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Abstract

The union of geographical information systems (GIS) with remotely sensed data provides opportunities to
update GIS attributes. The ability to update GIS polygons with regional scale remotely sensed data, such as
Landsat TM, is limited by the distribution of variance of the spectral content both within and between the
GIS polygons.

In this study, we address the distribution of spectral values in relation to forest inventory polygon
information to benchmark the strength of the relationships between forest inventory information and image
spectral response.  Following the investigation of the distribution of variance we undertake to predict
polygon labels from co-registered Landsat TM data.

Management units selected to represent softwood and hardwoods are identified correctly in approximately
64% and 72% of the possible cases respectively; whereas, the management unit selected to represent mixed
woods was identified correctly in 15% of possible instances.  When considering the results within the
context of a polygon, filtering is possible to indicate the most likely class.  Both the investigation of the
polygon variance structure and the polygon classification indicate that given a sub-optimal variance
structure a cohort classification approach is preferred over a per pixel classification.

Introduction

The synergy between remote sensing and GIS data is logical due to the nature of the data present with each
information source.  Remote sensing provides spatially explicit measurement of phenomena, while
geographic information is produced through the analysis of measurements or other geographic data (Davis
and Simonett, 1991).  To best integrate remotely sensed measurement and geographic information, issues
such as data transformations, scale dependence, and computational environments need to be addressed
(Davis, et al., 1991).  The ability to combine remotely sensed and GIS data has enabled the generation of
new data based upon characteristics unique to each data source (He, et al., 1998).

Forest inventories in Canada are normally updated incrementally within an approximately ten-year cycle
(Gillis and Leckie, 1993).  As the inventory is updated incrementally, the forest inventory information is
often not all of the same vintage.  A means to update the forest inventory data to a common date is
therefore desirable. We propose to use remotely sensed information to update the forest management units.
Forest inventory polygons stored in a geographic information system (GIS) are normally created from
digitization of manually interpreted air photographs (Gillis and Leckie, 1993).  The criteria to delineate the
forest management unit areas are the presence of homogeneity of characteristics such as species
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assemblages, density class, crown closure, and development stage.  The forest management unit
information stored in the GIS is based on a complex series of conditions.

Satellite remotely sensed imagery can collect up-to-date information on forest conditions over large areas.
Yet, the ability of regional-scale remotely sensed data, such as the 30 metre spatial resolution Landsat TM
sensor, to capture the same suite of characteristics is limited.  As a result, the relationship between forest
stands as represented by GIS data and remotely sensed data are difficult to calibrate.  Further, the location
of boundaries between stands are often placed in subtle regions of transition between forest stands.  An
inability of forest polygons to properly represent the dynamic forest characteristics is argued by Holmgren
and Thuresson (1997) who propose the dynamic allocation of management units.  The presence of pixel
variability within GIS polygons which are assumed to be homogenous cover-types has been noted in
previous research (Franklin, et al., 1997).  These results are further related though an investigation of image
spatial dependence in reference to forest management units illustrating that forest inventory classes vary in
relation to natural spectral classes (Wulder and Boots, 1998).  Wang and Hall (1996) present the need for
fuzzy boundaries between polygons as an acknowledgement of the nature of the transition across polygon
boundaries.

The alternative to characterizing forest management units with spectral information is to rebuild the
management unit according to remotely sensed estimates of the land cover attributes, such as height,
density, and species.  Before such an approach is viable, the methods for land cover attribute estimation
with remotely sensed data require additional research to improve accuracy.  The goal of this study is to
investigate the use of remotely sensed data to characterize the spectral variability found within forest
management polygons.  An investigation of the spectral values found within and between identically typed
forest management polygons will indicate the reliability of remotely sensed data in identifying critical
attributes in a consistent manner.

Methods

Study Area
The 872,498-ha study area is located in south central New Brunswick, Canada, with approximate bounding
coordinates 45 51 00N  66 35 16W (upper left) and 45 36 17N  64 53 53W (lower right).  The study area is
comprised of two provincial forest management regions located in the Acadian forest region and is
composed of a variety of broadleaf deciduous and coniferous species and includes a wide range of forest
conditions (Rowe, 1977); and with stand ages range from regeneration to old growth, resulting in a range of
forest types, crown closures, stand densities, tree species, and LAI values.  The Acadian forest region is
characterized by a wide variety of forest species.  Coniferous tree species are predominantly jack pine
(Pinus banksiana), white spruce (Picea glauca), balsam fir (Abies balsamea), and red spruce (Picea
rubens).  The predominant deciduous species are red maple (Acer rubrum) and white birch (Betula
papyrifira), with stands also including beech (Fagus grandifolia), striped maple (Acer pensylvanicum),
trembling aspen (Populus tremuloides), long tooth aspen (Populus grandidentata), and sugar maple (Acer
saccharum) (Wulder, et al., 1998).

