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Abstract

The purpose of this study is to analyze the effects that pixels, located at polygon boundaries, have on
classification accuracy. Pixels found along the borders of polygons usually contain mixed spectral
information, and can be detrimental to classification accuracy. Discriminant analysis was used to predict
land cover classes, found in Canada’s National Forest Inventory, from a Landsat TM image. The
discriminant criteria were derived on a test area of the image, using buffered and non-buffered polygons
as training data, and applied to a validate area of the image. Buffering the polygons had no overall
positive or negative effect on classification accuracy. There are non-trivial effects for specific cover types,
especially the water categories, but the classification accuracy for most categories changed by less than
10% due to buffering. Overall accuracy is quite low as well, usually less than 50%, which suggests that
discriminant analysis may not be suited for predicting National Forest Inventory land cover classes from
Landsat TM images.

Introduction

Satellite images are an important information
resource for forestry, and have a wide variety of
applications. They have many potential uses,
especially in forest inventory, because of their
large ground coverage, their ability to be
analyzed and manipulated with various
mathematical and statistical procedures, and
their increasing resolution and availability.
These unique characteristics can be used to
predict forest inventory attributes such as land
cover types, tree density classes, and tree
mortality. The ongoing challenge for foresters is
to use or combine conventional techniques for
deriving these attributes in innovative ways, so
that they can accurately inventory the forest
resource.

The purpose of this study is to analyze the
effects that pixels, located at polygon
boundaries, have on classification accuracy. To

do this, we compared the classification accuracy
of land cover classes predicted from classifiers
trained on Landsat TM image segments, with
and without boundary pixels. Pixels found along
the boundaries of polygons usually incorporate
spectral or class information from adjacent
polygons due to rasterization of vector data
(Congalton 1997). As a result, these boundary
pixels may be different from the pixels found in
the interior of polygons. An analysis by Wulder
et al. (1999) tends to support this contention, as
they found the spectral contents of boundary
pixels to be significantly different from that of
interior pixels. Since 52% of the pixels in our
study site are boundary pixels (Table 1), they
could potentially have a strong effect on
classification accuracy.

We used discriminant analysis to predict the
land cover classes. This classification technique
derives a relationship between a categorical
variable and a set of interrelated, quantitative

*Paper presented at:  "Remote Sensing and Spatial Data Integration: Measuring, Monitoring and
Modeling", 22nd Symposium of the Canadian Remote Sensing Society, Victoria, British Columbia,
August 20th to 25th, 2000.



variables. This relationship is then used to
predict the category of an entity, based on the
associated measurements of the quantitative
variables (McLachlan, 1992).  Our approach in
this study comes from a forest inventory
perspective, and uses pixel grey levels of the
seven Landsat TM image channels as the
quantitative variables, and Canada’s National
Forest Inventory (NFI) land cover classes as the
categorical variable. The relationship between
the two sets of variables was derived from a
portion of the image, or training dataset, and was
then applied to the entire image to classify all
the pixels. In order to assess the effects of
boundary pixels, the training datasets included
both buffered and non-buffered polygons.

Materials and Methods

A 1995 Landsat TM scene (30m by 30m
resolution) was obtained for the study site,
which includes the southeastern portion of New
Brunswick, Canada, along with the forest
inventory database for the same location and
year (Figure 1).

Figure 1. Province of New Brunswick, showing
study area, Landsat TM coverage and the test
and validate regions.

The image was carefully geo-referenced with the
GIS inventory database. A root mean square
error of 0.46 pixels was achieved by using 37
ground control points and a first-order
polynomial, nearest-neighbour model. This
procedure ensures that all the information
contained in the forest inventory coverage can
be overlaid and matched with the information
contained in the Landsat image. We applied a 30
m buffer, or a one-pixel buffer, to all polygons.
The two data sources were then merged, and two
text files were produced. One for the eastern half
of the study area, which we called the test area,
and one for the western half of the study area, or
the validate area (Figure 1). The following
information was retained or added to every
pixel: (i) grey level for channels 1 to 7; (ii)
National Forest Inventory (NFI) land cover
classification for levels 2 and 3; (iii) flag to
indicate whether the pixel was found on the
boundary (within buffer) or in the interior of a
polygon. The NFI land cover classification is a
hierarchical system that is used to classify a
polygon or area into 5 levels, with level 1 being
the broadest class and level 5 being the
narrowest (NFI design document, 2000). We
classified each pixel into levels 2 and 3 of the
NFI scheme, which are as follows: level 2 – land
(l), non-treed (n), treed (t) or water (w); level3 –
crops/pasture (cp), exposed-land (el), lake (la),
ocean (on), river (ri), rock (ro), shrub-low (sl),
shrub-tall (st), tree-broadleaved (tb), tree-
mixedwood (tm) and tree-coniferous (tc). Level
1 classifies a pixel into vegetated or non-
vegetated, while levels 4 and 5 further classify
level 1, 2 and 3 into landscape positions and
vegetation densities. Levels 2 and 3 of the NFI
land cover classes are predicted in this study
(Table 1). The discriminant analysis procedure
will predict the membership of a pixel into these
land cover classes from the 7 Landsat TM
channels. We are not going to discuss the
statistical theory behind discriminant analysis,
but rather, we will outline the steps we used to
implement the discriminant procedure using
SAS software.

