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Abstract

In the computer analysis of high spatial resolution multispectral aerial images for forest inven-
tory purposes, it may be more useful to deal with individual tree crowns as the "objects" of our analysis 
than with forest stands or individual pixels. Starting from this tenet, it becomes important to be able to 
spectrally define these tree crowns as succinctly as possible. This paper proposes, describes, and 
compares seven different ways that tree crowns in high spatial resolution aerial images can be spectral-
ly defined for species classification. 

In testing these seven types of multispectral signatures , it was found that five led to relatively 
similar classification accuracies (72 ± 3%) in differentiating five coniferous species. Additional 
classification accuracy improvements (to 76%) were possible with some of the signatures by using 
Canonical Analysis prior to classification. The "tree colour line"-based signatures, a newly introduced 
approach, gave comparable results to simpler signatures such as those based on the mean multispectral 
value of tree crowns. Red pine (Pinus resinosa Ait) crowns were consistently hard to separate spectral-
ly from other species, whereas black spruce (Picea mariana (Mill.) B.S.P.) crowns were consistently 
easy to distinguish. 

Résumé

Lors de l’analyse par ordinateur d’images aériennes multispectrales de haute définition ayant 
pour but l’inventaire forestier, il pourrait être plus pratique d’utiliser les cimes d’arbre comme objets 
de notre analyse plutôt que les peuplements forestiers ou les simples pixels. En partant de cette 
proposition, il devient important d’être capable de définir spectralement ces cimes le plus 
succinctement possible. Cet article propose, décrit et compare sept manières différentes de définir 
spectralement des cimes d’arbre provenant d’images aériennes de haute résolution spatiale dans le but 
d’identifier leurs espèces forestières.

Parmis les sept types de signatures spectrales testés, cinq menèrent à des exactitudes de 
classification  du même ordre (72 ± 3%) en différentiant cinq espèces de conifères. Une amélioration 
de l’exactitude de classification (jusqu’à 76%) fut rendu possible pour certainnes signatures en 
utilisant une procédure d’analyse canonique avant la classification. Les signatures basées sur la "ligne 
de couleur des arbres", une approche nouvelle, ont donnés des résultats comparable aux signatures 
plus simples telles que celles basées sur la valeur multispectrale moyenne des cimes d’arbres. Les 
cimes de pin rouge (Pinus resinosa Ait) furent uniformément difficile à séparer spectrallement des 
autres espèces, alors que celles d’épinette noire (Picea mariana (Mill.) B.S.P.) furent uniformément 
facile. 
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Introduction

The availability of high quality georeferenced digital aerial images such as those produced by 
the Multi-detector Electro-optical Imaging Scanner (MEIS) (McColl et al., 1983) presents an opportu-
nity  to reevaluate the use of digital remote sensing in forestry. Indeed, when subjected to standardized 
enhancements and used in the context of computer-assisted on-screen image interpretation, such 
images are likely to permanently change the ways in which forest inventories are done (Leckie, 1990). 
The easy integration of these images and their georeferenced interpretations with the Geographic 
Information Systems on which most modern inventories now reside should provide substantial 
productivity gains over the conventional ways of interpreting aerial photographs. However, the full 
potential of digital aerial images will only be realized when most of the analysis can be done by 
computers.

Although forest damage assessments (e.g., spruce budworm damage) are most likely to be 
carried out with MEIS images having spatial resolutions of about 5-10 m/pixel,  it is expected that 
forest management inventories will be done at the high spatial resolution of about 30-70 cm/pixel 
(Strome et al., 1989). At that resolution, it becomes conceivable to think in terms of automatically 
isolating individual tree crowns and, then, of distinguishing species by various semi-automatic classi-
fication approaches (Gougeon ,1993). For some situations, such as intensively managed, special 
purpose, and small privately owned forests, the individual tree inventory may be the desired final 
product. However,  for the naturally mixed large Canadian forests, the crowns would later be 
regrouped to form the familiar forest stands prevalent in Canadian inventories (Eldridge and Edwards, 
1993). It is likely that semi-automatic inventories of sufficient precision can only be achieved using 
such high resolution data and these intermediate steps of crown isolation and species identification on 
an individual tree basis.