Data Base Development and Data Fusion

Forest Inventory GIS Data
The forest inventory data is composed of 90 different forest management units, of which approximately 38
indicate forest vegetation, each containing a variety of classes.  The forest inventory GIS data base is made
up of 125,380 polygons resulting in a digital file size of approximately 171 megabytes.  The study area is
composed of two provincial forest management units, roughly of equal size, with inventories current to
1993 and 1994, respectively.

Landsat TM Image data
The Landsat TM image data utilized in this study was collected July 31, 1995, at 14:05:07 local time,
resulting in a sun elevation of 51.41° and a sun azimuth of 124°.  The imagery cropped to represent the



study area is composed of 5300 pixels by 3800 lines, resulting in an file size of approximately 1,600
megabytes including additional necessary layers of information.

The imagery was geocorrected to the UTM projection utilizing 72 ground control points to allow for co-
registration of the satellite data to the same co-ordinate system as the GIS data.  A root mean square error
of 0.45 pixels and 0.34 lines was achieved using a 2nd order polynomial model and selecting ground control
points from NTS 1:50,000 scale map sheets.  A 30 x 30 metre pixel size was maintained for the image data.

Principal components analysis was applied to the six non-thermal Landsat TM image channels to explore
the potential of a reduction in dimensionality of the data.  The principal components analysis suggested the
Landsat TM channels 3, 4, and 5, respectively representing visible, near infrared, and short wave infrared
spectral regions.  The use of Landsat TM 3, 4, and 5 is similar to findings of Horler and Ahern (1986), and
is supported in the theory of Imhoff and Campbell (1978).

Fusion of Vector Inventory Data with Raster Image Data
GIS polygons were rasterized based upon the procedure published by Wulder (1998) and merged with the
co-registered Landsat TM imagery pixel by pixel.  The polygon identification number (PID), a unique code
assigned to each polygon in a GIS, was used to link each pixel to the inventory attributes for the polygon in
which the pixel resided.  Computation of spectral statistics for a polygon is henceforth straightforward.
These computations could be done using specifically developed code on the exported raster data (Wulder,
1998) or, as in this study, the exported data may be analyzed using statistical software (Stata, 1997).

When converting data from vector to raster formats some original detail is lost (Piwowar, et al., 1990).  The
conversion of continuous vectors to discontinuous raster values results in the potential for the inclusion of
non-representative spectral values around the borders of a polygon (Congalton, 1997).  To reduce this
problem, a one-pixel buffer was created around each rasterized polygon and this buffer was excluded from
the analysis.  A Hotelling’s T-squared test (Kendall, et al., 1983) on the spectral contents of buffered versus
non-buffered polygon contents indicated, at a 95% level of confidence, that in approximately 54% of the
polygons the spectral contents of the buffered region differ from the non-buffered region.

Data Processing
Of the 90 forest management unit designations, approximately 38 indicate forest vegetation, each of which
is composed of a variety of potential combinations of classes.  To allow for a detailed investigation a
representative sub-sample is required for analysis.  As a result, a range of forest types are desired to capture
the variability within the study region.  The three cover-types of softwood, hardwood, and mixed wood,
may be represented through inclusion of Balsam fir-spruce (BFSP), Intolerant hardwood – Tolerant
hardwood (IHTH), and Balsam fir-Intolerant hardwood (BFIH).  These three forest management types
represent 953, 1781, and 1596 polygons, respectively, comprising 12% of the forest cover polygons within
the study region.  Polygons with less than 10 pixels are not included in the analysis as they were considered
too small to give reliable estimates of the within-polygon variance of spectral values.  Further, we required
that each polygon selected for comparison not only have the same forest management unit label but that it
is composed of similar attributes, such as an equal number of species classes, density classes, development
classes, and crown closures.

The retained data records (pixels) contained the following variables: PID, forest management unit label,
leading species code, density code, development class, crown closure category, and all Landsat TM 3, 4,
and 5 digital numbers.  To avoid repetition the data analysis portion of the methodology is described as a
component of the following results and discussion.

