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Abstract

Relative to conventional aerial photographs, MEIS images make better use of the colour spec-
trum and can easily be registered to geographic coordinates. In the short term, this enables on-screen 
computer-aided image interpretation and compatibility with geographical information systems. In the 
long term, there is the potential to leave most or all of the interpretation task to computers. If this is to 
be successful with high resolution images (0.1-1m/pixel), we have to achieve the automatic isolation 
of individual trees from each other and from the background vegetation, followed by a tree by tree 
species identification. The trees’ geographic positions, crown areas, and heights would also be 
available to create detailed forest inventories. This paper describes on-going work at PNFI on the 
computer analysis of medium (1-10m/pixel) and high spatial resolution MEIS images, shows prelimi-
nary results, and discusses future avenues such as image understanding. 
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Résumé

Par rapport aux photographies aériennes conventionnelles, les images MEIS font une meilleure 
utilisation du spectre des couleurs et peuvent facilement être alignées à des coordonnées 
géographiques. À court terme, ceci facilite une interprétation à l’écran, assistée par ordinateur, et une 
compatibilité avec les systèmes d’information géographique. À long terme, il pourrait être possible de 
laisser la majorité ou toute cette tâche d’interprétation aux ordinateurs. Pour réussir cela à partir 
d’images à haute résolution (0.1-1m/pixel), nous devons parvenir à un isolement automatique des 
arbres entre eux et par rapport à la végétation environnante, suivie d’une identification à l’arbre près 
de leurs espèces. La position géographique, la superficie de leur couronne, et la hauteur des arbres 
seront aussi disponibles pour créer des inventaires détaillés de la forêt. Cet article décrit les travaux en 
cours à l’IFNP sur l’analyse des images MEIS de moyenne (1-10m/pixel) et haute résolution spatiale, 
présente des résultats préliminaires, et discute de directions futures telle la compréhension des images. 

Pages 117-128 in Leckie, D.G.; Gillis, M.D., eds. Intl. Forum on Airborne Multispectral Scanning for Forestry and 
Mapping (with Emphasis on MEIS), Val-Morin, Québec, Canada, April 13-16, 1992. Inf. Rep. PI-X-113, 

Forestry Canada, Petawawa Natl. For. Inst. 
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Introduction

The Multispectral Electro-optical Imaging Sensor (MEIS) is a Canadian remote sensing 
system capable of acquiring high quality digital images from an aircraft. These images make a more 
complete use of the colour spectrum than aerial photographs and can be automatically registered to 
geographic coordinates. Using standardized image enhancements and interpretation keys, they lend 
themselves well to on-screen computer-aided image interpretation. An interpreter workstation with a 
link to a geographical information system could facilitate the production or updates of a forest invento-
ry (see Figure 1).

Some of the short term objectives of 
MEIS research at the Petawawa National 
Forestry Institute (PNFI) are to develop the 
tools and methodology needed by this new 
approach and to compare it with convention-
al photo interpretation and inventory 
production techniques. However, in the 
long term and  in view of the increasingly 
precise information needed for forest  
resource management, automatic ways of 
gathering forest details  will be needed. To 
do this, it is necessary to isolate individual 
trees from one another and from the 
background vegetation, followed by tree by 
tree species identification. A tree’s 
geographic position and its crown area are 
thus immediately available. Tree height can 
be obtained because  stereo pairs can be 
specified as part of MEIS image sets. This 
may lead to forest inventories on a tree by 
tree basis, either as a goal in itself, or as a 
necessary step towards accurate forest 
stand inventories.

The automatic isolation and identifi-
cation of trees in high spatial resolution 
MEIS images (30-70 cm/pixel) constitute 
the main subjects of this paper. However, 

Figure 1 - MEIS-based forest inventory concept
(after Leckie 1990)
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because digital remote sensing is still usually associated with low resolution satellite imagery (10-80 
m/pixel), it is worth reviewing some of the problems that are encountered in image analysis as spatial 
resolution gets higher and higher. Different spatial resolutions usually imply different statistical views 
of the data and of the entities to recognize; they require different approaches to the image analysis 
problem. Results of medium resolution  (1-10 m/pixel) image classifications and segmentation will be 
given. Also, as the need to create new image analysis methods can lead to using an image understand-
ing paradigm, some work in aerial image understanding is briefly reviewed.  

