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Abstract

Dendroecological techniques were used in this study to compare the radial growth patterns of different conifer species and to
identify regional climatic anomalies and spruce beetle (Dendroctonus rufipennis Kirby) outbreaks for the past four centuries in
the McGregor Model Forest, central British Columbia, Canada. Tree-ring chronologies of Douglas-fir (Pseudotsuga menziesii
var. glauca (Beissn.) Franco), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and interior spruce (Picea engelmannii
Parry x P. glauca (Moench) Voss) were developed for the Model Forest. Response function analysis showed that (1) Douglas-
fir is the most climate sensitive species, and its radial growth is mainly controlled by spring precipitation and early summer
temperature, and (2) the ring growth of subalpine fir and spruce is negatively affected by high summer temperature.
Comparisons of the tree-ring chronologies among the three species revealed dynamics of growth releases and suppressions
which reflected climate variations and forest disturbance patterns in the past several centuries. The climate during the late
1750s—-1800s was characterized by slightly moist springs and probably moderate summers. During the late 1860s and early
1870s, the region experienced dry springs, hot summers, and probably cold late falls. This study identified three intervals of
major disturbances attributable to severe spruce beetle outbreaks: the late 1720s, 1810s-1820s, and 1960s-early 1980s. These
coincided with periods of above average growth in Douglas-fir. The association suggested a possible moist spring-outbreak
pattern. The multicentury tree-ring records of climate anomalies and spruce beetle outbreaks could provide insight into the
dynamics of forest growth and its response to environmental changes. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Dendroecology; Forest disturbance; Spruce beetle outbreak; Climate change

1. Introduction include climate, insect infestations, fire, competition

among trees, soil characteristics, and others. Trees

The growth dynamics of forest ecosystems is respond to these influences with corresponding

affected by a complex of environmental factors which changes in their annual growth rings. Therefore, a

record of past influences on growth is retained in tree-

*Corresponding author. Tel.: +1-250-360-1874; fax: +1-250- rings and can be unraveled through dendroecological
721-6200; e-mail: gzhangl @uvic.ca techniques (Fritts and Swetnam, 1989).
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The radial growth responses of trees to climate have
been extensively studied for climate sensitive species
in North America. The ring growth of coastal Dou-
glas-fir (Pseudotsuga menziesii var. menziesii (Mirb.)
Franco) on southern Vancouver Island of British
Columbia is sensitive to spring and early summer
precipitation (Zhang, 1996). Dendrochronological
studies of white spruce (Picea glauca (Moench) Voss),
Engelmann spruce (P. engelmannii Parry), and sub-
alpine fir (Abies lasiocarpa (Hook.) Nutt.) in boreal
forests of northwestern Canada and in Canadian
Rockies show that the growth rings of these species
are affected by summer temperature (D’ Arrigo et al.,
1992; Szeicz and MacDonald, 1995; Luckman et al.,
1997). Insect infestations play a key role in modifying
forest structure, and severe outbreaks can cause tree
mortality, reduction of growth rates, reduced lumber
quality, and proliferation of the understory (Veblen
et al,, 1991b; Alfaro and Maclauchlan, 1992). Major
infestations and their effects on tree growth can be
inferred by comparing tree-ring chronologies from
host and non-host species (Swetnam et al., 1985;
Heath and Alfaro, 1990; Alfaro and Shepherd,
1991; Veblen et al., 1991b; Weber and Schweingruber,
1995). A relationship between insect infestation
and increased spring precipitation has been reported
from long-term reconstruction of outbreaks and
climate in northern New Mexico (Swetnam and
Lynch, 1993).

Forest ecosystems of central British Columbia are
sensitive to climate variations, yet there is insufficient
historical and modern climate and species response
data to assess the nature of forest adjustments to
climatic changes (Hebda, 1997). The spruce beetle
(Dendroctonus rufipennis Kirby) is a severe distur-
bance factor in these forest ecosystems, causing
widespread mortality in mature spruce stands. Three
outbreaks occurred in the Prince George Forest
Region between 1962 and 1982 during which
spruce beetles killed an estimated 18 x 10°m® of
spruce in the region (Humphreys and Safranyik,
1993). Understanding long-term pattern of outbreaks
is important for resource management. However,
historical records of spruce beetle outbreaks in the
region are scarce.