The prediction of polygon labels from the digital numbers found within the polygons is undertaken using
discriminant analysis (Davis, 1986) with separate estimates of the variance-covariance matrices and equal
prior probabilities.  From the entire set of BFSP, BFIH, and IHTH polygons available, 75 of each were
randomly selected and removed to for independent validation.  The resulting discriminant functions were
used to predict for each pixel in the validation set the most likely forest management unit label.  An error
matrix is generated to assess the accuracy of the pixel-level forest management unit predictions.  The



interpretation of the error matrix follows the methods and nomenclature suggested by Janssen and van der
Wel (1994).

Results and Discussion

To update forest polygon labels with remotely sensed data, the remotely sensed data within a particular
forest management unit must be consistent enough to allow accurate labeling.  Further, the spectral
differences between the labels must also be distinct to allow differentiation.  Therefore, the success of the
update depends critically on the ratio of spectral variance within and between polygons with unique labels.

Polygon Spectral Contents
As suggested by the principal components analysis, Landsat TM 3, 4, and 5 are considered in this analysis.
Observation of the summary statistics of the digital numbers found within the selected polygons indicates
some general trends.  Landsat TM 3 appears to be of insufficient spectral range to allow for an effective
differentiation between cover-types.  The Landsat TM 4 and 5 spectral contents of the polygons appear to
have unique distributional characteristics, both in terms of wavelength and cover-type.  Further analysis,
such as an analysis of variance, is required to assess if the variance structure of the spectral values is
pursuant to an effective discrimination and typing of polygons.

Variance of the Digital Numbers within and between Polygons
If the spectral values found within a particular forest management unit type are not consistent prediction of
unit type from digital numbers will be problematic.  As an illustration of the within polygon spectral
variability, histograms of the digital numbers found within each forest management unit, as exemplified by
Figure 1.  The histograms illustrate, for each forest management unit, the distribution of digital numbers as
measured and as modeled to a normal distribution.  The curves to represent the normal distributions are
modeled from the mean and standard deviation measured for each channel within the management unit.
The range of the TM 3 values for each forest management unit are small, also with a departure from
normality indicated.  The distribution of values for TM 4 and 5 more closely resemble the normal
distributions.  The regions of overlap of digital numbers within each forest management unit are also
evident in the histograms.  The regions of overlap are where the digital numbers measured may indicate
more than one possible class.

To graphically illustrate the variance by spectral channel, between identically labeled polygons within each
forest management unit, histograms are generated and presented in Figure 2 as an example.  The
histograms illustrate, for each Landsat TM channel, the distribution of digital numbers as measured and as
modeled to a normal distribution, for each forest management unit.  The curves to represent the normal
distributions are modeled from the mean and standard deviation measured for each channel within the
management unit.  The TM 3 digital numbers are found to overlap, indicating that TM 3 is a poor channel
for discrimination between forest management units.  The regions of overlap occur where the digital
numbers measured may indicate more than one possible class.  Landsat TM 4 and 5 (see Figure 2 as an
example) illustrate a larger range of digital numbers and the variability of the distributions for each forest
management unit.  While the distributions of TM 4 and 5 digital numbers found within the forest
management units vary in form, the ranges tend to overlap.  As a result, inclusion of the distribution
characteristics of the digital numbers within a particular forest management unit is desirable to improve the
ability to discriminate between classes.

As illustrated with the histograms, overlap of spectral values between and within forest management units
is present.  Yet, a successful TM-based discrimination of polygons with different labels requires the ability
to differentiate between types with spectral values.  We propose to use a signal to noise ratio (SNR) of
polygon spectral variability to gauge our ability to classify polygons to forest management unit types.  The
signal is the variance between forest management units, and the noise is the variance found among and
within identically labeled forest management unit polygons.  Low SNR values indicate poor repeatability;
whereas, high SNR values indicate the presence of useful spectral information within and between
polygons.  A significant spectral difference between polygons with identical labels would, with everything
else being equal, jeopardize discrimination.  An analysis of variance and estimation of the among and



within polygon variance of identically typed polygons will enable us to gauge the potential for an effective
discrimination/classification procedure.

