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ABSTRACT

The theories that have been developed to account
for stem form are briefly described, and published
taper functions reviewed. A new taper function
for red pine (Pinus resinosa Ait.) plantation trees is
developed that allows for continuous variation in
form along the stem. Form is expressed by the
variable k in the relationship:

(d/D)* = (H - h)/(H - 1.30)

where D is the diameter at breast height (1.30 m),
H the total height of the tree, and d the diameter
at a height h on the stem. From stem analyses, es-
timates of k can be obtained at any point from
In[(H - h)/(H - 1.30)]/In(d/D). The relationship
between k and relative height and D/H ratio is
then calculated using standard regression
methods. The two models that appear to be the
most promising are:

k =248 - 1.540X° - 0.696(D/H) + 0.770X>.(D/H)

and k = 2.58 - 0.763(D/H) + 0.205X.(D/H)? - 0.244
(1/h)

where X = (H - h)/(H - 1.30). These models give
accurate and relatively unbiased estimates of stem
diameters that compare favourably with the es-
timates of the more complex Max-Burkhart seg-
mented polynomial function. The two
variable-form models give more accurate and less
biased estimates of stem volume than those ob-
tained using the Max-Burkhart model.

RESUME

Les théories qui ont été élaborées pour tenir com-
pte dela forme de la tige sont bri¢vement décrites,
et ’on passe en revue les fonctions de mesure du
défilement qu’on peut trouver dans la documen-
tation publiée. Une nouvelle fonction, valable
pour des arbres de plantations de pins rouges
(Pinus resinosa Ait.) est présentée; cette fonction
tient compte d'une variation continuelle de forme
lelong dela tige. La forme est exprimée parla vari-
able k dans I’équation suivante :

(d/D)X = (H-h)/(H-1,30)

ot D estle diametre a hauteur de poitrine (1,30 m),
H est la hauteur totale de I'arbre et d est le
diametre a une hauteur h, le long de la tige. Par
des analyses dela tige, on peut obtenir des estima-
tions de k & n'importe quel point en exprimant
I’équation comme suit : k = In[(H - h)/(H -
1,30)]/In(d /D). La relation entre k et la hauteur
relative et le rapport D/H est alors calculée au
moyen de méthodes de régression normales. Les
deux modeles qui semblent les plus prometteurs
sont les suivants :

k =2,48-1,540X° - 0,696(D/H) + 0,770X2.(D/H)

etk = 2,58 - 0,763(D/H) + 0,205X.(D/H)? - 0,244
(1/h)

ou X =(H-h)/(H-1,30). Ces modeles fournissent
des estimations précises et relativement non
biaisées des diametres de la tige, lesquelles se
comparent avantageusement avec les estimations
obtenues au moyen de la méthode plus complexe
faisantappel a la fonction polynomiale segmentée
de Max-Burkhart. Les deux modeles de
défilement de forme variable donnent des estima-
tions plus exactes et moins biaisées du volume de
la tige que celles obtenues avec le modele de Max-
Burkhart.



A VARIABLE-FORM TAPER
FUNCTION

INTRODUCTION

The topic of stem form and taper has been studied
by foresters for over one hundred years and, from
a survey of recent literature, still appears to be a
subject of high priority in forest research. There
are perhaps two reasons for this. First, no single
theory has been developed that adequately ex-
plains how stems vary in form, both within and
among trees. Thus, it has not been possible to
develop a satisfactory taper function that would
be uniformly acceptable over a wide range of con-
ditions. Second, and more important from a prac-
tical point of view, a taper function that can
accurately predict the diameter at any point on the
stem from one or two readily measured variables
is essential for estimating the volume of standing
trees and the construction of volume tables to dif-
ferent merchantable limits. Such equations will
also be useful for estimating the distribution of log
sizesby top diameter and length, information that
is needed for planning better manufacturing
facilities. Kilkki and Lappi (1987) note that taper
functions have increasingly replaced ordinary
volume tables for these purposes. Now that wood
shortages are occurring in Canada, and a greater
proportion of standing timber is being harvested
and converted to high-value products or used to
produce energy, the need for accurate volume es-
timation for planning purposes is very great. Also,
as the country moves into more intensive forest
management and begins to use wood from man-
made forests, existing volume functions and
tables that were based on information from un-
managed natural stands may no longer be ap-
propriate (see, for example, Amateis and Burkhart
1988a).

Four main theories have been developed to
account for the form of forest trees. These have
been described in some detail and discussed by
Larson (1963). The proponents of each of the
theories --- nutritional, water conduction,
mechanistic, and hormonal --- have each been able
to demonstrate that their particular theory is ap-
plicable. Thisindicates that, either each may beap-

plicable under certain conditions or, more probab-
ly, there are elements of each theory that hold true.
However, all theories agree on certain points:

(1) Above the region of butt swell, the greatest
taper occurs in that portion of the stem
within the live crown. Both ring width and
ring area increase with increase in distance
from the top of the stem, indicating that the
stem there is probably conical (or even
neiloidal) in form.

(2) The maximum growth in ring area occurs
near the base of the crown, and the mini-
mum at some point between the butt-swell
maximum and the base of the crown. Both
the minimum and maximum move up-
wards in dry years and downwards in ex-
cessively wet years.

(3)  Below the live crown, the rate of growth is
largely governed by the position of the tree
within the crown canopy. For free-growing
trees, the ring area may continue to increase
down the stem. For trees in the upper
canopy, ring area may remain constant so
that ring width will consequently decrease.
Both ring width and area decline down the
stem for suppressed trees.

(4)  Butt swell is very variable but appears to
have a support function.

(5)  The crown, particularly crown length (al-
though differences in crown length may be
offset by differences in crown width, crown
density, and needle persistence to some ex-
tent), plays a decisive role in determining
stem form.

Larson (1963) did not feel that the more
recently developed hormonal theory supplants
earlier theories but, rather, provides the
physiological basis for them. Kozlowski (1971)
stated that the formation of wood along the stem
is governed more by the physiology of the tree
than its strength requirements --- the fact that the
stem is also mechanically efficient may be for-
tuitous. However, under certain conditions, tree
stems are known to respond to stress with, for ex-
ample, the formation of compression or tension
wood.

Heger (1965) and Smith (1980) separated
radial growth along the stem into “earlywood"
and "latewood". Heger postulated that tempera-



ture was an important factor governing radial
growth and that differences in growth along the
stemmay be due to air temperature gradients. The
different shapes of the earlywood and latewood
layers reflect the respective spring and summer
environmental energy gradients. Smith found
that, for Douglas-fir (Pseudotsuga menziesii [Mirb.]
Franco), maximum growth of earlywood and
latewood occurred near the base of the full crown.

Most theories describe stem form in qualita-
tive terms. It is only the mechanistic theory, large-
ly developed by Metzger (Busgen and Munch
1929) and subsequently modified by Gray (1956),
that attempts to develop a functional relationship
between stem diameter and height. Because he
postulated that wood formation in the stem was
governed by its requirement for strength, Metzger
described the stem as a beamof uniform resistance
to bending (particularly to forces brought about
by wind), with one end fastened in the soil. Such
abeam would have the form of a cubic paraboloid.
He was able to show that, below the centre of
gravity of the crown, diameter cubed plotted on
height was more or less a straight line. Gray (1956)
claimed that, as the stem was not held rigidly at
its base, the cubic paraboloidal form represented
an overexpenditure of material for the strength re-
quirements of the stem. A quadratic paraboloidal
form, in which diameter squared was linearly cor-
related with height, would be more efficient.
Newnham (1965) found that this relationship held
well for that portion of the stem between 15 and
80 per cent of the total height and used it to study
the variation in taper with age and thinning
regime in coniferous species. It should be noted
that two of the most commonly used formulae for
calculating log volumes (those of Smalian and
Huber) assume that the stem has the form of a
quadratic paraboloid.

DEFINITIONS

For tree stems, the terms "taper" and "form" are
often used interchangeably in the literature.
However, in this report they will have the follow-
ing specific meanings:

Taper. The rate of decrease in diameter with
increase in height up the stem.

Form. The geometric shape of the tree stern.
Tree stems have often been considered to be
comprised of three sections: a conical top sec-
tion, a paraboloidal section below the live
crown, and a neiloidal butt section. In this
report, stem form is considered to vary con-
tinuously along the stem and is expressed by
the variable k. The following definitions for
variables are used through the remainder of
this report:

Y = relative diameter d/D

X = relative height, (H - h)/(H - 1.30)
Z=h/H

D = diameter at breast height -- DBH (1.30 m)
H = total height

h = height above ground level

d = diameter at height h

b; = constants

Diameters may be measured either inside or
outside bark -- outside bark measurements are
used for the analyses of the black spruce and red
pine data that are described later in this report.
Other variables are defined as required.

REVIEW OF EXISTING TAPER
FUNCTIONS

While physiologists have been attempting to dis-
cover a satisfactory theory for stem form, men-
surationists have striven to develop mathematical
functions that would describe the profile of the
stem from the ground to the tip. Early efforts
produced relatively simple formulae, e.g. that of
Hojer (Husch 1963):

A commonly used formula in North America was
that of Behre (1923):

Y =X/ (by + b, X)

These early formulae gave satisfactory fits to
stem profiles over most of the merchantable por-
tion of the stem except for the region of butt swell.
Behre "adjusted" diameters in this region to obtain
a better fit. The formula is still used occasionally
(see Wiant and Charlton 1984, and Ormerod
1986). Graphical methods were used by Stiell



(1960) and Stiell and von Althen (1964) to develop
taper curves for plantation-grown red pine (Pinus
resinosa Ait.).