The "traditional" classifiers found in the digital remote sensing field (i.e., those available in 
most commercial remote sensing image analysis packages) and most subsequent improvements were 
developed essentially to analyse low resolution satellite images (10-80 m/pixel). They typically use a 
pixel-based approach to image classification that is not very useful for classifying higher spatial reso-
lution data (Trietz et al., 1985; Marceau 1991). Their basic assumptions of pixel independence and 
signatures based on normal distributions of pixel multispectral values break down at higher spatial 
resolutions (Crane et al., 1972). This paper addresses the need for new multispectral classification 
approaches where individual tree crowns, rather than pixels, are the objects to parameterise and 
classify. Following the same philosophy, some classification approaches based explicitly on texture, 
structure, and context (Woodham and Pollack, pers. comm.), and others using these criteria only 
implicitly in Artificial Neural Networks (Pinz and Bischof,1990; Zaremba et al., 1993) are being 
planned or developed . All of this work could possibly lead to a knowledge-based system that would  
identify the species of individual tree crowns by accumulating evidence from all of these domains  
(Gougeon, 1993; Pinz et  al., 1993; Murtha 1993).

Individual Tree Data

The automatic isolation of individual tree crowns in high resolution aerial images, including  
digitized aerial photographs, is already at a point where the availability of data packets (or records) 
containing only the multispectral image data from the crown of single trees is possible (Pinz, 1991; 
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Gougeon, 1993). However, in order to avoid the introduction of possible bias to our results, this work 
uses individual tree crowns delineated by hand from two radiometrically corrected high resolution 
MEIS image strips. These two long strips (16 and 30 thousand lines, 1024 pixels/line) of MEIS-II data 
were acquired from an altitude of 1700 feet ( 520 metres) on August 16, 1988, over an area of the 
Petawawa National  Forestry Institute near Chalk River, Ontario (46°0′ North, 77°25′ West). These 36 
cm per pixel images were captured in six spectral bands (centred at 449, 548, 640, 675, 873, and 1017 
nm), but the sixth band was not used due to poor quality. View angle effects were alleviated using an 
empirical process in which sample areas are used to produce a correction curve as described in Leckie 
(1987). A section of one of the strips is shown in Figure 1.

From these data, the crowns of 50 trees of each of five coniferous species, black spruce (Picea 
mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), red pine (Pinus resinosa Ait.), white pine 
(Pinus strobus L.), and white spruce (Picea glauca (Moench) Voss) were manually delineated on the 
screen. The multispectral values of the pixel contained in each crown were made available to generate 
various types of signatures (see next section) for classification purposes. The tree species were 
ascertained both in aerial photographs acquired simultaneously with the digital data and on the ground. 
Very detailed information is available on each tree because the same data set was also used for a study 
assessing on-screen interpretation capabilities (Leckie 1993). Two typical tree crowns and their manu-
ally delineated contours are shown in Figure 2. Also typical, is the fact that a significant  part of the 
red pine crown is in the shade. This usually complicates matters for most classification processes. 
Figure 1 and 2, and the tree crown dimensions found in Table 1 may be sufficient to give the reader a 
sense of the spatial scale in which the various classification approaches will have to perform. 

Multispectral Signature Types

When using individual tree crowns as objects to be spectrally classified for species 
identification, it is important to find significant crown-based multispectral parameters to use as 
signatures.  In this context, it should be kept in mind that in practice classifiers can exhibit poorer 
results when too many parameters or dimensions are considered and that, in such cases, more samples 
are needed to get statistically significant signatures. Considering the limited amount of data (pixels) 
available for some tree crowns (see Table 1), it is imperative to find parsimonious indices with 
sufficient discriminating power.