In this study we developed ring-width chronologies
of interior spruce (Picea engelmannii Parry x P,
glauca (Moench) Voss), interior Douglas-fir (Pseu-

dotsuga menziesii var. glauca (Beissn.) Franco), and
subalpine fir for the McGregor Model Forest, located
in central British Columbia. Instrumental climate data
were used to identify climate—growth relationships.
Tree growth dynamics for the past several centuries
were examined, and major climate anomalies and
spruce beetle outbreaks were reconstructed and dis-
cussed.

2. Area description

This study was conducted within the McGregor
Model Forest, a component of Canada’s Model Forest
Network, encompassing Northwood Pulp and Tim-
ber’s Tree Farm License 30, northeast of the city of
Prince George, in the central interior of British Colum-
bia (Fig. 1). It occupies /165 000 ha of forests mostly
within the Sub-Boreal Spruce (SBS) biogeoclimatic
zone (Meidinger and Pojar, 1991).

The climate of the SBS zone is continental, char-
acterized by long, cold winters and relatively short,
warm and moist summers (Fig. 2). According to long-
term climatic data (A.D. 1895-1992) from Fort St.
James, ca. 100 km northwest of Prince George, mean
annual temperature ranges from 0.4° to 4.9°C, with
mean January temperature of —12.5°C and mean July
temperature of 14.3°C. Mean annual precipitation
ranges from 336.7 to 739.2 mm, with April receiving
the lowest amount of precipitation.

The forest is dominated by interior spruce and
subalpine fir, which are climate-perpetuated climax
tree species for the SBS zone. Subalpine fir regener-
ates more readily than spruce under the canopy;
however, it has shorter longevity due to its suscept-
ibility to pathogenic fungi (Lindgren and Lewis,
1997). Douglas-fir is a shade intolerant and long-lived
seral species in the SBS zone, occurring mainly on
relatively dry and warm sites. Lodgepole pine (Pinus
contorta var. latifolia Engelm.), also a seral species in
the SBS, pioneers extensive seral stands and is com-
mon in mature forests in the drier parts of the zone
(Meidinger and Pojar, 1991).

Fire, insect attack, windthrow, and harvesting prac-
tices are the general disturbance regimes that affect
forest renewal, structure, and composition. Wildfire is
the dominant stand-replacing process in the SBS zone,
creating a complex landscape spatial pattern with a
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Fig. 1. Tree-ring sampling sites at the McGregor Model Forest, British Columbia.

large range in patch size and irregular disturbance
boundaries (DeLong and Tanner, 1996). The average
fire size for the zone ranges from 50 to 500 ha
(Parminter, 1992), and the time required for fire to
cycle through the zone is estimated to range from 200
to 700 years (B. Hawks, personal communication,
Pacific Forestry Centre, Victoria, BC, Canada). Wide-
spread disturbance by forest insect outbreaks is fre-
quent and severe. The spruce beetle is the most
damaging insect in the area, and can kill many mature

spruce during outbreaks (Erickson and Loranger,
1983). Other insects developing outbreaks in this
region include tree defoliators, e.g. eastern spruce
budworm (Choristoneura fumiferana Clements), and
the white pine weevil (Pissodes strobi Peck) which
destroys the apical shoots of young spruce. Spruce
trees have shallow root systems, and are susceptible to
windthrow (Coates et al., 1994). The area has sus-
tained selective harvesting and clearcutting since the
early 1900s (Erickson and Loranger, 1983).
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Fig. 2. Representative diagram of the climate for the SBS zone of the McGregor Model Forest (averaged for A.D. 1895-1992 using records

from the weather station at Fort St. James, BC).

3. Methods
3.1. Field sampling

Increment cores and disks were collected from
spruce, subalpine fir, and Douglas-fir trees in the
Model Forest by Pacific Forestry Centre, Canadian
Forest Service personnel, in the late summer of 1995.
The cores (one core per tree) were extracted at breast
height with an increment borer. The disks, 20 of spruce
and two of Douglas-fir, were cut in 5 cm thickness
from felled trees (at breast height) or stumps (at 50 cm
above ground surface) in sites 4 to 8 and 10 (Fig. 1;
Table 1). The two Douglas-fir disks, made available to
us from a separate study at site 10, contained the oldest
rings and were used in this study to maximize the
length of tree-ring chronology. The sample stands
were selected in areas that had not sustained logging,
and were chosen to provide a reasonable representa-
tion of the Model Forest. The selected stands were
dominated by spruce and contained a mixture of the

Table 1

three species. Spruce was most extensively sampled
for the original purpose of examining the impacts of
weevils on tree growth (Kimoto, 1996). Subalpine fir
and Douglas-fir, which are non-host species for spruce
beetle, were sampled for comparison of the growth
patterns among species. A total of 240 spruce trees, 26
subalpine fir, and 16 Douglas-fir trees from 10 sites
were sampled and these were used in the tree-ring
analysis (Fig. 1; Table 1).