Kozak et al. (1969) used a quadratic polyno-
mial

(d/D)* = by + b,Z + b,Z
subject to the restriction by + b; + b, = 0.

In this case, d was measured inside bark and D
was the stump diameter inside bark (the DBH out-
side bark was used to estimate this). For some of
the species on which the model was tested, nega-
tive estimates of upper stem diameter were ob-
tained. For those species (coastal spruce and cedar
in British Columbia), a conditioned function could
be used:

(d/D)y* =b, (1-2Z +Z?)

The Alberta Forest Service (1987) more recently
tested the unconditioned Kozak et al. function in
a different form:

(/DY =b,(Z-1) +b, (Z2-1)

Alemdag (1983) used a constrained quartic poly-
nomial to formulate the hand-drawn, form-class
taper curves for eastern Canadian commercial tree
species.

Desirable features of any taper function are
that it should be possible to directly estimate
height for any stem diameter (useful for determin-
ing merchantable height to a given diameter
limit), and that the taper function should be in-
tegratable to form a compatible volume function.
If either of these conditions do not exist, time-con-
suming iterative procedures have to be used.
Munro and Demaerschalk (1974) have discussed
the advantages of compatible volume and taper
functions. Although the usual approach is to
develop the taper function first and then the
volume function, Demaerschalk (1973), Amateis
and Burkhart (1988b), and Alemdag (1988) have
proceeded in the opposite direction by deriving
taper functions from existing volume functions.

With the advent of the computer in forest re-
search in the early 1960s, more sophisticated
methods were used for deriving taper functions.
Fries (1965) used principal component analysis
(PCA) to study the form of birch and pine trees in
Sweden and British Columbia. Kozak and Smith
used the same method to define taper in several
commercial tree species in British Columbia, and
Liu and Keister (1978) did likewise with loblolly
and slash pines (Pinus taeda L. and P. elliottii En-
gelm.). In each case, the first eigenvalue (com-
ponent) accounted for more than 99 per cent of the
variance. One disadvantage of this method
however, is that all diameters have to be measured
at fixed percentages along the stem.

The "whole-bole" system was developed by
Demaerschalk and Kozak (1977), who divided the
stem into two sections at the inflection point (the
point where the form of the stem changes from
neiloidal butt swell to the parabolic form of the
upper stem). The inflection point, which was
determined by eye after plotting relative
diameter, d/D, on relative hei ght, (H-h)/H, was
found to vary between 20 and 25 per cent above
ground level for 32 species groups in British
Columbia. The diameter D; at this inflection point
(rather than at breast height) was used as the base
for the diameter ratios. The equation for the top
portion of the stem was:

d/D; = (Z/RpPLb,(1-Z/RD
and for the bottom portion:
d/D; = by - (by - 1) [(1-2) /R b4

where Ry is the relative distance of the inflection
point from the top of the tree. The b; are condi-
tioned to ensure that the expected diameters coin-
cide with the observed diameters at the top, at the
inflection point and at breast height, and that the
transition from one curve to the other is smooth.
The results of the authors’ tests showed that this
dual equation was remarkably precise and ac-
curate. The disadvantages of this method are that
solution of the bottom equation requires sophisti-
cated software, and the equation for the top part
cannot be directly integrated to form a volume
function. D; is not measured directly but has to be
estimated from D (using a second-degree polyno-
mial equation) and, because it assumed that the



inflection point was located above breast height,
this taper system cannot be used for small trees.
Besides the British Columbia Ministry of Forests,
it has been applied in that province by Layden
(1984).

Goulding and Murray (1976) used a fifth de-
gree polynomial and Bruce et al. (1968) used a
regression with six terms (including values of X
raised to the power 40). Liu (1980) used cubic
spline functions to portray stem taper in yellow
poplar (Liriodendron tulipifera L.). This method
divides the stem into a number of sections and a
cubic polynomial is fitted through the data points
within each section. Constraints are imposed on
the firstand second derivatives to ensure a smooth
transition at each join point. The number of sec-
tions and the length of each section are selected to
give the best fit. Biologically, it is difficult to jus-
tify functions of this complexity.

Max and Burkhart (1976) used a segmented
polynomial regression to develop taper equations
for loblolly pine natural stands and plantations.
This method could be considered intermediate in
complexity between the whole-bole system of
Demaerschalk and Kozak and the spline method
of Liu. The stemis divided into only three sections
and separate conditioned polynomial equations
calculated for each section. However, the location
of the join points is selected by the model to give
the best fit to the stem profile. Max and Burkhart
found that the most satisfactory equation system
was a quadratic-quadratic-quadratic model of the
form:

(d/DY=b, (Z-1)+b,(Z%-1) + b, (a, -2 T,
+by(a,- Z)? I,

where a; and a, are the relative distance from the
top of the tree of the upper and lower join points
respectively, and:

L =1, 0<Z<a
0, a;<Z<l1
0, a,<Z<l

Most statistical software packages have pro-
cedures for calculating this function, although a
considerable amount of computing time and ex-

pense may be required. Another advantage is that
it can be directly integrated to give a volume func-
tion. In its present form there is no guarantee that
predicted and observed diameters at breast height
will be the same. This could be corrected by sub-
stituting X for Zin the formula. The Alberta Forest
Service (1987) found that, of 15 functions that were
tested, the Max-Burkhart was the best for general
application in that province. Cao et al. (1980) ex-
amined several taper functions and also found
that this model was the best for estimating
diameters along the stem, but found inconsisten-
cies when it was integrated to give volume. A seg-
mented taper equation, based on that of Goulding
and Murray (1976), proved to be the best all-round
model for taper and volume estimation.

Two nonlinear regression functions that are of
particular interest, because they relate to the new
taper function that will be described later in this
report, are those of Ormerod (1973) and Forslund
(1982). They both recognized that the form of a
stem may be other than that of a cone, paraboloid,
or neiloid. Ormerod’s basic function was:

d/D=[H-h)/H-K]P

where D is the measured diameter at height k and
p > 0. The inflection point k was considered to be
fixed at 30 per cent of the total height and the func-
tion was tested on a data set similar to that used
by Kozak et al. (1969). The values of p ranged be-
tween 1.0 and 4.8 for the upper stem and between
0.57 and 0.89 for the lower section.

Forslund’s model was similar:
d/D =[1 - (h/H)P11/b2

He considered only the case where b; = 1 which
resulted in b, = 1.5, a form intermediate between
a cone and a paraboloid that he called a
"paracone”.

In a later model, Ormerod (1986) assumed
that there were two join points (at 0.2 or 0.25 and
at 0.65 of total height). A complicated method,
based on the Behre formula, was developed for
describing the stem profile in each section.



A number of other complex taper functions
have been developed, some of which were ex-
amined by Byrne and Reed (1986).

Recently, Sweda (1984) has proposed deriv-
ing taper functions from theoretical growth func-
tions for height and diameter. The development
of such integrated functions is appealing, al-
though there appear to be some practical difficul-
ties to overcome.

Grosenbaugh (1966) observed that tree stems
assume an infinite number of shapes and that it is
difficult to develop a single, simple, accurate
equation to describe the taper of the stem. Each
stem has a number of inflection points and "... the
traditional conoid, paraboloid, and neiloid are
merely convenient instances in a continuum of
short monotonic shapes.” While several authors
have recognized that other geometric forms are
possible, no one has recognized that the form of a
stem does not change abruptly from one
geometric form to another. The purpose of the
present study was (a) to demonstrate that stem
form changes continuously with height and (b) to
develop a function that would satisfactorily
describe those changes.

METHOD

As has been noted in the previous section, the
form of a tree stem has often been considered to
consist of three components: a conical section
within the live crown, a paraboloidal section for
the main portion of the stem, and a neiloidal butt
section (Figure 1). The general formula describing
the profile of each of these sections is:

(11 d¥=by+b, (H-h)
or, in proportional terms:
21 Y<=by+by X

where X and Y are as previously defined. The
value of k would be 1 for a cone, 2 for a quadratic
paraboloid, 3 for a cubic paraboloid, and 2/3 fora
neiloid. This relationship between k and height is
illustrated in Figure 2. However, the hypothesis in
the present study is that k does not change abrupt-
ly (the "steps” in Figure 2) at the join points of the

different geometric forms but, rather, changes
gradually as illustrated by the curve. Thus k
would be 1 near the top of the stem, gradually in-
creasing to a value between 1 and 2 near the base
of the crown. Moving further down the stem, k
would continue to increase (perhaps to a value of
3 or more) until the influence of butt swell came
into effect. There would then be a rapid decrease
until a final value for k of 2/3, or less, would be
reached. The parameter k is no longer a constant
(atleast within the prescribed stem sections) but a
variable that is related to height (or distance (H-h)
from the top of the stem).

| CONE
d' =b, +b,H-h
H |
PARABOLOID
“=b,+b (H-h

NEILOID
Q”u b, + b,(H -h)

Figure 1. Theconventional geometric forms for the three sec-
tions of a tree stem.
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(H = h)/(H - 1.30)

Figure 2. The theoretical relationship between the form
parameter, k, and relative height.