The first three such indices (signatures) examined in this paper are: the mean multispectral 
value (a vector of size "n", for n bands) of all pixels contained in a tree crown (labelled: ave_sign), the 
mean multispectral value of pixels found only on the well lit parts of a tree crown (lit_sign), and the 
multispectral value of the most brilliant pixel of the tree crown, often corresponding to the tree top for 
conifers (tt_sign). Used in maximum likelihood classifiers, these signatures have been moderately 
successful for species recognition on medium resolution (1.2m/pixel) MEIS images (Gougeon and 
Moore, 1989) and for single tree defoliation assessments (Leckie et al., 1992). Using the overall mean 
of a tree crown intuitively makes sense as it simulates the integration process that goes on when lower 
spatial resolution data are used, with the added benefit of ensuring that areas outside of a tree crown 
are not corrupting its signature. However, since whole crown multispectral distributions may exhibit 
bimodal tendencies related to their lit and shaded parts, such means can be strongly influenced by the 
proportions of pixels in each category. Using the mean vector from only the well lit parts of the crown 
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should alleviate this problem and bring further improvements. Here, the lit parts are empirically  
defined as all the pixels with values in the near infrared band above the mean value of that band, a 
simple yet conservative approach. Finally, because some shading causing variabilities is usually 
present even within the lit parts of tree crowns, the use of only the most brilliant pixel of each tree 
crown is intuitively appealing. This pixel may be less prone to this sort of noise and hence may be 
more representative of the species’ multispectral characteristics. Here, this pixel is defined as the one 
with the highest value in the near infrared channel.

In an effort to find other simple indices to parameterize tree crowns without being penalized 
by the relative proportions of lit to shaded areas, a technique has evolved which will be referred to as 
the "tree colour line" approach. This technique stemmed from viewing plots of all of the pixels 
comprising a tree crown in a multidimensional (mD) spectral space. In three dimensions (the highest 
dimensional space easily viewed), such a set of pixels typically takes on a cigar-shaped distribution. 
In multiple two dimensional views (see Figure 3), the patterns look like elongated ellipses. Such 
ellipses, or the multidimensional hyperellipse, can be represented at the simplest level of abstraction 
by a line. Each tree crown can thus be represented by its own "tree colour line" and, if we assume that 
species are recognizable by their inherent colours (i.e., specific light reflection and absorption charac-
teristics, bidirectional reflectance distribution function), such tree colour lines could be representative 
of their respective species.

The first tests of this approach were done using tree crown signatures consisting of the slopes 
and intercepts of the various colour lines generated when crown pixel values in each spectral band are 
plotted against that of the near infrared band (si_sign). This is referred to as the multiple 2D tree colour 
line approach where,  for n dimensions, each signature consists of n-1 slope and intercept values (see 
Figure 3). The next tests were done with the multidimensional tree colour lines as parameterized by 
the first eigenvector of the data found in each tree crown, anchored in multidimensional space by the 
mean value of that data (mpc1_sign). The eigenvector, or first principal component, gives only the 
main direction of spread of the data in mD space. To define a particular line in multidimensional 
space, this general direction needs to be situated precisely in space. The colour line could be defined 
by this direction and its intersection with n-1 axes, but it is more convenient, and mathematically 
equivalent, to use the mean vector to situate it precisely in space. Further tests were done by adding a 
way to parameterize the spread of data around that mD line (mpc1ev_sign). This was accomplished by 
adding the eigenvalues found for each of the principal directions to the previously defined signature.  
The first eigenvalue, proportional to the variance in the direction of the first principal component, is 
somehow representative of the tree colour line length. The other eigenvalues are proportional to the 
variances found in the direction of the other components, and are thus, by definition, orthogonal to 
each other.  They quantify the other dimensions of the hyperellipse formed by the data. A more 
conventional way to parameterize the spread of data in mD space is to use its mean value and its 
covariance matrix. However, because even at the high spatial resolution used (36 cm / pixel) there is 
only a limited number of pixels available for each tree (approx. 21-155 pixels/tree), we run the risk of 
underspecifying the covariance matrix. For this reason, only three spectral channels were used to 
generate these signatures (mcov_sign).

Classification Results 

Seven rounds of classifications were carried out, one for each of the seven types of signatures 
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described above (summarized in Table 2). In each round, the signatures were computed for each of the 
250 manually delineated tree crowns and, then, 10 classifications were run. For each classification, the 
tree crowns forming the training and the testing sets were selected at random with equal probability of 
belonging to one set or the other. This implies that on average, for each classification, there were about 
25 tree crowns of each species to train the classifier and about 25 to test the resulting classification. 
This approach was used in order to remove any selection bias. However, because any two such classi-
fications could lead to significantly different results, their overall accuracies sometimes varying by up 
to 22%, the confusion matrices resulting from averaging the results of 10 classifications from each 
round are presented. This reduces any selection effect and should lead to a good comparison and a 
satisfactory overall impression of the relative merits of each type of signatures.