3.2. Tree-ring chronology development

The core and disk samples were prepared and
surfaced to enhance ring boundaries before measure-
ment. Cores were mounted on grooved wooden boards
and sanded by hand with a series of sandpaper grits up
to 600. Disks were prepared using a sharp 17-mm wide
carving gouge. Ring-width measurement was carried
out using a Measu-Chron incremental measuring
system (Micro-Measurement Technology, Bangor,
Maine, USA) in the Tree-Ring Laboratory of the

Number of increment core samples and disk samples (in brackets) collected at each site in the McGregor Model Forest, British Columbia

during the late summer of 1995

Species Site number

1 2 3 4 5 6 7 8 9 10 Total
Douglas-fir 2 1 7 2 1 1 2) 16
Subalpine fir 5 4 2 7 1 1 1 5 26
Interior spruce 42 39 19 34 19(7) 177 17(3) 13(3) 20 240
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Pacific Forestry Centre. The precision of measurement
was 0.01 mm.

The measured ring-sequences were plotted and the
patterns of wide and narrow rings were cross-dated
among trees. The cross-dating was aided by the
presence of distinctive narrow rings and the quality
of cross-dating was examined by the program
COFECHA (Holmes, 1983). The age-related growth
trend within each ring-sequence was removed
using the program ARSTAN (Grissino-Mayer et al.,
1993) in which the detrending curve selected was
a negative exponential curve, horizontal line, or a
straight line with negative slope. Deviations from
this curve were standardized to produce a set of
annual growth indices for each sample. Ring-
width chronology for each species was derived by
averaging the growth indices for each year among
different trees (Fritts, 1976). The chronology of
spruce for the Model Forest was obtained by
averaging nine site (sites 1 to 9) chronologies of
spruce to emphasize the common features of the
chronologies.

3.3. Dendroecological analysis

Relationships between climate and tree growth
were detected using a computer program PRECON
(Fritts, 1994) which calculates the principal compo-
nents of climate data to identify the factors influencing
tree growth and represents these as response functions.
The climate data consisted of 98 years (A.D. 1895-
1992) of monthly mean temperature and monthly total
precipitation from Fort St. James, which is located
within the Sub-Boreal Spruce (SBS) biogeoclimatic
zone. The correlation coefficient of these climate
variables between Fort St. James and Prince George,
over the common period A.D. 1943-1992, averaged
0.60 for monthly total precipitation and 0.92 for
monthly mean temperature (both significant at the
p < 0.001 level). In addition, the climate record from
Fort St. James provided the longest series in the
region; therefore, it was considered as the best repre-
sentation of the regional climate for this study. The
tree-ring data of Douglas-fir, subalpine fir, and spruce
used in the response function analysis were residual
chronologies in which the autocorrelation of ring-
widths had been removed by fitting a first-order
autoregressive model to each ring-series so as to

emphasize the effects of climate on tree growth
(Grissino-Mayer et al., 1993).

The history of forest disturbances was reconstructed
by examining and comparing the differences in ring-
width indices of different species. The analysis of
climate-growth relationships in this study provided
information on the effects of climate on tree growth.
Short-term (<5 years) growth increases were attribu-
ted to transient, above normal, positive environmental
effects on growth. Veblen et al. (1991b) indicated that
growth rates of released spruce and subalpine fir trees
after beetle attack remained high for >40 years. There-
fore, sustained (>3 years) growth increases in surviv-
ing spruce and subalpine fir were attributed to spruce
beetle removal of competing spruce. Growth suppres-
sions in these species might be caused by climate
factors or might be the consequence of insect defo-
liators. However, except for the western hemlock
looper, Lambdina fiscelloria lugubrosa (Hulst), little
defoliator activity has been documented in the area in
the last 50 years.