Aerial Image Understanding

Image processing tools are often defined as those which produce improved images from  the 
multispectral images acquired by remote sensing. Filtering and enhancement processes are examples 
of such tools. Image analysis tools produce thematic results, which may be stored in image form, 
creating a description of the input image in terms of classes of interest. Image classifications or image 
segmentation processes followed by segment identification  are examples of such tools. Image under-
standing processes or systems attempt to create a complete description of the physical world depicted 
by the remotely sensed images (see Figure 2).  Historically, most of the work in image understanding 
has involved recognizing things in known, human-made, environments. However, the complexity 
found in high resolution MEIS images of forests, as well as the weaknesses encountered with image 
analysis approaches, may force us to use an image understanding paradigm.

The image understanding systems most applicable to our work are those that have dealt with 
extracting information from digitized aerial photographs. Let us briefly outline the most interesting 
ones and review some of their salient features. A system developed at the University of Kyoto, Japan 
(Nagao and Matsuyama 1980), analyses digitized aerial photographs of suburban areas. It first 
segments the image on the basis of colour homogeneity, then compiles various characteristics for each 
segment, and finally analyses segment relationships using a rule-based expert system (ES). The ES 
uses a "blackboard architecture", in which partial results of various processes are posted and decisions 
as to the existence and nature of various objects can be taken. For example, an object such as a house 
is usually made up of various segments in a particular arrangement. This system is typical of a bottom-
up approach to image understanding, where the information extraction process is carried out from the 
detection of simple features in an image, to their agglomeration into higher level features, to the 
interpretation of these features in terms of known objects, without reference to an explicit model of the 
world (except as hard-coded in the expert rules) and without the capability of going back to the image 
for further processing or analysis.

In contrast,  the Image Reasoning Program (Selfridge and Sloan 1981) developed at the  
University of Rochester uses a top-down approach to image understanding. An Appearance Model 
Expert, tapping into an Appearance Model of the world,  decides on the main recognition goals to be 
achieved and passes requests, in the form of subgoals, to an Operator Expert which has access to 
image processing operators. The Operator Expert decides which operators to use in order to 
accomplish one of these subgoals (its main goal for the moment) and dynamically modifies or tunes 
various parameters of the image processing operators until this goal is achieved. Of course, partial 
results are always fed back to the higher levels but the control of the image understanding process is 
inherently driven from the top.
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The ACRONYM system (Binford et al. 1980) was developed at MIT to recognize from aerial 
photos various types of airplanes parked at an airport. It uses an intermediate approach where informa-
tion from low level image processing is agglomerated to an intermediate state and compared with 
information brought down from higher level, model-based processes. More precisely, the bottom-up 
work consists of extracting edges and line segments from the image and relating them to each other to 
get ribbon-like features. The top-down work 
starts with a world model that describes 
airplane parts and airport features in terms of 
groups of 3-D cylinders and uses the known 
position of the camera to generate various 
possible ribbon configurations depending on 
possible plane types. The intermediate level 
tries to match the possible ribbon 
configurations with the actual ribbon config-
uration found in the image. Still, the 
ACRONYM system is basically using 
top-down control of the image understanding 
process; it is model-driven rather than 
data-driven.

The SIGMA system from Tohoku 
University, Japan (Matsuyama 1987), is a 
second generation system built from the 
experiences acquired at the University of 
Kyoto and the knowledge that an ACRONYM 
-type world model can be a definite 
advantage. Again, it tries to understand aerial 
photos of suburban areas. It combines three 
expert systems: the low level vision expert, 
the model selection expert, and the geometric 
reasoning expert. It first uses a bottom-up ap-
proach to recognize the obvious objects in 
the scene and connects them with appropriate 
models. For example, the model of a typical 
suburban house has a front lawn, a backyard, a driveway, etc. It then uses the models as guides to what 
possible related objects could  be found in the image and returns to the image with more precise and 
more localized operators, making various attempts to find these missing features. For example, a 
house and a front lawn were found initially, but the model expects a driveway to be also present, so 
efforts will be made to find such a driveway. These attempts to find missing features are made using 
various image processing operators and the system accumulates evidences from all the partial results 
as to the presence or absence of the desired feature (e.g., the driveway). This system is thus both 
data-driven and model-driven.