The mean confusion matrices (or contingency tables) resulting from these seven rounds of 
classifications are shown in Tables 3 to 9. The non-diagonal elements correspond to the mean number 
of test tree crowns involved in errors of omission and commission. The diagonal elements correspond 
to the mean number of test tree crowns that were classified properly. They are divided by the average 
number of test trees of each species to get the average accuracy for each class. The mean total number 
of test trees is also given. The value in the bottom right corner corresponds to the mean average 
accuracy (AA) and the value labelled OA to the mean overall accuracy, with the range of overall 
accuracies just below. Here, the average accuracy of a classification is defined as the average of the 
species-specific accuracies, while the overall accuracy is defined as the ratio of correctly classified test 
tree crowns on the number of test tree crowns used to verify that classification. Looking from Table 3 
to 9, it is apparent that the classifications were rather well behaved, in that the matrices are essentially 
diagonal.

The mean confusion matrix from the first round of classifications which corresponds to the 
signatures based on the tree crown’s mean spectral values is shown in Table 3. Least correctly 
classified is red pine (50.8%) with a value significantly less than other species, which have between 
70% and 90% correct classification. The poor differentiation of red pine brings the mean overall 
classification accuracy down to 73.6% from what would otherwise be in the realm of 80%. Red pine 
is mostly confused with jack pine, to the point that about 35% (9.1/25.9) of the red pine is classified 
as jack pine. Conversely, about 15% (3.7/23.8) of the jack pine is labelled red pine. Other confusions 
in the range of 10-15% occur between white pine and white spruce, and some white spruce (11.7%) is 
classified as black spruce. Other species confusions are all below 10%, and some species (e.g., black 
spruce or jack pine with white pine) are never confused. This pattern of species separation seems to 
repeat itself, with minor variations, for all the other classification rounds (Tables 4-9) independent of 
the type of signatures being used.

Table 4, depicting results from the round of classifications using the mean spectral values from 
the well lit parts of crowns, follows essentially the above pattern. It differs only in that there is an 
increased amount of confusion between white spruce and red pine crowns (of the order of 11% 
compared to 6% in Table 3). It leads to a mean overall classification accuracy of 73.7%, with a range 
of 69.7 to 79.7% over 10 classifications. There is apparently no significant difference between classi-
fying the whole tree crown mean or the lit parts mean for the recognition of these species. In both 
cases, adding a vector containing the standard deviation of each channel to the mean spectral vector 
did not lead to any significant changes (results not shown here).

5



Table 5, representing results from classifications with the "tree top" signatures, exhibits poor 
species accuracies for red pine, white pine, and white spruce, for a mean overall accuracy of only 
64.2%. This poor result is mainly attributed to the significant mutual confusion between red pine and 
white pine and also to a noticeable number of white spruce trees being judged as jack pine. Weakness-
es present with the two previous signature types were also manifest with this type of signature. Hence, 
this type of signature, one of the easiest to implement on conventional systems designed for satellite 
image analysis, leads to significantly poorer results than the previous two.

Table 6 gives the results of the first of the "tree colour line" approaches. It displays a better  
performance (71.7%) than the "tree top" approach, but one that is no better than the two first signature 
types. Confusions of the order of 25% and 15% are noticeable between red pine and jack pine, and, 
white pine and white spruce, respectively. Red pine, which has been consistently the most difficult  
species to recognize so far, seems to have improved its accuracy by about 12 to 23 percentage points 
(pp1), although there are more errors of commission of other species to red pine (double that of the first 
two approaches). The white pine and jack pine mean species accuracies ( 72.3 and 64.6 , respectively) 
are significantly lower than with the first two types of signatures, by 9 and 14 pp respectively.  Also, 
the range of overall accuracies obtained by the 10 classifications in this round increased from about 10 
pp in the first two rounds to about 16 pp. 

Footnote 1: Percentage points, abreviated "pp", are use here to remove some confusion when compar-
ing classification results. For example, a classification accuracy improvement from 72% to 76% is not  
an improvement of 4% as is often casually said, but one of 4 pp. It actually is an improvement of 5.6% 
( (76 - 72) × 100 / 72). Using pourcentage points allow the reader to more readily verify the classifica-
tion results and comparisons discussed here.