To develop the relationship between k and
(H-h), it is necessary to obtain estimates of the
value of k from measurements of diameter at dif-
ferent heights along the stem. The value of kat any
point i (except for the first and last measurements)
can be estimated from the points immediately
below and above it using the formula:

[3] y¥i<= th (Yli<+-1 Ylfq)’(xi' i1/ Xi41Xi1

The calculation has to be done by iteration and so
can be time consuming and costly if a large num-
ber of trees are involved.

The second method of estimating values of k
is much simpler. If k is considered to be a con-
tinuous variable, the basic form equation [2] must
be constrained so that Y = 0 when X = 0 (top of the
tree) and Y = 1 when X =1 (breast height). This can
only happen when b, = 0 and b, =1 so that [2] be-
comes:

4] YK=Xx

If the kthroot of both sides of the equation s taken,
[4] can be seen to be similar to the basic functions
used by Ormerod (1973) and Forslund (1982):

4A] Y =x1/k

Taking logarithms of both sides of [4], and
transposing, gives:

[5]  k=InX)/In(Y)
=In[(H-h)/(H-1.30)]/In(d/D)

Thus, estimates of k can be obtained at any
point on the stem where height and diameter are
known --- except at breast height where d = D (be-
cause In(1) = 0). Problems may also expect to be
encountered with measurements that are very
close to breast height where, as d -> D, In(d /D) ->
0 and even small measurement errors or stem ir-
regularities could result in high and unrealistic
values for k. This should not be a major problem
in practice as measurements are seldom taken at
less than 50 cm from breast height, so that only the
breast height measurements would have to be dis-
carded.

A number of linear and nonlinear regression
models were tested to establish the relationship
between k and X. These will be described in detail
in the results section.

DATA

For testing different taper functions, two sets of
data were used.

Black Spruce

This data set consisted of 15 black spruce (Pices
mariana [Mill.] B.S.P.) trees that had been felled in
the Petawawa Research Forest, Chalk River, On-
tario. For each tree, DBH and total height were
recorded and diameter (outside bark) recorded at
stump height 0.25 ft (= 0.075 m), 0.50, 0.75, 1.00,
1.5, 2.0, 2.5, and 3.5 ft. Above breast height (4.5 ft
or 1.37 m), diameter measurements were taken at
2-ft (0.60 m) intervals to the base of the live crown.
Thereafter, measurements were taken at the mid-
point of each internode. The trees were thus inten-
sively sampled, with the number of measurement
points per tree being as high as 36. The original
measurements were converted to SI units and
DBH at 4.5 ft converted to DBH at 1.30 m using the
formula given by Alemdag and Honer (1977).
DBH ranged between 11.3 and 28.04 cm, with a
meanof 16.3 cm, and total heightbetween 11.4 and
19.2 m, with a mean of 14.6 m. No information is
available about the stand in which the trees were
growing.

Red Pine

The second set of data was obtained from per-
manent sample plots in the red pine spacing trials
that were established in 1953 near Chalk River.
Spacings ranged between 4x4 ft (1.2 x 1.2 m) and
14x14 ft (4.3 x 4.3 m), there being two plots at each
spacing (except at 10 ft where there were three).
These plots were measured in 1962 and at five-
year intervals thereafter, the latest measurement
being in 1987. Besides the usual measurements of
DBH, total height, crown length, and crown
width, diameters outside bark were also recorded
atstump height (0.5 ft) and, by climbing the trees,
at5-ft (1.52 m) intervals above breast height to the
top of the tree (it appears that, in the most recent
measurements, some of the higher measurements
were missed). Diameter at the mid-point on the



stem was also recorded. As with the black spruce
data, the original measurement units were con-
verted to ST units.

The data for all spacings and years were
pooled and trees with less than seven diameter
measurements (not including the midpoint
measurement) above breast height were dis-
carded. Thislefta total of 548 trees (including trees
that were measured more than once), mostly from
the last three plot measurements. The data set was
then divided into two subsets. The first, for use in
the analysis, was obtained by selecting at random
one sample plot from each of the spacings. The
remaining subset was used as a control. Statistics
for the two subsets are given in Table 1.

three adjacent diameter measurements on the
stem that should be fairly close together. The in-
tensively sampled black spruce data appeared to
be ideal for this purpose. Unfortunately, besides
being time consuming, the results were very dis-
appointing. There were extreme fluctuations in
the values of k and, even after eliminating the
most extreme values and smoothing the
remainder, there was still considerable variation
(see, for example, tree 4 in Figure 3). This method
was therefore abandoned.

Figures 4A and 4B show the values of k ob-
tained using equation [5] for black spruce trees 4
and 13. It can be seen that, apart from one or two
"outliers", the variation in k values has been

Table 1. Summary statistics for the red pine plantation data

Range
Variable N Mean gt‘“,‘dt‘;"d
eviation Minimum Maximum

Working data:

DBH (cm) 272 24.51 6.77 11.15 42.14
Total Height (m) 272 16.43 1.58 13.17 19.51
Live Crown Ratio (%) 272 45.87 11.29 20.21 76.61
DBH/Total Height Ratio 272 1.50 042 0.72 247
k-parameter 2554 1.53 0.56 017 3.78
Control Data:

DBH (cm) 276 22.44 5.79 923 36.23
Total Height (m) 276 16.89 1.84 13.29 20.73
Live Crown Ratio (%) 276 41.95 7.93 27.35 73.16
DBH/Total Height Ratio 276 1.34 037 0.62 2.18
k-parameter 2613 1.57 0.64 0.12 7.30

The range of initial spacings in the red pine
data ensured that there would be a wide range in
form among the individual trees. At the widest
spacing (14x14 ft), the crown canopy was still fair-
ly open in 1987 and the trees thus subjected to a
minimum of competition.

RESULTS
k-Parameter Values
As was described in the methods section, two

methods of obtaining values of k from the stem
measurement data were tried. The first required

reduced considerably. For tree 4 that had a live
crown ratio of 24 per cent and was therefore
probably in the intermediate or suppressed crown
class, k was approximately 1.5 near the top of the
stem and then increased to a maximum of about
2.5 above breast height. It then decreased rapidly
to a value of about 0.5 at the stump. By contrast,
tree 13 was probably relatively free-growing as it
had a live crown ratio of 89 per cent. The value of
k remained fairly constant at about 1.3 from the
top to above breast height and then declined to a
little above 0.5 at the stump. Three-term polyno-
mial regressions were calculated for the relation-
ship between k and height for each as indicated in
Figure 4. The taper curves for the two trees
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Figure 3. Anexample of the values ofk obtained by iteration
for black spruce tree 10.

(Figures 4C and 4D) were then drawn by sub-
stituting values for k in the equation:

[6] d=DI[(H-h)/H-130)/k

These results, and those obtained from the
other black spruce trees, appear to comply with
the hypothesis presented earlier. However, even
with fairly free-growing trees, the upper part of
the stem apparently does not become conical in
form but is intermediate between a cone and a
quadratic paraboloid (the "paracone" of Forslund
(1982)).1t can also be seen that the taper curves ob-
tained from [6] give very good fits to the stemover
its entirety.

The black spruce data set, although ideal for
exploratory testing, was not sufficiently large for
more comprehensive evaluation of the taper func-
tions that were to be investigated. For this, the red
pine plantation data were used. Values of k were
again obtained using [5]. With such a large data
set, it was not possible to screen outliers by eye.
Instead, the nine measurements that gave a value
of k > 4 were discarded, as were the 272 measure-
ments at breast height (for reasons given pre-
viously). For the control data set, only the 276
breast height measurements were discarded, the

twelve measurements with values of k > 4 were
retained. Statistics for the k-parameter are given
in Table 1.

In Figure 5, values of k have been plotted over
relative height for the working data set. Although
there is a considerable scattering of points, the
general trend appears to be similar to that of the
two spruce trees in Figure 4. Trees with small
crowns tend to have higher values of k for the por-
tion of the stem above breast height than do more
free-growing trees. Figure 5 also illustrates a
rather large gap in this data set around a value of
1.0 for (H - h)/H - 1.30) because of the necessity to
discard the breast height data. For this, and
presumably other taper studies, additional stem
diameter measurements should be taken at 0.8 m
and also, if possible, at 1.8 m, so that the butt-swell
portion of the stem can be modelled more ac-
curately.

Regression of k on Relative Height

Twenty-four regression models were tested to
describe therelationship between thek-parameter
and relative height. Linear regression analyses
were performed using the SAS STEPWISE proce-
dure (SAS Institute Inc. 1985). The MAXR option
was used whereby, at each step, several models
are tested in an attempt to find the regression
model with the highest coefficient of determina-
tion, R%. To keep the functions simple, it was
decided thatno more than threeindependent vari-
ables would be included. Addition of a fourth
variable did not generally produce a significant
improvement and, although the contribution of
the third variable was sometimes not significant,
it was required to give a better fit in the butt-swell
portion of the stem. Nonlinear regression analyses
were done using the secant (DUD) computational
method of the SAS NLIN procedure (ibid.).