Another system mixing bottom-up and top-down image understanding control was developed 
in Germany (Nicolin and Gabler 1987). The bottom-up process, which uses a multi-resolution 
pyramid of data and region- and edge-based segmentation algorithms, generates "clues"of what could 
be found in the image. The top-down process, which uses structural analysis to attempt to group 
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Figure 2 - The fields and tools of computer vision
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segments, generates "expectations". These clues and expectations are used by the bidirectional control 
mechanism to generate hypotheses and test them, and thus accumulate evidence.

Over several years, a group at Carnegie Mellon University has developed different image 
understanding systems grouped under the umbrella name of one of their early system: MAPS -  the 
Map Assisted Photointerpretation System (McKeown 1987). Most of these systems deal with images 
in the context of providing information to Geographic Information Systems (GISs) or of providing 
information in a synergistic way with GISs. They differ in conceptual approaches or in the artificial 
intelligence tools being used (e.g., their resolution mechanism or their knowledge representation). For 
the more recent systems, the original MAPS is seen as a collection of databases (terrain, map, 
landmark, and image), each with sophisticated access methods. One system of particular interest is the 
rule-based expert system named SPAM - System for Photointerpretation of Airports using MAPS. It 
uses region-based, texture-based, and depth-based segmentation  and other feature extraction process-
es, in combination with knowledge about airports and the information provided by MAPS, to identify 
runways and buildings in aerial images of the Washington airport. Some of the most recent work of 
this group deals with combining multispectral and panchromatic stereo imagery for cartographic 
feature extraction of urban areas. In general terms, it can be viewed as information extraction and 
image understanding by fusing data from various sources, each providing a different perspective on 
reality (see paper by D. McKeown, this volume).

The image understanding (and/or analysis) research closest to mine is the doctoral and 
postdoctoral work of A. Pinz in Austria (Pinz 1989, Pinz and Bischof 1990). The goals are the same: 
the isolation and identification of trees in high resolution data acquired from airplanes. Pinz uses an 
expert system which controls a database of image analysis routines and a multilevel, multiparadigm 
representation of the forestry environment (i.e. using various AI knowledge representation schemes) 
to isolate individual trees. The trees are located by finding local maxima in the image (possibly tree 
tops) and examining how the spectral values fall off from this assumed tree center. Tree species iden-
tification (and, possibly in future, their damage levels) is obtained by classifications using feedforward 
backpropagation neural networks, a new classification approach popular in the artificial intelligence 
community. Pinz also succeeded in "crossing" various neural networks together using an approach that 
could be described as "neuron transplantations". The results are very encouraging, with 85-90% accu-
racy separating five species (spruce, beech, fir, pine, and larch).

Problems with High Resolution Image Analysis

In the present paper,  high resolution images are defined as being made of multispectral data 
acquired from an airborne sensor for which the spatial resolution of each pixel at ground level is of the 
order of 0.1-1 m/pixel. Similarly, medium resolution images imply 1-10 m/pixel and low resolution 
images, typically acquired by satellites, 10-100 m/pixel.  

At this point in time the better known image analysis techniques in digital remote sensing have 
been developed for satellite images. For example, a typical maximum likelihood classifier classifies 
images (with or without training) on a pixel by pixel basis, comparing the multispectral value of a 
given pixel with that of various classes represented by their mean multispectral values and their cova-
riance matrices (an indication of the spread of values around the mean values). The pixel is assigned 
to the class to which its has the highest likelihood of belonging. The two major drawbacks of this 
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approach are that: a) unless the multispectral 
data are augmented by derived textural 
features (e.g., by co-occurence or variogram 
approaches), a pixel-based classifier does not 
take neighboring pixels into consideration 
when making its decisions; and b), the pixel 
values forming a class are assumed to be 
"normally" distributed around their mean 
(i.e. forming a Gaussian, normal, or 
bell-shaped distribution). Although these 
constraints are reasonable for the analysis of 
low resolution satellite images, they make 
the classifier less and less effective as the 
spatial resolution of the data gets higher.