Table 7, representing the simplest multidimensional implementation of the "tree colour line" 
approach, shows accuracies quite close to the better of the more conventional signature types (i.e., 
ave_sign and lit_sign). Although its mean overall accuracy is a comparable (72.8% vs. 73.6% and 
73.7%),  this approach is the least consistent, as illustrated by the big range of classification accuracies 
obtained (64.0 to 86.2, a range of about 22 pp). Compared to the previous signature type, which was a 
cruder implementation of the "tree colour line" approach, the apparent gain in red pine recognition 
experienced there disappeared, but so have the errors of commission to red pine. In general, red pine 
recognition is as poor as with most of the other signature types and the overall species confusion 
patterns are the same. 

Table 8 gives the results of applying signatures based on the multidimensional tree colour line 
when the variance around the line is also taken into account. It shows a slightly weaker mean overall 
accuracy (69.3%) than with the previous less defined colour line approach. This is attributed to the fact 
that even though the red pine accuracy is a bit higher ( and somehow compensated by a decline in 
white spruce accuracy), white pine accuracy is lower by about 10 pp. There is in fact a noticeable 
confusion increase between red and white pine, implying that the addition of eigenvalues may be 
detrimental to their separability. Also, for the first time (except maybe with the weaker tree top signa-
tures), jack pine seems to get significantly confused with white spruce (about 11%). On the other hand, 
the addition of the eigenvalues seems to make classification results more stable than the previous 
approach, as implied by the much narrower range of classification accuracy variations (about 11 pp). 
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Table 9, which represents the use of a more conventional method (mean vector and covariance 
matrix) of parametrizing the spread of data in multidimensional space, exhibits patterns similar to the 
confusion matrices obtained with all the other signatures, except for red pine. In this case, that species 
is confused with jack pine and white pine to the point where wrong classifications exceed correct ones. 
The recognition of the other four species is comparable to that of the other signatures, with black 
spruce recognition being slightly lower than average and jack pine slightly higher. The possible poor 
classification results due to sparsely populated covariance matrices (even with only three spectral 
bands) did not materialise, at least not in an obvious way. They should have been more prevalent with 
black spruce and white spruce crowns, which on average are made of only 21 and 27 pixels, 
respectively.

Discussion

The comparison of seven types of multispectral signatures for species  classification of individ-
ual tree crowns delineated on high spatial resolution aerial images shows that:

a) there is a good selection of possible multispectral parameters (see Table 2) that can be 
extracted from tree crowns when these become the "objects" of interest in new classifi-
cation schemes (i.e., not pixel-based);

b) various multispectral signatures produced more or less the same results (see Table 10), 
with mean overall accuracies around 72 ± 3% (except for the "tt" and "mcov" 
signatures), while attempting to differentiate among the tree crowns of five conifer 
species;

c) the "tree top" signature approach, that worked well on medium resolution images (Gou-
geon and Moore, 1989) and is the easiest to implement as a procedure with existing 
commercial image analysis system, gave the poorest results with high spatial resolution 
images (64.2%);

d) red pine crowns seem to be consistently hard to separate spectrally from other species 
(with an average mean species accuracy of 48.2%), especially from jack pine crowns;

e) black spruce crowns are consistently well separated from the other four coniferous 
species with an average mean species accuracy of 88.9%;

f) some types of signatures bring significant confusion between red pine and white pine 
crowns;

g) there is always 10-15% of confusion between white pine and white spruce crowns,
h) for most signature types, the confusion between jack pine and white pine or white 

spruce crowns is minimal (< 10%); and finally,
i)  if one was to dispense red pine crowns from the classification process the overall accu-

racies with most of these classification schemes could be of the order of 75-80% for four 
conifer species.

In general, the results for signatures based on the "tree colour line" approach were not 
significantly different, at least not in differentiating the five coniferous species used here. Simple 
signatures, such as the mean multispectral value of a tree crown (ave_sign), appear to fare just as well. 
The logical progression from using just the crown mean, to using the mean plus the eigenvector 
parametrizing the colour line direction, to using the mean and the eigenvector plus eigenvalues param-
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etrizing the spread around the colour line, did not lead to increased classification accuracies. On the 
other hand, parameterising the spread of tree crown pixels in multidimensional space with the tree 
colour line approach is significantly better than using a more conventional covariance matrix. 