Only four of the 24 regression models are
described here but the remainder (Models 6 - 24)
are listed in Appendix L. These four are examples
of the different forms that were tested and, in
general, they gave the best fits to the basic data
(the working data set of 272 red pine trees). For
comparative purposes, the Max-Burkhart seg-
mented polynomial regression was also calcu-
lated.
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Model 1. The relationship between k and rela-
tive height, X, was treated as a polynomial regres-
sion in which values of X up to the sixth power
could be included. The final three-term regression
was:

7]  k=1.28+0.772X +2.234X° - 3.198X°®
R? = 0.5654

The inclusion of the third variable caused only a
0.1 per cent increase in the value of R% A three-
term polynomial, in which the independent varl-
able was W = exp(X) - 1, gave a slightly higher R?
(0.5677 -- see Model 8 in Appendix I). Model 1 is
illustrated in Figure 6A, together with the result-
ing taper curve (Figure 6B) obtained by substitut-
ing [7] for kin [6].

Model 2. For this model, separate simple linear
regressions were calculated for the upper and

The relationship between k and relative height for the 272 red pine trees in the working data set.

lower portions of the stem. The join point was
determined by iteration, the final selection being
that point that minimized the sum of the squared
deviations from the combined regression lines.
The final model was:

(8]
¥

The sum of the squared deviations X(k - %72, was
349.30. An equally good fit was obtained when X
was used as the independent variable but there
was a poorer fit with W (Models 13 and 6 in Ap-
pendix 1). Although the abrupt change in the
relationship between k and relative height at the
join point (Figure 6C) is nowhere as noticeable in
the corresponding taper curve (Figure 6D), it is
still undesirable (although, possibly, of minor
practical importance).

1.83 + 0.526(X - 0.836) for X<0.836

1.83-6.133 (X-0.836) for X >0.836
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Model 3.1tis generally accepted that stem form
varies with the amount of competition to which
the tree is subjected from surrounding trees. Free-
growing trees are conical in form with rapid taper,
while stems of trees growing in forest stands tend
to be conical within the crown and paraboloidal
for the greater portion of the stem below the
crown (see, for example, Figure 4). The length of
the conical portion will thus be largely governed
by the length of the crown, or the live crown ratio
(C), so that it would appear logical to include C in
any regression model for k. Although estimates of
C were available for the red pine data, this is
usually not the case in practice. However, DBH
and total height (either measured directly or es-
timated from DBH) are generally available and
the ratio D/H isa good indicator of the live crown
ratio (for a given height, free-growing trees with
large crowns will have a greater value for D/H
than forest-grown trees with relatively smali
crowns). The relationship between the D/H ratio
and the live crown ratio for the 272 red pine trees
in the working data set is shown in Figure 7.

For Model 3, besides the first six powers of X
that were tested in Model 1, the variables D/Hand
(D/H)? were added. Also included were the com-
bined variables X.D/H, X2.D/H, X>D/H,
X.(D/H)?, and X2.(D/H)?. The best three-variable
regression was:

[9] k =2.48 - 1.540X%-0.696(D/H)
+0.770X2.(D/H) R? = 0.6688

Thus the inclusion of the D/H ratio in the regres-
sion has accounted for a significant increase in the
value of R? (R? for Model 1 was only 0.5654). For
the red pine data, similar results were obtained
when the live crown ratio was used instead of
D/H although the value of R? (0.6530) was slight-
ly lower (see Model 15 in Appendix I). Model 3 is
illustrated in Figure 8A together with the cor-
responding taper curves for D/Hratios of 1.1, 1.5,
and 1.9 (Figure 8B).

Model 3 was reworked as a nonlinear regres-
sion of the form:

[10] k=by+b,; XP2+ b, (D/H) + b, X2.(D/H)
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red pine working data set.

Figure 7.

The values of the b-coefficients differed in value
(but not in sign) from the corresponding coeffi-
cients in [9] (see Model 24 in Appendix I). The
value of b, was 6.707, indicating that perhaps a
higher power of X could have been included in
Model 3.

Model 4. The variable X® is included in Model
3 largely to allow for the neiloidal butt-swell por-
tion of the stem. There is a danger in including
such large exponents, particularly if the model is
used to extrapolate for data outside the range of
the original data, as the estimated values may dif-
fer noticeably from those expected. This could, in
the extreme case, result in negative values for
diameters close to the stump.

In Model 4, X® has been replaced by 1/h, a
variable that will have values that are relatively
high in the stump region but that decline rapidly
with increase in height. As the values of k are
smallest in the butt portion of the stem, the coeffi-
cient for 1/h should be negative. The three-vari-
able regression was:
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[11] k=258-0.763(D/H) + 0.205X.(D/H)2
-0.244(1/h) R* = 0.6579

This is similar in form to Model 3 but it now con-

tains no terms with an exponent greater than 2. It

is therefore less likely to cause the problems that

could occur with Model 3.

Model 4 is illustrated in Figure 8 for the tree
of mean height (16.43 m) and for D/Hratiosof 1.1,
1.5, and 1.9. Model 4 was also reworked as a non-
linear regression of the form:

[12] k= byrby (D/H)+b,X.(D/HY+b, (1/h)P4

Again, although the value of the coefficients dif-
fered in magnitude, the signs were the same as in
[11] (see Model 25 in Appendix I). However, the
value of bg was 0.429, indicating that the square
root of 1/h might be a better variable than 1/h to
include in [11].

Model 5. Although not widely applied to date,
the Max-Burkhart segmented polynomial regres-
sion model appears to be one of the best of the ex-
isting taper models. The Alberta Forest Service
(1987) recommended it for use in Alberta. Other
models, usually more complex in structure, may
give better results under certain conditions but, in
spite of this the Max-Burkhart model was chosen
for comparison with the new models presented in
this report.

For the 272 red pine trees, the Max-Burkhart
segmented regression was:

(d/D)? = -5.080(Z - 1) + 2.477(Z* - 1)
-2.577(0.7598 - 2)* 1,
+154.8(0.0665 - 2)* I,

[13]

where:

if 0 < Z <0.7598
otherwise
if 0 < Z <0.0665
otherwise

~ ~

OHQH

~

The taper curve for this model is illustrated in
Figure 9.
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Figure 9.

Comparison of the Accuracy of the Five Models

Taper. Estimates of upper stem relative
diameter (d/D) were obtained for each of the five
models in turn. For each (H - h)/(H - 1.30) decile
above breast height, and for observations below
breast height, the average bias and the average
error were calculated. Bias was the sum of the
deviations (expected - observed), divided by the
number of observationsin the class. Average error
was the sum of the absolute values of the devia-
tions, divided by the number of observations.

The bias and average error for each of the
models are shown for both the working and the
control data sets in Figures 10 and 11, respective-
ly. The overall bias and average error for each
model are shown in Table 2 and, for all 25 models,
in Appendix IL

For the working data set, all five models tend
to overestimate stem diameter, particularly in the
upper stem, the mid-decile and, for Models 1 and
3, the sectionbelow breast height. In the top decile,
there is only one observation; possibly a better fit
could have been obtained if more observations
had been available for calculating the regressions.
Bias in the second and third deciles from the top
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Figure 10. Bias (left) and average error (right) of estimates of relative diameter (d/D) for each relative height decile and for the whole tree for
Models 1-5 (red pine working data set; units on the vertical scale are 100.d /D).
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Table 2. Bias and average errors for estimating stem diameter ratios and total volume of red pine trees in
the working and control data sets using Models 1-5

Working data set

Control data set

Model d/D-ratio Volume (%) d/D-ratio Volume (%)
No.
Bias Av. error Bias Av. error Bias Av. errvor Bias Av, errox
1 0.0108 0.0486 3.82 7.31 0 0.0482 1.76 7.04
2 0.0057 0.0430 2.47 6.16 -0.0044 0.0429 0.51 6.01
3 0.0062 0.0373 -0.14 448 0.0086 0.0387 1.00 441
4 0.0035 0.0325 0.12 3.92 0.0034 0.0354 0.62 4.08
5 0.0023 0.0383 1.58 5.67 -0.0051 0.0383 0.20 5.38

NOTE: Volume bias and average error are expressed as percentages of the observed mean volumes (0.414 m® and 0.360 m? for the work-

ing and control data sets respectively).

of the tree could lead to errors in estimating mer-
chantable height (and therefore merchantable
volume) so that Models 1 and 2 should not be used
for this purpose. Model 2, in spite of the theoreti-
cal disadvantage of a discontinuity in the taper
curve (Figure 6D), gives remarkably unbiased es-
timates over much of the stem. Model 5, followed
closely by Model 4, appear best with respect to
producing unbiased estimates of stem diameters.

Average error tends to decrease down the
stem until the section below breast height is
reached where there is an increase in all cases, but
one thatis less noticeable for Model 5. Model 4 has
the lowest overall average error.

The patterns for bias and average error are
very similar for the control data set (Figure 11), ex-
cept that estimates tend to be a little lower. There
are sections of the stem with quite noticeable nega-
tive bias and, for Models 2 and 5, an overall nega-
tive bias. Average errors are similar to those of the
working data set. Again, Models 4 and 5 appear
to be best.

Total Volume. For each tree, the volume out-
side bark of each 5-ft (1.52 m) section and for the
section between breast and stump height, was cal-
culated using Smalian’s formula. The volume of
the stump was assumed to be that of a cylinder (of
stump height diameter). The volume of the top
section of the stem (above the last 5-ft section) was
assumed to be that of a cone. These volumes were

summed to give the total volume outside bark.
Merchantable height was not recorded so that it
was not possible to calculate merchantable
volume,

Tobe comparable, volume estimates obtained
using each taper model were calculated in the
same way except that, instead of observed
diameters, diameters estimated from the different
models were used. For the three most promising
models (Models 3 - 5), the bias in estimating total
volume and the average error are given by 10 cm
DBH class and 1 m height class for the working
data set (Table 3). The overall bias and error are
given forall five models, for both the working and
control data sets, in Table 2.