4. Results
4.1. Ring-width chronologies

The ring-width chronologies of Douglas-fir, spruce,
and subalpine fir for the McGregor Model Forest and
the statistics describing the three chronologies were
presented in Fig. 3 and Table 2. Douglas-fir had the
longest chronology due to its longevity and its resis-
tance to moderate surface fires as a result of its thick
bark. Spruce, which became established primarily
after stand-replacing fires, had an age ca. 200 years
younger than the oldest Douglas-fir. Subalpine fir is
susceptible to pathogenic and decay fungi infection
(Lindgren and Lewis, 1997); therefore, it had the
shortest chronology length. Spruce exhibited the high-
est mean ring width and standard deviation, reflecting
its fast growth relative to the other species and the
variable influences of environmental factors. Subal-
pine fir had the highest mean sensitivity, indicating
that it had high interannual variability in ring-widths
and was sensitive to yearly environmental changes
(Fritts, 1976). All the three species exhibited high
first-order autocorrelation, suggesting the existence of
low frequency variation in the chronologies caused by
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Fig. 3. Ring-width indices of subalpine fir, interior spruce, and Douglas-fir at the McGregor Model Forest, British Columbia. Superimposed
on the ring indices are smoothing lines derived from a centered 10-year moving average. The vertical arrows indicate the earliest year with five
sample replications. The shaded intervals in subalpine fir and spruce represent growth release attributable to major disturbances, e.g., spruce

beetle outbreaks. The Douglas-fir chronology is indicative of climate variations (see text).

propagation of climatic effects from one year into
following years or by long-term effects of insect
infestations (Swetnam and Lynch, 1993).

4.2. Climate—tree growth relations

The response functions of Douglas-fir, subalpine fir,
and spruce ring-width chronologies with monthly
mean temperature and monthly total precipitation,
for interval A.D. 1895-1992, were presented in
Fig. 4. Radial growth of Douglas-fir was positively
correlated with precipitation in May of the growth
year, with precipitation and temperature in the pre-
vious November, and was negatively correlated with
temperature in June, July, and the previous July. Ring
growth of subalpine fir was negatively correlated with
temperature in June and precipitation in July. Ring

Table 2

growth of spruce was negatively correlated with tem-
perature in July and the previous August.

All three species showed negative correlations
between growth and high summer temperatures. This
suggested that increased evapotranspiration and water
loss induced by high temperatures reduced the radial
growth of these species. The positive effect of spring
precipitation on ring-width growth of Douglas-fir
suggested that water availability during the growing
season is one limiting factor for radial growth of
Douglas-fir, an observation consistent with informa-
tion from other regions (Zhang, 1996). The positive
effect of high late fall temperature and precipitation on
ring-width growth of Douglas-fir suggested that warm
and moist days in late fall favour active photosynthesis
and continuous food storage, leading to large ring-
width in the following year (Fritts, 1976; Waring and

Statistics for tree-ring chronologies of Douglas-fir, subalpine fir, and interior spruce in the McGregor Model Forest, British Columbia

Species

Douglas-fir

Subalpine fir

Interior spruce

Entire chronology length
Length with minimum 10 trees
Length with minimum five trees

Mean ring width (mm)

Standard deviation
Mean sensitivity

First-order autocorrelation

AD. 1414-1995
A.D. 1767-1995
AD. 1634-1995
1.31

0.657

0.185

0.858

AD. 1740-1995
A.D. 1878-1995
A.D. 1838-1995
1.46

0.737

0.245

0.799

A.D. 1594-1995
A.D. 1742-1995
AD. 1698-1995
1.66
0.805
0.206
0.832
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are used to explain the variance in tree-rings. The labeled points represent a significant (95% level) effect of either temperature or precipitation

on growth.

Franklin, 1979). The inverse association of ring-width
growth of subalpine fir with July precipitation was
contrary to expectation, and might be related to col-
linearity among predictor variables of growth or to the
limitation of the autoregressive models used (Fritts
and Dean, 1992). No significant coefficients were
found between the growth of spruce and precipitation,
which suggested that the radial growth of this species
might not be sensitive to the range of variation in
precipitation in the study area. It should be noted that
non-climatic factors, e.g. insect infestation and com-
petition among trees, may degrade the climate—growth
relationships. Therefore, the response functions
presented here gave a conservative estimate of the

climate-growth relations. The proportion of variance
in tree-rings explained by climate was 44.6% for
Douglas-fir, 37.9% for subalpine fir, and 29.8%
for spruce, i.e., tree-rings of Douglas-fir contained
the highest amount of climate information, followed
by subalpine-fir, whereas spruce provided the least
climate information.

4.3. History of forest growth anomalies

Comparisons of the tree-ring chronologies of Dou-
glas-fir, subalpine fir, and spruce and their relation-
ships with the environmental factors provided useful
clues for the history of forest disturbances in the
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McGregor Model Forest. All chronologies had smaller
sample sizes in the early years. Therefore, less con-
fidence should be placed on inferences based on
chronology intervals with less than five sample repli-
cations.