An interesting aspect of the present comparative study, and one that is rarely found in the 
remote sensing literature, is repeatability. Redoing every classification 10 times with different training 
and testing sets demonstrates that rather large variations in overall accuracies, up to 22 pp, are 
possible, making any non-replicated comparison of classification scheme performances dubious. 

Canonical Analysis

A feature compression scheme based on Canonical Analysis (CA) (Jenson and Waltz, 1979) 
was used to further investigate two aspects of the classification scheme comparison: a) the lack of 
reflection in the results of the increasing definition of the tree crown multispectral characteristics 
available from some of the signatures and, b) the possibly of alleviating the higher spread of classifica-
tion accuracy results found with the more complex signatures. Because in practice classifiers often 
produce poorer results in high dimensionality spaces, a dimension reduction scheme such as CA may 
be beneficial to both aspects.

Canonical analysis leads to the same dimensionality reduction properties as the better known 
principal component transformation, but it takes into consideration inter- and intra-class distances 
before creating a better lower dimension separating space. In addition, CA components do not have to 
be orthogonal to each other like principal components. The canonical analysis is performed on the 
training data set and the resulting space reduction transformation is applied to the testing data set 
before its classification. Here, four CA components were used because the addition of a fifth 
component made little or no difference.

Using the same randomized selection of training and testing samples, another set of 70 classifi-
cations (ten for each of the seven signature types) were run with CA. Only the summary of the results 
is shown here (see Table 11). As expected, reducing the dimensionality of the signatures by canonical 
analysis did not significantly change the classification results with the simpler signatures, such as 
"ave", "lit", or "tt". However, it brought classification improvements to the signatures with higher 
dimensionality such as "si", "mpc1", "mpc1ev", and "mcov". On average, for the latter, classification 
results improved by 4.25 pp, although only the improvement with the "mpc1ev" signature is 
statistically significant. In addition, classification repeatability also improved as seen in the diminish-
ing classification accuracy ranges. Species-specific differentiating aspects, however,  remained 
essentially the same as in classifications without a priori canonical analysis.

Conclusions

In testing seven types of multispectral signatures for tree crown species identification in high 
spatial resolution MEIS images, it was found that five led to relatively similar results (72 ± 3%) while 
differentiating five coniferous species. Improved classification accuracy (to 76%) was shown to be 
possible with some of the signatures by using canonical analysis prior to classification. "Tree top" 
signatures, previously found to work well with medium resolution aerial images (1.2m/pixel) and the 
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easiest to implement with existing commercial image analysis software, performed significantly 
worse (64%) than any of the others at this higher spatial resolution (36 cm/pixel). The "tree colour 
line"-based signatures, a newly introduced approach, did not bring significant improvement over sim-
pler signatures such as those based on the mean multispectral value of tree crowns (76% vs 74%). Red 
pine crowns were consistently difficult to separate spectrally from other species (21- 67%), whereas 
black spruce was consistently the most successfully classified species (84 - 96%). Without red pine 
crowns, the overall accuracies with most of these classification schemes could be of the order of 
75-80% for four coniferous species. It is hoped that the addition of textural (structural) parameters will 
alleviate the red pine crown identification problem. The experiment should also be done with other 
MEIS images and other tree species. The testing of "tree colour line"-based signatures with hardwoods 
and the streamlining of automatic tree crown delineation with species recognition will be future 
concerns.
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Table 2
Types of multispectral signatures

Tree Average (ave_sign):
The mean multispectral value of all pixels contained in a tree crown, a vector of size "n", for n 
spectral bands (here, n = 5 ).
Average of Lit Parts (lit_sign):
The mean multispectral value of pixels found in the better lit parts of a tree crown. Here, the 
better lit parts of the crown are defined empirically as all pixels with values in the near-infrared 
band above the mean value of that band, a simple yet conservative approach.
Tree Top (tt_sign):
The multispectral value of the most brilliant pixel of the tree crown in the near infrared channel, 
often corresponding to an area near the tree top for conifers.
Slope & Intercept (si_sign):
Based on the "Tree Colour Line" approach, these signatures consist of the slopes and intercepts 
of the tree crown colour line as all the bands are compared with the near infrared band one by 
one (sometimes referred to as the "multiple 2D tree colour line approach").
Mean vector & first principal component (mpc1_sign):
The "Tree Colour Line" approach in multiple dimensions - the distribution of pixels for each 
tree crown is represented by its first eigenvector (its colour line direction) and its mean vector 
(to anchor the line in multidimensional space).
Mean vector & first principal component  & eigenvalues (mpc1ev_sign):
As above, but eigenvalues are added to describe the spread of the distribution in the various 
directions.
Mean and covariance matrix (mcov_sign):
The mean and covariance matrix of the distribution of pixels in multispectral space for each tree 
crown.