SNR is in essence a measure of repeatability, commonly used in quantitative genetics (Falconer, 1983).
When we classify pixels within a polygon we are essentially taking repeat measures of an object (polygon).
Within the context of the repeated measures the noise variance component of the signal to noise ratio
declines at a rate in proportion to the sample size (number of pixels).  In other words, our ability to
correctly classify a polygon increases with the number of pixels.  A similar argument applies at the forest
management unit level where a large number of identically labeled polygons improves the rate of correctly
classified polygons, as the between-polygon noise decreases as we increase the number of polygons
measured.  SNR consists of three components, the variance between distinct forest management units
(V2

unit), the variance among polygons of the same unit (V2
poly | unit), and the within-polygon variance (V2

w).
Mathematically SNR of the variance components is computed, for a given combination of polygons and
pixels, as:

SNRn_polygons, n_pixels = V2
unit / (V

2
unit + (V2

poly | unit / n_polygons) + (V2
w / (n_polygons * n_pixels))).

Where, n_polygons is the number of polygons, and n_pixels is the number of pixels.  It is thus clear that the
signal to noise ratio of the variance components, and with it our ability to correctly classify a polygon,
improves as we increase the number of measurements of polygons and pixels.

When the SNRn_polygons, n_pixels is computed for each spectral channel, based upon the variance encountered
over the entire data set, the following results are found, TM 3 = 0.01; TM 4 = 0.14; TM 5 = 0.19.  The low
repeatability value generated for TM 3 indicates a lack of variability between digital numbers found
between identically labeled polygons.  The SNRn_polygons, n_pixels values for TM 4 and 5 indicate an
improvement in the ability to characterize the forest management units with the digital numbers found
within the polygons.  In contrast to consideration of the variance over the entire data set, the distribution of
the variance may be considered at particular instances or as a continuum.  In Figures 3a-c we present a
continuum, by spectral channel, of the repeatability as a function of number of pixels and polygons in a
forest strata of identically labeled polygons.  Evident in the figures is the relationship between the number
of pixels and polygons to the ability to characterize the spectral characteristics of a forest management unit.
Increasing the number of measured pixels beyond |5 results in little improvement of SNRn_polygons, n_pixels.
Alternately, classifying a large number of polygons results in a sizable increase to the SNRn_polygons, n_pixels.
The increase to the initial SNRn_polygons, n_pixels allows for better overall variance characterization.  As a result,
an efficient update strategy is to classify 5 to 10 randomly selected pixels per polygon rather than a
complete classification with little added gain in the classification results.  These results relate the spatially
autocorrelated nature of neighbouring pixels, where increasing the sample size has little explanatory effect,
as the pixels within polygons are not independent observations (Cliff and Ord, 1981).  For a discussion of
the spatially autocorrelated nature of remotely sensed data see Wulder and Boots (1998).

Prediction of Polygon Labels on a Per Pixel Basis
In Table 1 we present the per pixel results of predicting forest management unit labels from the spectral
values found within the polygon boundaries.  The producers accuracy, as a function of omission, illustrates
the highest accuracy for the hardwood vegetation cover (72%), followed by softwoods (64%), with mixed
wood accuracy much lower (15%).  The forest management units composed of an individual vegetation
type (i.e. softwood: BFSP, hardwood: IHTH) are predicted with greater frequency than management units
composed of multiple vegetation types (i.e. mixed wood: BFIH).  However, the commission error indicates
that there may be a predisposition towards particular classes, with the commission error following the same
pattern as the omission error.  Further, the commission relates that as a function of the total number of
pixels placed in a particular class approximately half are falsely indicated.  The high commission error
indicates that, based upon the training data available, the classifier is limited in the ability to
mathematically discriminate between the classes.

The discriminant analysis was undertaken aspatially.  Consideration of the results spatially may allow for
further insights to the results.  Processing of the predicted classes with a majority (mode) filter, to provide a
single label for the polygon is undertaken.  The results demonstrate that it may not be necessary to correctly
predict the forest management unit class for each pixel.  If a majority of the pixels within a particular
polygon are sufficiently characterized by the digital numbers, the polygon once filtered may have the



correct class predicted.  Our SNR analysis points to the same results, as repeated measures on a single
object (polygon) improves our chance of correct classification.