In the medium resolution range the 
texture within a forest stand, which is readily 
visible, can become as important as the spec-
tral or colour component in recognizing that 
stand. So methods that take into consideration 
neighborhoods or areas in making their deci-
sions (rather than single pixels) are usually 
more effective. In addition, the presence of 
distinctive sunlit and shaded areas within 
forest stands makes their class signatures 
(mean  vectors and covariance matrices) 
inherently skewed or bimodal, or normal 
with such large spreads and with significant  
overlaps between each class that classifiers 
based on a normality assumption are ineffec-
tive (see Figure 3). Fortunately,  in addition 
to the development of new classification 
methods, there are ways to make these old 
standby classifiers more effective.

In high resolution images, the problem is compounded by the fact that we may not even be 
dealing with the recognition of the same entities as in the low and medium resolutions. The 
recognition of forest stands can potentially be replaced by the recognition of individual trees, possibly 
followed later by their regrouping into stands. The individual trees themselves may exhibit a lot of 
texture and structure within their crown, correlated or not with the texture and structure exhibited by 
the entire stand (and with view and sun angles). New image analysis and even probably image under-
standing methods need to be developed for images of this type.

Near-Infrared

Hardwood

Softwood

Background

Shaded side

Lit side

Background

Shaded side

Lit side

Envelope

Envelope

Figure 3 - When inherently multimodal distributions 
(sunlit and shaded regions) are assumed unimodal by a 
classifier, class signatures (hardwood vs softwood here) 
become very wide and hard to differentiate and the pixel-

based classifier becomes ineffective.
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Possible Approaches for Medium Resolution MEIS Images

a) Ways to Still Make Use of Maximum Likelihood Pixel-based Classifiers

Because most commercial image analysis software packages contain a pixel-based maximum 
likelihood  classification process and because the digital remote sensing community is familiar with 
this type of classifier, having used it extensively to analyse satellite images, it was felt worth 
investigating ways to make use of this classifier with medium resolution MEIS data. The solution 
resides in finding ways to eliminate factors that cause the high variability in spectral signatures. With 
the realization that there is no need to classify every pixel in an image if tree species is our only 
concern, two approaches were tested , both based on masking part of the image before the 
classification process (Gougeon and Moore, 1988).

In the first approach, a mask was used that allowed only the pixels corresponding to the lit side 
of trees to reach the classification process. This eliminated pixels on the shaded side of the trees, as 
well as the pixels representing the understorey or the ground that were in the shadow of dominant 
trees. In the second approach, the mask was further refined to allow only the brightest pixel of each 
tree to reach the classification process. In the case of coniferous trees, this brightest pixel generally 
corresponds to a location near the top of the tree; that section of the tree is the most directly lit and is 
less likely to contain shaded areas. This approach was thus named the "tree top" classification 
approach.

These two approaches, as well as a conventional full image (unmasked) pixel by pixel classifi-
cation, were tried on a 1.2 m/pixel MEIS image of forest plantations. Table 1 shows the classification 
accuracies for four coniferous species, while Figure 4 shows on a tree-by-tree basis the results of the 
tree top classifier.

b) Image Segmentation by Region Growing

At medium resolution, approaches that take texture directly into account have more potential 
than pixel-based maximum-likelihood classifiers or modifications thereof. That is true even when 
some indirect texture measurements are introduced to that classifier (Teillet et al. 1981). One such 
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Table 1 - Supervised classification results of medium resolution MEIS data.

Class Unmasked Lit side mask Tree top mask

Red Pine 52% 54% 63%
Red Spruce 60% 52% 77%
White Pine 35% 48% 56%
White Spruce 42% 59% 65%

Average accuracy 47% 53% 65%



approach is to segment the image into homogeneous  regions (presumably forest stands) and then to 
recognize or identify these regions. A recent example of a texture-based segmentation process is that 
of St-Onge and Cavayas (1991). Another, combining more precise multispectral and textural 
signatures in a region growing segmentation process, is that of Gougeon and Wong (1986).