There is a tendency for the three models to un-
derestimate volume in the lowest (except in the
lowest height class for Model 3) and upper DBH
classes, and to overestimate in the 20 - 30 cm class.
A noticeable exception is Model 5 that, while un-
derestimating in the lowest DBH class, overes-
timates in the remaining classes with a trend of
increasing bias with increasing DBH. This trend,
coupled with a similar trend with increasing
height, is surprising (and difficult to explain), as
Model 5 was one of the best for predicting stem
diameter. Model 4 has both the lowest overall bias
(0.12 per cent) and average error (3.92 per cent).
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Table3.  Bias and average error for estimating total volume for Models 3-5 by 10-cm DBH class and 1-
m total height class (working data set)

Height Model DBH class (¢cm)
class No. Total
(m) <20 20- 30- >40
a5 N 18 34 4 0 56
Bias 3 942 4.93 -4.03 4.52
4 -2.28 2.34 -2.25 0.85
5 -7.92 1.70 3.17 0.12
Av. Error 3 10.45 7.02 4.03 7.24
4 4.11 4.67 3.35 4.38
5 8.58 4.06 4.39 4.95
15- N 18 29 15 0 62
Bias 3 -0.91 0.10 -1.75 -0.79
4 -4.23 -0.09 0.42 -0.55
5 -8.56 -1.39 5.43 0.17
Av. Error 3 3.80 2.84 541 4.01
4 5.89 2.73 4.30 3.86
5 9.28 3.05 5.87 5.16
16- N 13 25 15 0 53
Bias 3 -0.41 0.70 -2.27 -0.83
4 -2.44 1.27 0.53 0.52
5 -6.71 1.00 748 3.26
Av. Error 3 3.06 4.08 4.28 4.07
4 340 4.32 457 4.34
5 6.71 4.55 8.15 6.49
17- N 19 18 9 7 53
Bias 3 -3.62 -1.32 -3.74 -4.22 -3.16
4 -4.82 -0.71 -1.17 -0.69 -1.43
5 -9.01 -1.11 5.10 9.15 2.38
Av. Error 3 5.30 2.83 3.74 4.22 3.84
4 5.74 2.81 2.82 2.22 3.07
5 9.01 3.14 5.39 9.15 6.32
>18 N 9 36 3 0 48
Bias 3 -3.31 2,57 0.11 1.52
4 -3.60 2.95 1.69 1.95
5 -6.39 2.23 4.75 1.38
Av. Error 3 3.58 446 1.15 3.98
4 3.79 4.69 1.69 4.24
5 6.39 481 4.75 5.01
Total N 77 142 46 7 272
Bias 3 0.22 1.70 -2.44 -4.22 -0.14
4 -3.59 1.41 -0.02 -0.69 0.12
5 -7.90 0.72 5.86 9.15 1.58
Av. Error 3 5.35 440 4.26 422 4.48
4 4.76 3.97 3.81 222 3.92
5 8.20 4,02 6.37 9.15 5.67

NOTE: Volume bias and average error are expressed as percentages of the observed mean volume for the respective class combination.



Estimation of Merchantable Height

One disadvantage of the new taper function
presented here is that while it is possible to es-
timate diameter for a given height directly from
[6] the reverse is not true. This is because both k
and d/D are functions of relative height, X. Height
hm for a given upper-stem merchantable diameter
limit dm can only be estimated by iteration. If it is
necessary to do this for many thousands of trees,
much expensive computer time may be required
unless the first estimate of hy gives an estimated
diameter thatis close to dm. This first estimate may
be obtained from a regression of hym on D, or of
h/Hon d/D, if such regressions are available. In
this study, the first estimate of hy, was obtained
from a polynomial regression of (H - h)/(H - 1.30)
ond/D and the H/D ratio for those observations
above breast height in the working data set. The
observations at and below breast height were dis-
carded because it was assumed that, if dm oc-
curred below breast height, the tree would not be
considered merchantable (i.e. a merchantable tree
must contain at least one 1-m log). The regression
was:

(H-h)/(H-1.30) = 0.33 + 0.667(d /D)
- 0.414(H/D) + 0.384(dH/D?)
R? = 0.9540

[14]

The firstestimate, h’, of hm can be obtained by sub-

stituting dm for d in [14] and transposing to give:

[15] K =H-(H-1.30[0.33 + 0.667(dm/D)
- 0.414(H/D) + 0.384(dmH/D?)]

Substitution of this value of h’ in the taper func-
tion for one of Models 1 - 4 will give a value, d’,
that probably differs slightly from the specified
value for dm. A new estimate h" is obtained from:
[16] h"=H-(H-h)dm/d)K

This process is continued until a value of h is ob-
tained that gives a value of d that differs from dm

by less than an allowable error (e.g. 0.005 cm)
specified by the user.

This method was used with Model 3 to es-
timate the merchantable height to a 7.5 cm top
diameter (outside bark -- approximately equal to
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the Ontario standard of 7.0 cm inside bark) for
each tree in the working data set. Total and mer-
chantable volumes were also calculated. For 272
trees, these calculations required 3.74 seconds of
CPU time on a VAX/785 computer. The average
number of iterations to obtain the final estimate of
hm was 3.4/tree. Similar results were obtained
with the control data set.

As merchantable volume was not available
for the basic data, it was not possible to compare
estimated values with observed values.

Volume Estimation by Integration

It has already been noted that it is not possible to
calculate directly the above-stump volume of the
stem by integrating the taper function [6] between
the top and stump level, or the merchantable
volume by integrating between the limits of mer-
chantability. The only way that this can be done is
by iteration, whereby the stem is divided into
short sections, d is estimated at the top and bot-
tom of each section, and its volume calculated
using Smalian’s (or a similar) formula. The smaller
the section, the more accurate will be the es-
timated volume. However, the greater the num-
ber of sections, the greater the amount of CPU
time that will be required to complete the calcula-
tions.

To obtain an idea of the CPU time, the total
volume of a tree with a DBH of 25 cm and a height
above stump level of 16.5 m was calculated using
both Models 3 and 4. Section volume V was calcu-
lated using the formula:

n D?
V= .
40000 H2'XQ2/k+1)

L

where XU and XL are the upper and lower
diameters of the section and k is estimated from
[9] (Model 3) or [11] (Model 4). To obtain more ac-
curate estimates, CPU times were calculated for
100 trees over the range of section lengths given in
Table 4. As would be expected, the CPU times
decreased as the number of sections into which the
stem was divided decreased (the time taken to cal-
culate the volume of 1000 sections is approximate-
ly 0.3 seconds). Volume estimates are consistent to
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Table 4. Estimated CPU times for calculating the volume above stump height for 100 trees by numerical
integration using Models 3 and 4. Each tree has aDBH of 25.0 cm and a total height above stump

height 0of 16.5 m.
Model 3 Model 4
No. of Section length .

sections (m) Volume CPU time Volume CPU time
(m®) (seconds) (m®) (seconds)

1650 0.010 0.356427 54.25 0.359332 44.58

1000 0.165 0.356428 32.84 0.359332 27.42

825 0.020 0.356427 26.95 0.359332 22.36

500 0.033 0.356427 16.45 0.359331 13.61

330 0.050 0.356425 10.88 0.359329 8.76

250 0.066 0.356424 8.17 0.359326 6.79

165 0.100 0.356418 5.36 0.359317 4.39

the fifth decimal place until the section length ex-
ceeds 0.05 m. Model 4 gives slightly greater
volumes than Model 3. A section length of 0.05 m
should provide accurate enough estimates of
volume for most practical applications. This could
probably be increased for larger trees (perhaps
maintaining the number of sections at about
330/ tree).

DISCUSSION AND CONCLUSIONS

The new taper model that has been presented here
takes into account the fact that the geometric form
of the tree stem varies continuously along its en-
tire length. In this manner, form can be expressed
by the variable k in the expression:

(d/D)% = (H - h)/(H - 1.30)

The hypothesis presented earlier was that k could
have values other than those associated with the
conventional geometric solids --- cone (k = 1),
paraboloid (k = 2), and neiloid (k =2/3) --- that are
described in forest mensuration textbooks and
that have often been assumed in previous taper
studies.

The main objective of the present study, to
determine a satisfactory relationship between k
and relative height along the stem, has been
achieved. One problem encountered was that, al-
though the value of k increases fairly smoothly
with distance from the top of the stem, there is a

sudden decrease at a point above breast height
where the influence of butt-swell is manifested. A
number of models were tested, of which four have
been described in detail and the remainder given
in Appendix L.

To account for the rapid decline in the value
of k in the lower part of the stem, polynomial
equations with the independent variable raised to
the power of six were required (see [7] and [9]). Al-
though powers as high (or higher) than this have
been used in previous taper studies, their main
disadvantage is that, at the extremes of the range
(in the present case, just below stump height ie.
0.1524 m), estimates of the dependent variable can
be subject to large errors and extrapolation
beyond the range (dangerous in the best of cir-
cumstances) virtually impossible. To avoid the
use of such high powers, the variable 1/h was
tested and found to be a significant component of
one of the best models (see [11]). However, there
is still a danger with this variable as its value ap-
proaches infinity near ground level. Extremely
large values (negative or positive) of both k and
d/D can result.