When predicting the polygon labels from the majority filtered results over the entire data set, the producers
accuracy increases for the homogeneous units (BFSP, 68%; IHTH, 75%) but decreases, contrary to
expectations, for the heterogeneous unit (BFIH, 7%) (Table 2).  (However, alternate methods of predicting
the object class may yield different results.  An alternate approach may be to pool the posterior
probabilities computed for each pixel within the polygon.)  High commission errors are also present
reinforcing the trend indicated on the per pixel accuracy assessment.  The users accuracy results (all around
50%) indicate that a polygon is as likely to be classified incorrectly as classified correctly.  The producers
accuracy results indicate that certain forest management units may be updated or validated based upon
remotely sensed data given access to a priori information.  The users accuracy results indicate that caution
should be exercised when providing labels to forest management units, with remotely sensed input, to
polygons with no a priori label information.

Conclusions

In this study, we addressed the distribution of remotely sensed spectral values in relation to forest inventory
polygon information to benchmark the strength of the relationships between forest inventory information
and image spectral response.  To assess the potential to use remotely sensed data to label forest
management classes the spectral variability, both within and between forest cover classes, was investigated.

Initially we presented the distribution of the spectral characteristics which can be expected for Landsat TM
3, 4, and 5 within the forest management units relating softwood, hardwood, and mixed wood cover-types.
Computation of repeatability (SNRn_polygons, n_pixels) as an indication of forest management unit variance by
image channel indicates the need for a wide distribution of sample pixels by forest management unit
polygon.  Insight to the statistical relationship is presented by overlaying the histograms for each
management unit by image channel.  The overlap that is evident indicates several spectral regions where
multispectral classification may prove problematic.

The utility of the polygon data as training data for the estimation of unknown polygons or the update of
dated inventory data is indicated in this study.  The generation of discriminant functions for the estimation
of classes from the digital numbers found within the forest management polygons allows for use of the
polygons to set a context for classification.  Estimation of classes for pixels within a defined region allows
for filtering of the results.  A majority filtering of the classes estimated from the discriminant analysis
allows prediction of the most likely class based upon the classification results.  This research indicates that
when faced with a sub-optimal variance structure, as indicated by an initial investigation of variance
component signal to noise, a pixel-by-pixel classification is likely inferior to a cohort classification
approach.
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Tables and Figures

Figure 1. Histograms of digital numbers found within identically labeled polygons of
softwood stands (BFSP) for TM channels 3, 4, and 5.  Compared for each channel are the
measured (pix) histogram distributions for each channel with a normal distribution
(norm), input with the mean and standard deviation measured for the channel, within the
management unit.

Figure 2. Histograms of digital numbers found within each forest management unit for
Landsat TM channel 4.  Compared for each channel are the measured (pix) histogram
distributions for each channel with a normal distribution (norm), input with the mean and
standard deviation measured for the channel, within each management unit.
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Figures 3 a-c.  SNRn_polygons, n_pixels as a function of numbers of pixels and
polygons.  Legend indicates number of polygons.



Table 1.  Confusion matrix illustrating the ability to predict forest management unit label from individual pixels within forest inventory
defined management units.  (225 polygons, 75 polygons of each select forest management unit, polygons with minimum of 10 pixels,
total n = 20893 pixels)

Predicted Accuracy
BFIH BFSP IHTH Row Total Omission Producers

Count % Count % Count % Count Count % %
BFIH 1013 (14.8) 2313 (3.7) 3540 (51.6) 6866 5853 (85.2) 14.8

Actual BFSP 681 (10.2) 4244 (63.5) 1756 (26.3) 6681 2437 (36.5) 63.5
IHTH 475 (6.5) 1589 (21.6) 5282 (71.9) 7346 2064 (28.1) 71.9
Col. Total 2169 8146 10578 20893

Accuracy Commission 1156 (16.7) 3902 (55.3) 5296 (77.8)
Users 47.0 53.5 48.0

Table 2. Confusion matrix illustrating the frequency that forest management units (actual) are selected from the majority filter dictated
(predicted) polygon labels.  (75 polygons of each select forest management unit, polygons with minimum of 10 pixels, total n = 225
polygons)

Predicted Accuracy
BFIH BFSP IHTH Row Total Omission Producers

Count % Count % Count % Count Count % %
BFIH 5 (7) 24 (32) 46 (61) 75 70 (93) 7

Actual BFSP 4 (5) 51 (68) 20 (27) 75 24 (32) 68
IHTH 3 (4) 16 (21) 56 (75) 75 19 (25) 75
Col. Total 12 91 122 225

Accuracy Commission 7 (9) 40 (53) 66 (88)
Users 42 56 46