A region growing segmentation process starts by finding core areas on the image that are 
typical of potentially larger regions, extracts their parameters, and tries to grow these core areas so that 
they fill the whole region of which they are typical. Parameters control the growth so that, generally, 
it stops after encountering areas of a different nature. For example, from a core area typical of a 
particular forest stand, a region should grow to encompass all of the stand. On medium resolution 
MEIS images, such a process should deal directly with the significant texture present and preferably 
have precise multispectral signatures and metrics that do not make any assumption as to  the distribu-
tion of pixel values (i.e., no normality assumption). Figure 5 shows the results obtained on a 1.2 
m/pixel MEIS image of forest plantations at PNFI using the segmentation procedure of Gougeon and 
Wong (1986).

Once such an image has been segmented into spectrally and texturally homogeneous regions, 
there is still a need to identify the exact content of these regions, based on the regions’ spectral and 
textural signatures.  This identification process can be affected by parameters such as sensor response 
variations, atmospheric conditions, sun elevation and azimuth, sensor view angle, topography, forest 
stand density, and tree shapes and sizes. A study was done to see if some of these effects could recog-
nized, quantified and compensated for in the spectral and textural signatures (Gougeon and Wong, 
1987). An analysis method was developed and partial results are promising. It led to the concept of 
using a knowledge-based system to identify regions resulting from the segmentation process (see 
Figure 6).

Figure 4 - MEIS image of forest plantations at 1.2m/pixel and
 results of the tree top classification approach

( ∗  =  Red Pine,  + = Red Spruce, ◊ = White Pine  and ⊕  = White Spruce)
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Figure 6 - A possible knowledge-based segment identification system

Figure 5 - MEIS image of forest plantations at 1.2 m/pixel and 
results of a multispectral and textural segmentation

9



Ongoing Research Work on High Resolution MEIS Images

a) Individual Tree Isolation

High resolution images, with their detailed look at the forest, force us to think in terms of 
individual trees and the data within them and around them rather than consider forest stands. Individu-
al trees are the logical entities (or objects) for the computer to analyze in such images, and if we were 
to identify these trees, we could always recreate the desired forest stands later. The first step towards 
identifying individual trees is to be able to isolate them from the background vegetation and from each 
other. This is difficult even when there is substantial shadow.

Part of the difficulty is that, even though the shaded areas may help to isolate the lit parts of 
trees, one is often left with tree clusters and groupings where the end of one tree and the beginning 
another is hard to assess. Also, even if a given tree is distinct enough, its crown area (an important 
forestry measurement) may be difficult to ascertain. Parts of the tree itself may be shaded and other 
vegetation may lie in the tree’s shadow. Distinctiveness will suffer.

Over the past three years, various approaches have been tried to isolate individual trees. Given 
a certain viewpoint and sun elevation, it is possible to assume a well defined shape for conical conifer-
ous tree species (e.g., a circular or crescent shape). However, tests done, assuming such a shape and 
using a generalized Hough transform (Ballard 1981) to move the data into a parameter space suited to 
recognize that shape, have not been successful. A morphological approach (Mouchot et al. 1989), 
typically more independent of fixed shapes and relying on eroding and redilating image entities, also 
had poor success. Various neural network approaches (Zeidenberg 1990) are still being investigated in 
collaboration with l’Université du Québec à Hull. A "valley following" technique, succeeded by heu-
ristic rules to complete the isolation process, is showing great potential. Its description follows. 