This problem of obtaining a good taper curve
at the base of the stem has plagued men-
surationists for generations. Until recently, butt
swell was often treated as an anomaly, the
paraboloidal form of the stem was assumed to ex-
tend to ground level, and the excess stem wood
due to butt swell was ignored. In the past 20 years,
much of this previously wasted wood is now




utilized for pulp, composite wood products, or
energy. It has thus become more important to ob-
tain accurate taper functions for this part of the
stem.

In recent years, segmented polynomial equa-
tions have become popular while other re-
searchers have developed very complex models.
Many of these models contain five or more coeffi-
cients and contain variables raised to a power as
high as 40. One of the best models is the Max-
Burkhart segmented polynomial regression (see
(13]). Although containing five parameters, it has
no powers greater than two and, in this study,
gave a satisfactory fit along the stem from the top
to stump level.

The best of the models that have been
presented here appears to be Model 4 (equation
[11]). Written in a more conventional form as a
taper equation, this becomes:

d = D.x1/[2.58-0.763(D/H) + 0.205X.(D/H)2
-0.244(1/h)]

where X = (H - h)/(H - 1.30). Another that merits
further study is Model 3 (equation [9]):

— 1y x1/[2.48 - 1.540X6 - 0.696(D/H)
d=DX 5
+0.770x"(D/H)]

The advantages of both these models are:

(1)  They give consistently accurate estimates of
diameter along the stem and of total volume
for both the working and control data sets of
the plantation-grown red pine used in this
study. Model 4 is the better in this respect
and both compare favourably with the
results obtained from the Max-Burkhart
model.

(2)  They takeintoaccount the continuous varia-
tion in form along the stem of the tree and
thus require only a single equation for the
taper curve.

(3) They require only four parameters in the
regression equation.

(4) They take into account variations in stem
form that are related to crown size, as repre-
sented by the D/H ratio.

(5) By using standard linear regression (least-
squares) techniques computing time is
reduced and some problems in obtaining a
solution, that may occur when nonlinear
models are used, are avoided.

The disadvantages of Models 3 and 4 are:

(1)  Both are very sensitive to errors in estimat-
ing stem diameter near the base of the tree.
With Model 4, for example, diameter
reaches a maximum a few ¢cm below stump
height and then falls rapidly to a negative
value before rising again. The accuracy of
the regression equation in this region could
probably be improved if one or, preferably,
two additional measurements had been
taken between stump and breast heights
(say, at 0.80 and 0.30 m). This problem may
well occur with other taper functions, par-
ticularly where high-order powers are used.

(2)  Itisnotpossibleto transpose either equation
so that the height for a given diameter can-
not be estimated directly. This means that,
for example, the height at which a given
upper merchantable diameter limit occurs
must be estimated by iteration. However, a
method of doing this efficiently has been
described.

() Itis not possible to integrate the equations
for either model so that volume, either mer-
chantable or total, can be estimated directly.
Potentially time consuming numerical
methods have to be employed, although
preliminary testing with the red pine data
indicates that this may not be so difficult a
task as might be envisioned.

This study has shown that taper functions that
take into account the continuous variation in form
along the stem, such as Models 3 and 4, provide a
simpler and more accurate solution to taper curve
definition than do most existing taper functions
and certainly merit further testing.
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APPENDIXI

Complete list of taper models tested in the study
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Complete List of Taper Models

Definitions

relative diameter, d/D

relative height, (H-h)/(H-1.30)

h/H

exp (X0-1

diameter at breast height -- DBH (1.30 m)
total height

height above ground level

diameter at height, h

In(X)/In(Y)

live crown ratio (%)

L | | | I O | S | N T TR

OxaA TS NX<

Model 5 (Max-Burkhart)

Y2 = -5.030 (Z-1) + 2.477 (Z% - 1) - 2.577 (0.7598 - Z)*1, + 154.8 (0.0665 - Z)* 1,

where 1, = 1,if0<Z<0.7598
0, otherwise
L = 1,if0<Z<0.0665

0, otherwise
For Models 14, 6-10, 13-21, and 23-25, the general form of the mode! is:

Y =x1/k

where k is a function of X and other independent variables.

Model

1k = 1.28+0.772X +2.234X°-3.198X° R? = 0.5654
2 1.83 + 0.526 (X - 0.836) for X < 0.836 5

k ={ 1.83 - 6.133 (X - 0.836) for X > 0.836 I?=05611*
3k = 248-1.540X%-0.696(D/H) + 0.770X%.(D/H) R? = 0.6688
4k = 258-0763(D/H) + 0.205X.(D/H)? - 0.244(1 /h) R? = 0.6579
6 k = 138+1.291X*-1.617x° R? = 0.5644
7k = 139+1.200W2-0.761W3 R® = 0.5642
8 k = 150+1.955W*-2.196W° + 0.591W° R? = 0.5677
9 k= 1.39-0.0157W + 1.216W?2 - 0.766W?3 R? = 0.5642
10 1.92 + 0.495 (W-1.152) for Z <1.152 5 .

k 2{1.92-1.864 (W -1.152) for Z > 1.152 I7=0.5493
13 193 +0.613 (X*-0.710)  for X*<0.710 i )

k ={1.93 -3.517 (X - 0.710) for X2 > 0.710 I =0.5650
14 k = 250-1.562X%-0.0237C + 0.0260X2.C R? = 0.6530
15 k = 2.68-1.068X%-0.0256C + 0.000301X2.C2 R? = 0.6530
16 k = 2.62-1.057X%-0.734(D/H) + 0.266X2.(D /H)? R? = 0.6688
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178 k = 1.0+1.908X - 1.728X° - 0.0000814C2 I? = 0.5892*
18° k = 1.0-0.535X'2 + 0.0385C - 0.000487C> I? = 0.5489*
19° k = 1.0+ 1.920X-1.733X° - 0.0771(D/H)> I? = 0.5985*
20° k = 1.0-0.530X'2-0.0809(D/H)? + 0.0530H I = 0.5505*
21 k = 151+1.819X?-1.719X® - 0.360X.(D/H) R? = 0.5982
23k = 227-0.377(D/H)-0.203 (1/h) R? = 0.6084
248 k = 242-1.382X577_0.657(D/H) + 0.681XA.(D/H) 1% = 0.67021
25t k = 3.05-0.898(D/H) + 0.276X.(D/H)? - 0.922(1 /h)*42° 2 = 0.66411
Notes:

* s the correlation index: 1 - S(k-®)%/ S (k-k)?
Models 17-19 are constrained to pass through the (0,1) point
+ Models 24 and 25 are nonlinear regressions with k as the dependent variable.

2]

Models 11 and 12 are nonlinear regression models with Y as the dependent variable.

Model
11 Y = x1/(144+0.666X? - 1.145X5) 12 = 0.9430
12y = x1/(1.77-5831W?2 +5.879W3) 12 - 0.6795
where I = 1-S(Y-Y)%/Z(Y-Y)?
Model 22 is of the form:

Y = Xm
where m = In(Y)/In(X) is a function of X and other independent variables
m = 0.68 - 8.037X" + 5.983X5 + 0.186H R? = 0.8951

Because the dependent variable m is different, the value of R? cannot be compared with the R? values for
the group of models that have k as a dependent variable.
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APPENDIXII