Table 1 
Tree crown average dimensions for 50 trees of each species.

Species Code Pixels / tree Estimated crown Estimated crown
area (m²)    diameter (m)

Black spruce BS   21 2.7 1.9
Jack pine JP   54 7.0 3.0
Red pine RP 120 15.6 4.5
White pine WP 155 20.1 5.1
White spruce WS   27 3.5 2.1
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Table 3
Mean results of 10 classifications with 

"Crown Average" signatures 

     Species BS* JP RP WP WS

BS 21.7 1.0 0.3 0.0 3.0

JP 0.6 18.7 9.1 0.0 0.1

RP 0.1 3.7 13.0 1.9 1.1

WP 0.0 0.0 1.9 19.5 3.5

WS 1.6 0.4 1.6 2.7 18.0

Mean no. 24.0 23.8 25.9 24.1 25.7 123.5
of trees 

Mean species 90.4 78.6 50.2 80.9 70.0  AA = 74.1
accuracies

  OA =  73.6%
  ( 68.3 - 77.6 )

Table 4 
Mean results of 10 classifications with 
"Crown Lit Parts Average" signatures

     Species BS JP RP WP WS

BS 23.4 1.5 0.0 0.0 1.9

JP 1.5 21.4 8.7 0.4 0.5

RP 0.0 2.2 14.0 1.2 2.7

WP 0.0 0.1 1.3 20.8 3.2

WS 1.6 1.3 2.9 3.1 16.1

Mean no. 26.5 26.5 26.9 25.5 24.4 129.8
 of trees
Mean species
accuracies 88.3 80.8 52.0 81.6 66.0  AA = 73.7

 OA = 73.7 %
  ( 69.7 - 79.7 )

*  See Table 1 for  
the meaning of 
species code
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Table 5
Mean results of 10 classifications with 

"Tree Top" signatures
 

     Species BS JP RP WP WS

BS 23.2 1.0 0..2 0.0 1.9

JP 0.5 19.0 6.8 1.2 2.5

RP 0.0 3.0 10.8 4.9 2.2

WP 0.0 0.0 5.9 15.2 5.2

WS 1.5 1.6 2.6 4.2 13.0

Mean no.
 of trees 25.2 24.6 26.3 25.5 24.8 126.4
Mean species
accuracies 92.1 77.2 41.1 59.6 52.4  AA = 64.5

  OA = 64.2%
  ( 53.9 - 70.3 )

Table 6
Mean results of 10 classifications with 

"Tree Colour Lines (Slope & Intercept)" signatures 

 
     Species BS JP RP WP WS

BS 20.3 1.9 0.0 0.0 1.2

JP 0.8 17.3 6.3 0.1 0.5

RP 0.0 6.6 16.4 3.1 2.6

WP 0.0 0.3 0.8 17.5 2.8

WS 2.1 0.7 2.1 3.5 18.2

Mean no.
of trees 23.2 26.8 25.6 24.2 25.3 125.1
Mean species
accuracies 87.5 64.6 64.1 72.3 71.9  AA = 72.1

  OA = 71.7 %
  (61.5 - 77.6 )
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Table 7
 Mean results of 10 classifications with 

"Tree Colour Line (PC1 and Mean)" signatures 

     Species BS JP RP WP WS

BS 23.4 1.6 0.1 0.4 1.3

JP 0.3 16.1 7.6 0.3 0.3

RP 0.1 4.9 13.0 2.4 2.3

WP 0.2 0.6 1.2 16.9 2.3

WS 1.8 0.9 2.7 2.3 20.0

Mean # of 25.8 24.1 24.6 22.3 26.2 123.0
   tress
Mean species
accuracies 90.7 66.8 52.8 75.8 73.3  AA = 71.9

