of the various analytical models
described in this paper is difficult, inasmuch as they pro-
ceed from many different statistical principles with explicit
assumptions about associated covariance structures (Cliff
and Ord 1981). Model preferences may (but ought not to)
change from trial to trial and may even, as already discussed,
change between growth phases (pre- and post-canopy
closure). In trials with simple environmental trends, the least-
squares smoothing appears very promising by giving maxi-
mum separation on trends and treatment effects (if the
model is valid) (Green et al. 1985). Justification of a par-
ticular model for general application appears impossible.
Unless some spatial methods are clearly superior, there is
no reason to lightly discard classical methods. Results from
the Swastika site stressed this point.

Future analyses of tree heights on the same three sites may
very well show that both competition and local fertility
trends have become important factors. Hence, an extension
of Besag’s yield interference model (5) to incude competi-
tion (Besag and Kempton 1986) or the extended Papadakis
method (7) may prove more efficient than current models.

All models and effect estimates have been based on plot
means because the trials focus on family means within
various provenance combinations (Magnussen and Yeatman
1988). Often, however, unbiased estimates are also needed
at the single tree level to calculate individual tree heritabilities
and variance components. Unfortunately, the computer
resources needed to estimate the parameters in a spatial
model increase with the cube of the number of trees in the
experiments. With, say, more than 1000 trees per experi-
ment, which is common in forestry, the work-space require-
ments exceed easily what is available in all but the largest
mainframes. Cumbersome matrix inversion algorithms are
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TABLE 6. Average within-cross family variance components (of) and family
heritability (h?) of tree height (cm)

Model 0° Model 4 Model 5 Model6 Model 8
Age
(years) ol hi o h o} h} e K} o} h?
Sturgeon
6 100 (70) 100 (0.53) 137 121 8 94 93 96 107 104
7 100 (136) 100(0.58) 108 109 76 93 76 90 93 98
8 100 (241) 100 (0.56) 110 111 70 88 72 89 81 93
Fraserdale
6 100 (47) 100 (0.51) 119 118 66 8 81 98 109 108
7 100 (70) 100 (0.45) 100 100 106 113 59 82 111 133
8 100 (77) 100 (0.35) 113 126 43 57 51 74 73 89

“Numbers in parentheses represent ordinary least-squares estimates that have been equated 1o 100.
Estimates from models 4, 5, 6, and 8 are relative to 100.

required to circumvent the problem and to obtain the model
parameter solutions. (Kendall et al. 1983). In such situations,
the moving-average technique originally suggested by
Papadakis in 1937 (see Papadakis 1984 for further details
and references) and promoted by Wright (1978) becomes
very attractive because it applies equally well at the plot level
and at the individual tree level without extensive computa-
tional requirements. However, if adjustments of spatial
covariances reduce the genetic effect to the same degree as
they reduce environmental variance, little is gained by this
additional analytical effort. Simulation studies (Magnussen
1989a; Ripley 1987) are clearly needed to improve our anal-
ysis of spatial processes.

Conclusions

Strong spatial covariances among neighbouring observa-
tions in forest field trials are quite common. Hence, special
efforts are needed to reduce the loss in precision of estimated
treatment effects that such covariances introduce. Carefully
planned and laid out experiments, with emphasis on homo-
geneous blocks and intensive site preparation, may greatly
reduce the problems of spatial covariances. Although anal-
ysis with spatial process models may reduce the significant
differences among treatment means by a substantial amount,
the lack of a cause and effect hypothesis necessitates model
searching and does not guarantee true estimates. To choose
a correct model, it must be known whether spatial patterns
arise from physical realities and whether the nature of the
observed process is stochastic (random), deterministic, or
a mix of both. In trials with forest trees, the experimenter
may succumb to the general everything affects everything
perception, which makes the problem intractable and the
choice of model left to chance. Even the best scientific judg-
ment and scrutiny of assumptions cannot legitimately convert
a data-analytical reality into a spatial effect, because we are
still dealing with theoretical parameters in theoretical models
and not real biological processes.

Model formulation and choice are major problems in
forest-genetics trials because of their dichotomy of genetic
and environmental values (Falconer 1981) and also because
spatial patterns are frequently here and now measures
derived from the data itself. A lot depends on how genotypes
were allocated, and also on the reliability of the so-called
environmental residuals. Instinctive prejudice against spatial
adjustments has been promoted by these shortcomings.

Meanwhile, the fact that randomization alone does not pre-
vent the experimenter from obtaining spurious results, and
the intuitive appeal of using all relevant information, points
towards the use of neighbour analysis as an ancillary
explorative tool rather than as a routine.

Spatial neighbour analysis will never assure a complete
elimination of spatial covariances, because the pattern of
microsite variation is often so arbitrary that it is difficult
to adjust for them completely (predicted patterns can be
dealt with in the design phase). The Sturgeon and Fraserdale
sites are cases in point. It should also be stressed that it is
impossible to demonstrate that adjusted treatment effects
are closer to their true values, because the relative perfor-
mance of a treatment cannot be separated from its environ-
ment. However, Monte-Carlo simulations based on data
from uniformity trials give some indication of the validity
of spatial (neighbour) adjustment procedures (Wilkinson
et al. 1983).

Spatial correlation of plot yields (adjusted for treatment
effects) are poor guides for model choice. For example, if
neighbouring plot values were locally negatively correlated
due to competition, but because of large-scale spatial het-
erogeneity, neighbours were still positively correlated over
the experiment as a whole, the adjustments would achieve
precisely the opposite of what is required. The lack of a ran-
domization theory can be explained as follows: if treatment
comparisons are statistically biased by trend effects, then
the bias will depend upon the actual positions of the
treatments in the field; hence the whole realized design
serves, in a model-dependent way, as ancillary information.
Spatial analysis without auxiliary physical or biological
information may, for the above given reasons, simply con-
clude that more site data are needed before valid conclu-
sions can be reached from the actual field trial. This alone
may fully justify the additional work associated with spatial
process analysis.
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