The technique is conveniently described by a geographical analogy. At a conceptual level, 
trees, as depicted in a grey level image, can be visualized as mountains (i.e., clumps of pixels with 
higher values than their surrounding). The technique consists of following the valleys that invariably 
exist between them. During a first pass through the image, "potholes" or "lakes" are located. They 
correspond to points that are local minima. In subsequent passes, starting from these potholes, valleys 
are followed upstream in an incremental fashion to the highest point of the valley (hopefully without 
going up any mountain), and then, downstream through the adjacent valley to a neighbouring pothole. 
In all of these iterations, the continuation of a valley, as defined at the pixel level, is the next pixel 
bordered on each side by pixels of higher value. In other words, we are looking for the next pixel up 
or down in a typical V-shaped valley. To save time and avoid confusion, large, "almost flat", "sea level 
plateaus" were previously eliminated from this process by a simple pre-classification. The "valley 
following" technique isolates individual trees rather well (at least visually), as seen in Figure 7. How-
ever, a careful examination of Figure 7 will reveal that in a lot of cases the trees are not completely 
surrounded by valleys. This problem is alleviated by creating various rules describing how and when 
to possibly close a tree contour. This, of course, is not a trivial problem. The creation of these heuristic 
rules (i.e., rules of thumb) constitute the bulk of the individual tree isolation endeavour and will be 
reported in an upcoming article.

At this point in time, the approach is deemed to be very promising. However, it has only been 
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tried on a MEIS image of a coniferous forest, and not on a hardwood or mixed forest. In addition, the 
imagery was taken in late fall where low sun elevation favours the production of shadows and shaded 
areas. This approach would no doubt fail with a rather flat canopy. Its success in hardwood forests is 
uncertain, but will be tested soon.

b) Various Approaches to Multispectral Classification of Individual Trees 

As mentioned before, high resolution MEIS images (from low altitude flights) force us to think 
in terms of individual tree isolation and identification, rather than forest stand delineation. Similarly, 
it is more appropriate to think in terms of object-based (i.e., based on the trees) rather than pixel-based 
classification processes to identify species. This implies the creation of new classification techniques, 
whether based on the multispectral characteristics of the trees or on other characteristics such as 
texture, structure, and context.

In the past few years various approaches (some traditional, some novel) have been examined 
to facilitate the multispectral classification of individual trees. They differ mainly in the way that 
signatures are acquired from the trees. These techniques and their signature definitions are listed in 
Table 2. The first three classification schemes rely on only one multispectral vector per tree (i.e., one 
number per channel) to make their decisions. This follows the concept that representing the spectral 
characteristics of a tree by a single value per channel is sufficient to classify that tree. These methods 
do not take advantage of the fact that the tree itself may cover an area of 25-150 pixels. The other four 
classification schemes are variations of the "Tree Colour Line " approach. It is based on the idea that, 
independent of the illumination situation (i.e., lit or shaded tree sides), a tree species has a certain 
ubiquitous colour and certain light penetration properties related to its structure. The spread of a single 
tree’s pixels in multispectral space can be described at a first level of approximation by a line through 
that space. This multidimensional line can be described by its slope and intercept in its various two 
dimensional projections (as in "si_sign", in Table 2) or by a multidimensional line, obtained by finding 
the principal component of the data, anchored by the mean of the data (as in "mpc1_sign"). At a 

Figure 7 - White Spruces from PNFI’s Hudson Plantation and the preliminary results of the "Valley 
Following" tree isolation process (with 31 cm/pixel data from the near-infrared channel)
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Table 3 - Comparison of various multispectral classification schemes
for trees individually delineated on a high resolution (36 cm) MEIS image.

Signatures Classifier Average Overall Accuracy

ave_sign ML 67 (61.3 - 75.5 )  (12 sets)

lit_sign ML 73.5 (70.2 - 79.8) (10 sets)
tt_sign ML 62.1 (52.1 - 66.7 ) (10 sets)

si_sign ML 66.7 (51.2 - 70.3) (10 sets)

mpc1_sign ML 63.7 (54.7 - 75.0) (10 sets)

mpc1ev_sign ML 63.2 (55.2 - 69.6) (10 sets)

mcov_ca_sign ML 64.3 (56.5 - 69.7) (10 sets)

ave_sign NN (HN=5) 70.0 (66.7 - 72.8) (5 sets)

lit_sign NN (HN=5) 72.5 (70.4 - 74.5) (5 sets)

tt_sign NN (HN=5) 67.4 (63.8 - 71.1 ) (5 sets)

si_sign NN (HN=5) 62.9 (60.7 - 70.3) (5 sets)

mcov_sign NN (HN=15) 65.0 (56.6 - 77.8) (5 sets)

Tree Average (ave_sign):

The mean multispectral vector of all pixels contained in the tree.