The chronology of Douglas-fir was the oldest, dat-
ing back to A.D. 1414 (Fig. 3). It showed that there
was a century-long period of low radial growth during
the late 1450s to the late 1550s. Although there was
only one sample for this interval, it was interesting to
note that this century-long suppressed growth also
occurred in the ring-width chronology of Douglas-
fir on southern Vancouver Island (=630 km southwest
from the McGregor Model Forest) in the same inter-
val, where it was interpreted as a result of a long period
of dry springs (Zhang, 1996). The agreement between
these distant chronologies suggested that the growth of
Douglas-fir during the late 1450s to the late 1550s was
influenced by a large-scale climatic phenomenon of
dry springs and probably cold late falls which might
have affected much of British Columbia.

Extremely high values of growth indices of spruce
occurred in the early 1600s, indicating that the
sampled trees were growing under open conditions
probably created by stand-replacing fires or some
other disturbances such as severe spruce beetle out-
breaks (Heath and Alfaro, 1990; Veblen et al., 1991a).
The following extreme low growth during the 1630s to
1650s indicated that the sampled trees might have
been suppressed by increased competition among
trees or by disturbances such as defoliation by insects,
possibly eastern spruce budworm which presently
defoliates spruce in the northern forest of B.C. (Erick-
son and Loranger, 1983). The growth indices of non-
host Douglas-fir during this period were above aver-
age, suggesting moist springs and warm late falls.

A rapid decrease and sustained low radial growth of
spruce occurred in the late 1710s to late 1720s which
was followed by a period of above-average growth
lasting until the mid-1740s. The climate during the
late 1710s to late 1720s was characterized by moist
springs, warm late falls and probably cool summers as
suggested by the above average growth of Douglas-fir.
Therefore, this decade of severe growth suppression of
spruce was not caused by climate factors, but by either
insect outbreaks such as spruce defoliator infestations
or by other factors such as windstorms which could
cause damage to trees’ root systems. Coates et al.

(1994) indicated that strong windstorms promote the
build-up of spruce beetle populations and create
stressed trees that may be more susceptible to beetle
attack. Thus, the radial growth pattern of spruce in the
1710s to 1740s suggested a possible spruce beetle
outbreak in the late 1720s, after which the growth
release for the surviving trees was a result of reduced
competition among trees.

The long period of growth reduction in spruce
during the late 1750s to late 1820s suggested a state
of increased tree to tree competition as recruitment
increased overall tree density in the area sampled. This
interval of growth reduction was followed by four
decades of growth release which might have been
caused, again, by spruce beetle infestations which
thinned this overstocked forest. Lindgren and Lewis
(1997) presented a chronology for this area based on
samples collected from site 3. They reported a descrip-
tion of dying forests and desolate landscapes found in
a fur trader’s diary in 1836, and also hypothesized a
major spruce beetle outbreak in the 1820s. By com-
parison of the ring growths in spruce, subalpine fir, and
Douglas-fir, we provided additional evidence support-
ing the hypothesis of spruce beetle outbreak in the
1820s. The subalpine fir, which is sensitive to canopy
disturbance (Veblen et al., 1991b), showed prolonged
slow growth in the 1740s to 1800s, but then exhibited
an abrupt and significant release in the 1810s-1820s.
The former suggested closed canopy structure and
intense competition among trees, and the latter sug-
gested large removal of overstory spruce, possibly by
spruce beetle infestation (Veblen et al., 1991a). The
growth of Douglas-fir, a climate sensitive species,
during the late 1750s to 1820s was slightly above
average, suggesting that no severe climate anomalies
occurred in the period to either suppress or release tree
growth in the area. The delayed growth release in
spruce compared to the release in subalpine fir might
be caused by the lag in response of spruce to beetle
disturbance, or it might simply be an anomaly caused
by the small number of samples (r = 2) in subalpine
fir for this period. In summary, the tree-ring growth
features of these three species suggested a dense
canopy structure and moderate climate during the late
1750s—1800s, and a large scale spruce beetle outbreak
in the 1810s—1820s.

The chronologies of Douglas-fir, spruce, and sub-
alpine fir (non-host for spruce beetles) showed syn-
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chronous growth reductions during the late 1860s and
early 1870s. This suggested that the reduced growth
might have been caused by large-scale climate anoma-
lies. Based on the response functions of the three
species to climate factors (Fig. 4), the climate in
the late 1860s to early 1870s might have been char-
acterized by severe dry springs, hot summers, and
probably cold late falls. Such dry springs and hot
summers in the years around 1870 were also reported
from several tree-ring studies of climate in the Pacific
Northwest region (Graumlich, 1987; Wiles et al.,
1996; Zhang, 1996).