Bias and Average Error by Height Decile for 25
Taper Models (Working Data Set)
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1. Bias and average error by height decile for 25 taper models (working data set).
Eqn. Height Decile, (H-H/H-1.30
No.  0.0- ¢.1- 0.2- 0.3- 0.4- 0.5- 0.6- 0.7~ 0.8- 0,9- *1.0 Total
1 l 85 206 268 264 334 287 271 280 86 272 2554
Bias 0.0280  0.0236  0.0079 -0.0022 -0.0039  0.0199  0.0044  Q.001B  0.0056  0.01%7  0.0388  0.010
Av Er 0.0280  0.0349  0.0623  0.0559  0.04068  0.0429  0.0270  0.0227  0.0190  0.0187  0.1306  0.048
2 l 83 206 268 264 934 287 271 250 86 273 2534
Bias 0.0482  0.0417  0.0198  0.0023 -0.0061  0.0134 -0.0024  0,0000  0.0032  0.0054  0.0005  0.005
v Er 0.0482  0.0637  0.0637  0.0557  0.0472  0.0415  0.0271  0.0227  0.0195  0.0161  0.0751  0.043
3 1 835 206 268 264 534 287 71 28 86 272 2534
Bias 0.0305  0.0037 -0.0046 -0.0047 -0.0034  0.0189  0.0035  0.0007  0.0041  0.0112  0.0198  0.006
Av Er 0.0303  0.0448  0.0419  0.0350  0.0295  0.0339  0.0235  0.0213  0.0184  0.0179  0.1043  0.037
4 l 85 206 268 264 934 287 a7l 280 gh 272 2554
Bias 0.0336  0.0125  0.0055 -0.0001 -0.0063  0.0109 -0.0051 -0.002: 0.0099  0.0209  0.0007  §.003
Av Er 0,036 0.0446  0.0390  0.0333  0.0296  0.0319  0.0241  0.0213  0.0195  0.023%  0.0635  0.0%2
3 l 35 206 it 264 334 287 271 280 Ba 272 2334
Bias 0.0104  0.0069  0.0040  0.0024 -0.0032  0.0134 -0.0069 -0.0086  0.0005  0.0147  0.0009  0.007
Av Er 0.0104  0.0492  0.0612  0.0352  0.0463  0.0412  0.0278  0.0246  0.0192  0.0199  0.0380  0.033
b 1 835 206 268 264 234 287 371 280 8h 72 2554
Bias 0.0387  0.0282  0.0065 -0.0047 -0.0048  0.0207  0.0056  0.0023  ©.0051  0.0119  0.0241  0.009
Av Er 0.0387  0.0370  0.0622  0.0561  0.0469  0.0431  0.0%7 0.0237  0.0190  (.0183  0.1164  0.047
7 l 83 206 268 264 334 287 271 280 g6 373 25534
Bias 0.0367  0.0282  0.0065 -0,0047 -0.0047  0.0207  0.0055  0.0022  0.0052  0.0120  0.0267  0.009
Av Er 0.0387  0.0370  0.0622  0.0561  0.0489  0.0431  0.0271  0.0227  0.0190  0.0184  0.1195 0.047
g 1 ] 206 266 264 334 287 27 280 86 272 2534
Bias 0.0622  0.0490  0.0172 -0.0053 -0.0113  0.0IS 0.0060  0.0038  0.0038  0.0103  -0,0112  0.005
Av Er 0.0622  0.0677  0.0631  0.0362  0.0483  0.0418  0.0271  0.0230  0.0193  0.0176  0.0573  0.041
9 1 85 206 Rl 264 334 287 271 280 86 278 253
Bias 0.0393  0.0287  0.0067 -0.0047 -0.0048  0.0206  0.0055  0.0022  0.0052  0.0121  0.0773  0.009
Av Er 0.0393  0.0972  0.0622  0.0561  0.0469  0.0431  0.0271  0.0227  0.0190  0.0184  0.1199 0.047
10 1 s 206 268 264 934 287 71 280 g6 72 2554
Bias 0.0379  0.0310  0.0111 -0.0025 -0.0062  0.0174  0.0047  0.0055 -0.0026  0.0012  -0.0663 -0.001
Av Er 0.0379  0.0584  0.0631  0.035 0.0472  0.0422  0.0270  0.0239  0.0198  0.0156  0.0743 0,043
11 1 85 206 268 264 334 287 271 280 86 272 255
Bizs 0.0303  0.0384  0.0107 -0.0090 -0.0171  0.0032 -0.0135 -0.0147 -0.0064  0.0034 -0.0473 ~0.008¢
Av Er 0.0303  0.0620  0.0632  0.0565  0.0499  0.0409  0,0301  0.0263  0.0200  0.015%  0.0300 0.044;
12 I 85 206 268 264 334 267 27l 280 8 272 2954
Bias 0.1071  0.0732 -0.0075 -0.1034 -0.1768 -0.1335 -0.0473  0.0464  0.0623  0.0612  —0.2456 ~0.077.
Av Er 0.1071  0.0866  0.0651  0.1093  0.1791  0.1540  0.0386  0.0485  0.0623  0.06127  0.2456 0.117:
13 l B85 206 268 264 33 287 271 280 g6 a2 13594
Bias 0.0605  0.0494  0.0213  0.0005 -0.0083  0.0129 -0.0004  0.0039  0.0085  0.0114  0.009% 0,008
Av Er 0.0603  0.0678  0.0663  0.0538  0.0477  0.0414  0.0269  0.0229  (.0201  6.0181  0.0854 0.044:
14 1 B3 208 268 264 334 287 7 280 g6 27 2954
Bias 0.0346  0.0035 -0.0013 -0.0054 -0.0032  0.0193  0.0038  0.0010  0.0044  0.0114 0.0316  0.007¢
Av Er 0.0346  0.0461  0.0409  0.035 0.0308  0.0353  0.0242  0.0217  0.0187  0.0181  0.1215  0.039
13 1 83 206 268 264 334 2687 71 280 g6 272 235
Bias 0.0336  0.0208  0.0122  0.0011 -0.0035  0.0151 -0.0007 -0.0009  0.0052  0.0137 0.1189  0.0181
Av Er 0.0036  0.0521  0.0438  0.0347  0.0306  0.033%  0.0245  0.02i8  0.0186  0.0136 0.2102  0.0497
16 l 83 206 268 64 334 287 271 280 86 a7z 2554
Bias 0.0487  0.0210  0.0083  0.0014 -0.0036  0.0147 -0.0008 -0.0010  0.0057  0.0i30 0.1472  0.0207
Av Er 0.0487  0.0495  0.0416  0.0345  0.0293  0.0335  0.0235  0.0212  0.0184  0.0ig3 0.2376 0.0313
17 l 85 206 268 264 334 287 a7 280 86 272 2954
Bias -0.0031 -0.0609 -0.0416 -0.0199 -0.0023  0.0271  0.0100  0.0029  0.0031  0.0104 31,4339 3.3477
Av Er 0.0331  0.0646  0.0539  0.0432  0.0375  0.0410  0.025; 0.0219  0.,0189  0.01B0 31.5726  3.394C
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1. (continued),

Eqn., Height Decile, (H-hi/(H-1.30)
No. 0.0 0.1- 0.2- 0.3- 0.4- 0.5- 0.6- ¢.7- 0.8- 0.9- *1.0
18 1 85 206 268 204 3 287 271 280 86 a72

L0124 -0,0103  -0.0111 -0.0003  0.0119 5241.0449

4
Biss 0.1089  0.0737  0.0491  0.0223  0.0034 0
L0363 0.0381  0.023¢  0.0190  0.0190 5241.2300
4
D
0

H]
0
Av Er 0.1089  0.083¢  0.0697  0.0481  0.0382 0
19 1 83 206 268 264 33 287 71 280 86 272
0.0268  0.0099  0.0030  0.0032  0.0108  0.1606
0.0397  0.0247  0.0217  0.0186  0.0180  0.2751
3 287 271 280 86 a7d
0.0113  -0.0109 -0.0113  0.0001  0.0130 164.2687
2 00382 0.025 0.0192  0.0203 164.5617

Bias ~0.0360 -0.0627 -0.0448 -0.0207 -(.0028
Av Er 0.0360  0.0651  0.0369  0.0444  0.0358
20 l 8% 206 2068 264

Bias 0.0586  0.0388  0.0431  0.0217  0.0039
Av Er 0.0386  0.0669  0.0607  0.0434  0.0362 0.

) 1 85 206 268 264 334 287 271 280 86 a2
Bias 0.0331  0.0385  0.0100 -0.0049 -0.0065  0.0181  0.0039  0.0018  0.0052  0.0137  2.2982
Av Er 0.0531  0.0394  0.0568  0.0483  0.0395  0.0370  0.0238  0.0214  0.0188  0.0193  2.5420
22 1 g5 206 268 2064 934 287 271 260 6 273
Bias 0.0337  0.0388 -0.0009 -0.0301 -0.0334  0.0049  0.0135  0.0175 -0.0033 -0.0286 -0.0022
Av Er 0.0357  0.0623  0.0624  (.0628  0.0600  0.0468  0.0379  0.033  0.0231  0.0297  0.0398
23 1 85 206 268 264 334 287 271 2680 86 272
Bias 0.0914  0.0735  0.0473  0.02233  0.0033  0.0115 -0.0112 -0.01I1  ©.0026  0.0l162  2.7322
Av Er 0.0914  0.0769  0.0596  0.0411  0.0317  0.0323  0.0264  0.0239  0.0187  0.0210  2.8581
24 1 83 206 268 264 a3 187 271 280 86 72
Bias 0.0334 73 -0.0031  -0.0032  -0.0031 0.0028  0.0014  0.0056  0.0130  0.0257

<
0.00 0
Av Er 0.0334  0.0441  0.0408  0.0346  0.0296 0
25 1 BS 206 263 J64 23 287 271 280 86 272
0 0.0135 -0.0042 -0.0033  0.0077  0.0183 -0.0001
0 0.0326

0.0240  0.0217  0.0188  0.0216  0.0572

Bias 0.0278  0.0083  0.0067  0.0038 -0.0023

4
0172
0334 0.0235  0.0213  0.0186  0.0187  0.1187
4
0
Av Er 0.0278  0.0475  0.0399  0.0333  0.0290 0

Ln <

[ )
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4. Fias and average error by height decile for 25 taper models (control data set).