Average Lit Side (lit_sign):

The mean multispectral vector of all pixels found on the lit side of the tree. For the sake of simplicity, 
the lit side is defined as all pixels with values in the near-infrared band above the mean value of that 
band.

Tree Top (tt_sign):

The multispectral vector of the most brilliant pixel in the near infrared channel, often corresponding to 
an area near the tree top of conifers.

Slope & Intercept (si_sign):

Based on the "Tree Colour Line" approach , these  signatures consist of the slopes and intercepts of the 
tree colour line as all the bands are compared with the near infrared band one by one (sometimes refered 
to as the "Multiple 2D Tree Colour Line" approach).

Mean vector & first principal component (mpc1_sign):

The "Tree Colour Line" approach in multiple dimensions - the distribution of pixels for each tree is 
represented by its first eigenvector (its colour line direction) and its mean vector (to anchor the line in 
space).

Mean vector & first principal component  & eigenvalues (mpc1ev_sign):

As above, but eigenvalues are added to describe the spread of the distribution in various directions.

Mean and covariance matrix (mcov_sign):

The mean and covariance matrix of the distribution of pixels in multispectral space for each tree.

Table 2 - The various multispectral classification schemes 
and their signature definitions.
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second level of approximation, the spread of a single tree’s pixels in multispectral space can be 
described as taking the form of a cigar. This cigar, the spread of the data around the tree’s colour line, 
can be parametrized by its eigenvalues (as in "mpc1ev_sign"), or by its covariance matrix (as in 
"mcov_sign"). The latter is theoretically more precise, but it implies the availability of more data to be 
properly defined. In small trees, it is not obvious that there is always enough pixels to define that 
matrix with enough precision for species separation. A detailed description of these signatures is 
beyond the scope of this paper.

Most of these tree signatures were tested with both maximum likelihood and feedforward 
backpropagation neural network classifiers. From five species, 201 trees randomly split with equal 
probability between training groups and testing groups were used. Because of the low number of trees 
available, which led to classification replication instabilities,  most experiments were repeated from 
five to 12 times with randomly selected tree groups. Preliminary results in the form of average overall 
accuracies are shown in Table 3. 

These preliminary results can be interpreted in at least two ways. On the positive side, it is 
reassuring to know that there are quite a few possible ways of getting classifications of high resolution 
MEIS images. In addition, it is encouraging that some of these procedures are easily implemented on 
typical commercial image analysis systems (i.e., Table 3, first section). These procedures are faring 
just as well, if not better, than the new algorithms designed specifically for tree-based classification 
(i.e., Table 3, second section). Moreover, resorting to neural networks may not be necessary (Table 3, 
third section). On the negative side, not one of these methods is giving great results, even though we 
are dealing with only five species, albeit five very spectrally close species. Although not shown here, 
it should also be noted that one particular species, white pine, either due to its nature or to the lack of 
a sufficient number of training trees, has been bringing these accuracy figures substantially down. 
More research is needed and various other forestry situations should also be examined. However, one 
should keep in mind that in any classification into classes with subtle differences, complete accuracy 
is impossible.  Obtaining accuracies of the order of 75-85% would be a reasonable goal, especially 
considering conventional aerial photo interpretation accuracies.

The interpretation of the low accuracies registered here (50-80%) and of the rather large varia-
tions encountered as experiments are repeated with different randomly selected trees, should also be 
tempered by the fact that these are preliminary results, obtained with what appears to be a less than 
sufficient number of trees. Additional trees are in the process of being added to these experiments. 
Tests similar to that of a production environment will be possible when the tree isolation programme 
is completed and can directly feed the classifiers. 