The growth release of subalpine fir since the 1960s
indicated reduced competition from overstory spruce.
The canopy disturbance agent during this period was
three confirmed spruce beetle outbreaks as recorded in
1963-1965, 1969-1970, and 1979-1983 (Erickson
and Loranger, 1983). The effect of these outbreaks
was also reflected in the ring-width indices of surviv-
ing spruce which showed increased radial growth in
the 1970s. The chronology of Douglas-fir showed
above average growth since the 1930s, suggesting a
favorable climate for growth through the period.

5. Discussion

The radial growth rates of Douglas-fir, subalpine fir,
and spruce exhibited different response characteristics
to environmental factors; therefore, comparisons of
growth anomalies among these three species could
provide useful information on past major climate
events and forest disturbances such as insect out-
breaks. The reliability of the inferences was mainly
dependent on the sensitivity of tree-rings to these
different factors and on the degree to which the
sampled tree-rings represent the regional forest. Of
the three species studied in this project, Douglas-fir
was the most climate sensitive species. Nearly half of
the ring-width variation in Douglas-fir could be
explained by climate variables, whereas the remainder
was attributed to local factors such as microclimate,
local soil conditions, and competition among trees.
Subalpine fir and spruce were sensitive to forest
disturbances such as severe insect outbreaks. In this
study, only major climate events and moderate to
severe insect infestations were reconstructed from
tree-ring chronologies of the three species. The con-

fidence of these reconstructions was limited in the
earlier periods when the sample sizes declined below
five trees.

Tree-ring data in non-host and climate sensitive
species and in host species are especially useful in
studying long-term climate-insect infestation patterns
because they provide replicated observations of past
outbreaks and climatic fluctuations (Swetnam and
Lynch, 1993). Our study showed that the occurrence
of spruce beetle outbreaks in the 1960s to early 1980s
and the suspected occurrences in the 1810s—-1820s and
the late 1720s happened in periods of moist springs as
deduced from the Douglas-fir chronology. The same
positive relationship between spring precipitation and
outbreak was also found in a study of western spruce
budworm (Choristoneura occidentalis Freeman) out-
breaks in northern New Mexico, USA (Swetnam and
Lynch, 1993). However, a negative relationship
between precipitation and western spruce budworm
outbreaks was reported in British Columbia (Thomson
et al., 1984). Thus, the exact mechanisms of weather-
outbreak association are not clearly understood.

This study also supported the finding of Kimoto
(1996) that the severe insect infestations in this study
area during the late 20th century are not primarily a
consequence of present day forest management prac-
tices. Such severe spruce beetle outbreaks occurred
several times during the 17th-19th centuries. Severe
disturbance by spruce beetle played a role in shaping
the forest structure, composition, and renewal by
causing mortality of infested spruce, reducing com-
petition among trees, and accelerating the growth rates
of survivors and understory tree species. Mature
spruce forest with dense canopies and moist weather
were favorable to spruce beetle activity and dispersal,
thus were more suitable to the development of out-
breaks. More extensive sampling of old growth host
and non-host species is required to provide long-term
and reliable records of outbreaks and climate varia-
tions. These records can improve our understanding of
the patterns of outbreaks as well as their relationships
with climate.

6. Conclusions

Our study demonstrated that tree-ring chronologies
of Douglas-fir, subalpine fir, and spruce can provide
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useful information on past forest growth dynamics,
climate variations, and spruce beetle outbreaks. Dou-
glas-fir was the most climate sensitive species, fol-
lowed by subalpine fir. The climate during the late
1750s-1800s was characterized by slightly moist
springs and probably moderate summers. The syn-
chrony of suppressed growths of all three species
during the late 1860s and early 1870s suggested dry
springs, hot summers, and probably cold late falls. The
spruce forest was probably infested by spruce defo-
liators during the 1630s-1650s, and was infested by
spruce beetle in the late 1720s, 1810s-1820s, and
1960s-early 1980s as inferred by comparisons of
the growth anomalies among the three species. The
spruce beetle outbreaks occurred during period of
above average spring precipitation, suggesting a pos-
sible weather—outbreak relationship. Further investi-
gation of long tree-ring records will improve our
knowledge of forest growth dynamics and their rela-
tionships with the environmental factors.
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