 OA = 72.8 %
  ( 64.0 - 86.2 )
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Table  8
Mean results of 10 classifications with 

"Crown Mean, First PC & Eigenvalues" signatures

     Species BS JP RP WP WS

BS 24.1 2.2 0.1 0.0 1.4

JP 1.1 16.7 4.2 1.3 2.5

RP 0.3 3.1 14.7 5.3 1.7

WP 0.0 0.5 4.8 16.1 1.8

WS 1.5 2.9 2.7 1.9 16.6

Mean # of 27.0 25.4 26.5 24.6 24.0 127.5
     trees
Mean species
accuracies 89.3 65.75 55.5 65.5 69.2  AA = 69.1

  OA = 69.3 %
  ( 63.6 - 74.1)

Table 9
Mean results of 10 classifications with

 "Crown Mean and Covariance  Matrix (3D)" signatures

     Species BS JP RP WP WS

BS 21.7 1.2 0.1 0.0 1.9

JP 0.9 19.2 8.5 1.3 2.2

RP 0.0 3.2 5.0 4.2 1.9

WP 0.3 0.6 6.3 18.5 2.1

WS 2.8 1.2 3.7 1.8 18.3

Mean # of 25.7 25.4 23.6 25.8 26.4 126.9
    trees
Mean species
accuracies 84.4 75.6 21.2 71.7 69.3  AA = 64.4

 OA = 65.3 %
  ( 60.2 - 69.4 )
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Table 10
Comparison of various multispectral classification schemes

for tree crowns individually delineated on high resolution (36 cm) MEIS images
(with 50 trees / species, 5 species, 10 classification runs / scheme).

Signature Mean Species Accuracies (MSA) Mean Overall
   Types   BS     JP     RP     WP     WS Accuracy (range)

ave_sign 90.4   78.6   50.2   80.9   70.0 73.6   (68.3 - 77.6) 
lit_sign 88.3   80.8   52.0   81.6   66.0 73.7   (69.7 - 79.7)
tt_sign 92.1   77.2   41.1   59.6   52.4 64.2   (53.9 - 70.3)
si_sign 87.5   64.6   64.1   72.3   71.9 71.7   (61.5 - 77.6)
mpc1_sign 90.7   66.8   52.8   75.8   73.3 72.8   (64.0 - 86.2)
mpc1ev_sign 89.3   65.8   55.5   65.5   69.2 69.3   (63.6 - 74.1)
mcov_sign 84.4   75.6   21.2   71.7   69.3 65.3   (60.2 - 69.4)

Average MSA 88.9   72.9   48.1   72.5   67.4 70.1

Table 11
Classification comparison of multispectral signatures (after a canonical transformation)

for tree crowns individually delineated on high resolution (36 cm) MEIS images
(with 50 trees / species, 5 species, 10 classification runs /  signature type).

Signature Mean Species Accuracies (MSA) Mean Overall
   Types   BS     JP     RP     WP     WS Accuracy (range)

ave_sign 90.6   74.4   54.9   69.3   68.1 71.9   (66.7 - 75.4) 
lit_sign 89.8   68.2   66.9   83.7   62.6 74.3   (70.7 - 78.0)
tt_sign 89.5   74.5   59.1   61.7   55.1 67.7   (56.9 - 74.8)
si_sign 85.8   71.3   65.7   80.0   63.4 73.3   (68.3 - 79.1)
mpc1_sign 93.8   71.5   57.9   83.5   72.0 76.4   (72.1 - 80.5)
mpc1ev_sign 95.7   70.0   64.3   80.0   70.3 76.2   (71.2 - 79.2)
mcov_sign 89.4   74.1   45.9   71.5   70.3 70.2   (65.1 - 78.1)

Average MSA 90.7   72.0   59.2   75.7   66.0 72.8
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Figure 1 - Representative section of one of the 36cm/pixel MEIS-II image strips acquired on
 August 16, 1988, over the Petawawa National Forestry Institute’s experimental forest.

Figure 2 - Two examples of the manually delineated crowns used to train
and test the various classification schemes.
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Figure 3 - The four 2-D tree colour lines obtained by fitting least squares lines to the crown’s pixel 
data in scattergrams of each spectral band versus the near infrared band (here, for a white pine).
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