Additional experiments are underway with various textural parameters and their synergistic 
effects when added to the multispectral signatures. At this spatial resolution, texture within a single 
tree crown can be considered to be a manifestation of the interaction between the tree’s physical 
structure and the lighting situation. However, much of the existing methods of describing texture may 
not be appropriate due to the lack of significant statistics available from within a single tree crown. 
Future experiments will deal more directly with various structural parameters, and their potential 
synergistic effects with multispectral and textural parameters. As the number of parameters to 
combine in making a decision about tree species identity increases, neural net classifiers, capable of 
making decisions in more complex decision spaces, will have to replace the ubiquitous maximum 
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likelihood classifier. Ultimately, though, if many multispectral, textural and structural approaches are 
developed, combining them in the hope of getting a synergistic effect will start to be counterproductive. 
A more direct way of selecting the appropriate and necessary parameters from the different domains 
will be needed. This leads us to the idea of possibly using an expert system or a knowledge-based 
system to make these decisions on a case by case (i.e. tree by tree) basis.

Towards Automatic Interpretation of Aerial Images

Although an image analysis paradigm may restrict us to think in terms of the synergy among 
properly weighted signatures gathered in different domains (e.g., multispectral, textural, structural, 
and contextual), an image understanding paradigm may provide us with more freedom to select the 
proper tools as needed and accumulate differentiating evidence gradually in a logical fashion. It is a 
well known fact that, given a certain number of classes of interest, image analysis tools and domains 
will differ in their ability to separate them. Given the knowledge (acquired by experimentation) of 
which tools are more useful for each case and given a prior automatic isolation of the individual trees 
in a MEIS image, it should be possible to create an expert system that will attempt to identify a given 
tree species on a tree by tree basis 
using a selected subset of these tools. 
Such a system is depicted in Figure 8.

With the addition of parallax 
information from MEIS stereo pairs, 
this system leads to an individual tree 
inventory, where tree positions, 
species, crown areas, and heights are 
tabulated. Although an individual tree 
inventory "per se" may not be  what is 
needed, I believe that it may be a nec-
essary intermediate step in obtaining 
accurate forest inventories. The 
individual tree-based information 
produced in such a way can always be 
recombined into the desired forest 
stands afterward. In fact, that may 
help solve the general problem of dif-
fering inventory needs for different 
applications. Although it is not 
obvious how recombination will take 
place, some researchers are already 
addressing the issue (Eldridge N.R., 
pers. comm.). A possible approach 
might involve making decisions on 
stand boundaries using various image 
segmentation tools at different lower  
spatial resolution levels of a 
multi-resolution pyramid. In any 

Figure 8 - Individual tree inventory from high resolution MEIS 
images
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case, keep in mind that this individual tree inventory would be acquired almost automatically (i.e., it 
is not labour intensive) and need not be stored as such if not needed. Additionally, you can rest assured 
that if an individual tree inventory is available as an intermediate product, it will eventually be put to 
good use.

Conclusion

In the short term, most of the research work in the digital remote sensing project at PNFI is 
directed towards solving problems posed by the computer-assisted interpretation of standardized 
MEIS image enhancements. Essentially, the aim is an improved, computerized version of what is 
currently being done with conventional aerial photos. This approach makes good use of some of the 
advantages of the digital imagery produced by the MEIS sensor, namely: the capability to register 
these images precisely to geographic coordinates, thus to facilitate the interaction with Geographic 
Information Systems; the better use of colour information due to the multispectral nature of these 
images; and, the possibility of an automatic interpretation of things such as lakes and roads. This 
should already provide substantial improvements over conventional ways of doing forest inventories 
and be an effective way of introducing this new technology.

On the other hand, for digital MEIS data to fulfill its full potential, more automation of the 
interpretation process is needed. Longer term research towards the complete automation of the inven-
tory process is also being undertaken at PNFI. This automation (or semi-automation) will most likely 
be achieved by making use of various image analysis tools to identify species on an individual tree 
basis. The proper path is still unclear, but seems to fall along the lines of either combining summarily 
the information provided by all of these tools, or selecting the appropriate tools as needed, in an 
ongoing refinement process, using an expert system. In any case, because of the differences from 
satellite imagery, a variety of new image analysis tools for medium and high resolution MEIS data 
needs to be developed and tested.
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