Eqn. Heiqgqnt Decile, (H-hi/H- 1.3

No.  {.0- 0.1- 0.2- 0.3- 0.4- V- 0.6- 0.7- 0.8- ¢.9- s1.0 Total
1 1 77 183 259 290 239 287 276 291 114 276 2613

Bias 0.0029  0.0219 -0.0168 -0.0220 -0.0178  0,0002  0.0021  0.0067  ©.0080 0.0117  0.0022  §.000

Av Er 0.0029  0.0483  0.0099  0.0570  0.0440  0.0379  0.0286  0.0246  0.0231 0.0194  0.1346  0.044;
3 1 77 185 299 290 95 267 276 291 114 275 2613

Bias 0.0217  0.0397 -0,0053 -0.0175 -0.0199  0.0037 -0.0046  0.0042 0.0064  0.0042  -0.0273  -0.004¢

Av Er 0.0217  0.0375  0.0700  0.0958  (.0449  0.0375  (.0288  0.0244  0.0721 0.0177  0.0829  0.042¢
3 l 77 183 299 290 933 287 276 291 116 276 2613

Bias -0.0139  0.0226  0.0023 -0.0026 -0.0018  0.0206  0.0080  0.0081 0.0072  0.0106  0.0077  (.008¢

Av Er 0.0139  0.0446  0.0436  0.0381  0.0295  0.0337  0.0247  0.023 0.0216  0.0187  0,1109  (.0387
q i 77 163 239 290 953 287 76 291 116 276 2613
Bias -0.0162  0.0305  0.0090 -0.0010 -0.0066  0.0114 -0.0007  .0050 0.0132  0.0207  -0.0246  0.0034
Av Er 0.0162  0.0478  0.0447  0.0381  0.0305  0.0308  0.0243  0.0235 0.0227  0.0238  0.0797  0.0354
3 1 77 185 23 290 235 187 276 291 116 276 2613
Bias -0.0080  0.0033 -0.0198 -0.0164 -0.0160  (.0047 -0.0082 -0.0034 0.0035  0.0143  -0.0119  -0.0051
Av Er 0.0080  0.0440  0.0688  0.0546  0.0427  0.0367  0.0291 0.0252  0.0222  0.0209  0.0465  0.0333
6 i 77 183 259 290 393 287 276 291 114 276 2613
Bias 0.0158  0.0260 -0.0183 -0.0245 -0.0188  0.0110  £.0024 0.0067  0.0075  0.0109  -0.0100 -0.0014
fv Er 0.0158  0.0303  0.0699  0.057 0.0443  0.0379  0.0287  0.0247  0.0221  0.0191  0.1235  0.0472
7 1 77 185 239 290 339 287 274 291 114 276 2613
Blas 0.0159  0.0260 -0.0184 -0.0245 -0.0187  0.0110  0.6032  0.0066 0.0075  0.0110  -0.0079  -0,0012
Av Er 0.0159  0.0302  0.0699  0.0577  0.0443  0.0379  0.0287 0.0247  ¢.022 0,019 0.1252  0.0474
8 1 77 185 239 290 333 287 276 291 116 76 4613
Bias 0.0375  0.0463 -0.0082 -0.0250 -0.0252  0.0057  0.0037 0.0102  0.0085  0.0091 -0.0362 -0.0043
Av Er 0.0375  0.0818  0.0700  0.0579  0.0470  0.0375  0.0783 0.0334  0.0234  0.01B6  9.0679  0.0420
9 I 77 183 239 290 335 287 276 291 114 376 2613
Bias 0.0163  0.0264 -0.0182 -0.0245 -0.0188  0.0109  0.00%2 00066 €.0076  0.0110  -0,0074 -0,0011
Av Er 0.0165  0.0504  0.0699  0.0577  0.0443  0.0379  ©.0207 0.0247  0.0221  0.0192  0.1256  0.0475
10 I 77 183 39 290 335 287 276 291 116 374 2613
Bias 0.0128  0.0290 -0.0138 -0.0222 -0.0201  0.0077  0.0035 0.0100  0.0002  0.0002  -0.0895 -0.0110
Av Er 0.01238  0.0516  0.0699  0.0371  0.0449  0.0376  0.0787 0.02%4  0.0215  0.0177  0.0946  {.0441
1 I 77 185 259 290 333 287 276G 291 114 276 2613
Bias 0.0363  0.0360 -0.0145 -0.0288 -0.0309 -0.0065 -0.0155 -0.0104  -0.0044  0.0025  -0.0730  -0.0185
Av Er 0,02365  0.0554  0.0699  0.0592  0.0496  0.0383  0.0317 0.0360  0.0215  0.0177  0.0947  0.0455
12 1 77 183 359 290 993 287 *76 291 116 376 3613
Bias 0.0835  0.0705 -0.0339 -0.1229 -0.1910 -0.1625 -0.0489 L0496 00655 00596 -0.2601  -0.0860
Av Er 0.0835  0.0805  0.0744  0.135 0.1910  0.1626  0.0584 0. '518 0.0630 0,059 0.2601  0,13%7
13 1 77 185 239 290 393 287 376 291 116 276 2613
Bias 0.0334  0.0470 -0.0040 -0.0193 -0.0321  0.0031  -0.0027 0.0080  0.0I18  0.0102  -0.0201  -0,0024
Av Er 0.0334  0.0622  0.0702  0.0363  0.0458  0.0375  0.0287 0.0230  0.0234 0,018 0.0933  0,0445
14 1 77 183 209 290 RN 247 276 39 116 276 2613
Bias -0.0148  0.0285  0.0007 -0.0045 -0.0042  0.0193  0.0074 0.0080  0.0076  0.0196  0.0013  0.0072
Av Er 0.0148  0.045 0.0314  0.0416  0.0321  0.0348  0.02361  0.0242  0.0220  0.0190 0.1153  0.0410
13 l 77 185 209 290 393 287 276 291 116 276 2613
Bias -0.0003  0.0471  0.0149  0.0028 -0.0037  0.0155  0.0030 0.0057  0.0080  0.0118  0.1017  0.0187
Av Er 0.0003  0.0582  0.0549  0.0424  0.0318  0.0333  0.075 0.0237  0.0220  0.0192 L2115 0.0513
16 I 77 185 259 290 b 247 a7 291 114 376 2613
Bias -0.0013  0.0402  0.0154  0.0039 -0.0016  0.0169 0.0040  0.0062  0.0082  0.0124  0.1035  0.019%
Av Er 0.0013  0.0339  (.0461  0.0379  0.0297  0.0331  0.0741 0.0226 0,021 0.0191  0.3177  0.0500
17 1 77 183 239 290 933 287 276 291 116 276 2613
Bias -0.0730  -0.0497 -0.0536 -0.0313 -0.0109  0.0220 0.0114  0.00%99  0.0074  0.010Z 12.4934  1,3183
Av Er 0.0750  0.0543  0.0686  0.0531  0.0374  0.0380 0.0282  0.0247  0.0220  0.0188 12.6663  1.3708
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2. (continued).

Eqn. Heignt Decile, (H-h/iH-1.30

No.  0.0- 0.1- 0.2~ 0.3- 0.4- 0.5- 0.6~ 0.7- 0.8- 0.9- *1.0 Total
18 1 77 185 259 290 595 287 276 291 116 276 2613
Bias 0.0666  0.0908  0.0368  0.0129 -0.0014  0.0108 -0.0058 -0.0021  0.0048  0.0120 32.1094 3.4005
Av Er 0.0666  0.0976  0.0762  0.0514  0.0379  0.0359  0.0273  0.0240  0.0215  0.0195 32.3097 3.4468
19 I 77 183 259 290 353 287 276 291 114 276 2613
Bias -0.0769 -0.0341 -0.0344 -0.0312 -0.0103  0.0236  0.0119  0.0103  0.0077  0.0111  0.0004 -0.0011
Av Er 0.0769  0.0539  0.0671  0.0512  0.0351  0.0369  0.0271  0.0239  0.0215  0.0185  0.1682 0.0497
20 1 77 185 299 290 535 287 276 291 116 276 2613
Bias 0.0361  0.0631  0.0302  0.0153  0.0015  0.0117 -0.0056 -0.0018  0.0054  0.0159 *99.9999 +99,9999
Av Er 0.0361  0.0706  0.0614  0.0430  0.0333  0.0333  0.0277  0.0251  0.0219  0.0210 399.9999 »99.99399
21 1 77 185 259 290 933 287 276 291 116 276 2613
Bias 0.0327  0.0373 -0.0109 -0.0202 -0.0160  0.0136  0.0059  0.0093  0.0099  0.0l44  0.5150 0.037
Av Er 0.0327  0.0344  0.0640  0.0312  0.0331  0.0341  0.0255  0.0233  0.0218  0.0197  0.7563 0.1111
22 i 77 185 259 290 593 287 276 2N 116 276 2613
Biss 0.0323  0.0359 -0.0268 -0.0318 -0.0334 -0.0109  0.0043  0.0139 -0.0063 -0.0339 -0.0189 -0.01635
Av Er 0.0323  0.0556  0.0716  0.0719  0.0660  0.0484  0.0421  0.0390  0.0270  0.0370  0.0476 0.0499
a3 1 77 185 23 290 555 287 276 291 116 276 2613
Blas 0.0303  0.0812  0.0375  0.0149 -0.0001  0.0114 -0.0055 -0.0017  0.0076  9.0171 -0.0151 0.0082
Av Er 0.0503  0.0867  0.0640  0.0433  0.0311  0.0315  0.0250  0.0224  0.0211  ©.0211 0.1477  0.0435
24 1 77 183 259 290 55 287 276 291 116 276 2613
Bizs -0.0119  0.0249  0.0021 -0.0042 -0.0040  0.0187  0.0074  0.0089  0.0091  0.0174 0.0150  0.0089
Av Er 0.0119  0.0448  0.0438  (.0382  0.0298  0.0320  0.0246  0.0232  0.0218  0.0194 0.1263  0.0403
25 - 1 77 185 259 290 239 287 276 291 116 276 2613

0.0001  0.0039  0.0108  0.0182 -0.0175  0.0058

Bias -0.0240  0.0292  0.0139  0.0051 -0.0015 3
4 0.024¢4  0.0226  0.022 0.0220  0.0684  0.0340

0.01
v Er 0.0240  0.0493  0.0445  0.0374  0.0295  0.03
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