The first step in the analysis was to take the text
files created for the test and validate area and
normalize each of the 7 TM channels with
equation 1.
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Then, we performed principal component
analysis on the normalized values of the TM
channels. This helped to reduce the number of
variables used in the analysis from 7 channels to
4 principal components, while still explaining
almost 98% of the variance. The Princomp
Procedure of SAS was used, with the default
options. Next, the Discriminant Procedure of
SAS was applied to the data from the test area
(SAS, 1993). We limited the analysis to
polygons that were equal to, or larger than 25
pixels, to produce sufficiently consistent training
information. NFI land cover class was set as the
class variable and, after much thought, the prior
probabilities were set to equal, because we
decided that the proportions of land cover found
in the test area did not necessarily imply a
similar proportion for the validate area. After
running the Discriminant Procedure on the test
area, it was applied to the validate area. The
output, or discriminant functions, derived from
the first run on the test area are used to predict a
NFI land cover class for each pixel of the
validate area. Finally, the entire procedure was
repeated several times, once for each NFI land
cover class (levels 2 and 3 described previously)
and once for each of interior, interior plus
boundary, or boundary pixels. Figures 3a and 3b
graphically portrays forest polygons and the way
they are decomposed for this analysis. The
interior (light tone) pixels only are used for the
training dataset in one scenario, the interior plus
boundary (light plus dark) pixels are used for
another, and the boundary (dark) pixels only are
used for a third scenario.

Results and Discussion

Figures 4a, 4b, 5a, and 5b summarize the results
in terms of classification accuracy. We define
classification accuracy as the proportion of
pixels, or polygons, correctly classified into their

Figure 3a. A magnified portion of the Landsat
TM image overlaid with the NFI polygon data.

Figure 3b. The same area showing the effects of
buffering (bitmap image).

respective NFI land cover classes. We also use
the term buffering interchangeably with
removing boundary pixels. Each figure displays
the accuracy for the NFI land cover class and for
each of the 3 different training datasets used as
inputs to the discriminant analysis. The
proportions shown in the figures should be used
in conjunction with Table 1, which describes the
data.



Table 1. NFI land cover classification scheme and descriptive statistics for the test and validate area.

NFI level 2 NFI level 3 Test (training) area Validate area
pixels polygons mean polygon

size (ha)
% boundary
pixels

average posterior
probability

pixels polygons

exposed-land – el 113330 1213 8.4 77.2 0.246 405912 3928land – l
rock – ro 3749 14 24.1 30.0 0.546 911 29
bryoid 0 0 0 0.0 0.0 179 1
crops/pasture - cp 400372 1571 22.9 32.5 0.396 259414 2557
shrub-low – sl 142019 1884 6.8 65.0 0.119 349316 5027

nontreed - n

shrub-tall – st 92765 1095 7.6 56.9 0.224 85483 1805
tree-broadleaved - tb 990063 9727 9.2 50.9 0.413 826033 11398
tree-coniferous - tc 1258948 13921 8.1 54.0 0.254 1094526 17605

treed – t

tree-mixed – tm 1427575 15561 8.3 54.6 0.206 1670255 22972
lake – la 8229 76 9.7 42.4 0.732 137810 250
ocean – on 137 2 6.2 61.3 0.979 702 2

water - w

river – ri 12594 120 9.4 92.3 0.257 174625 203

Total 4449781 45184 8.9 52.6 5005166 65777

Figure 4a. Classification accuracy of pixels for
NFI level 2.

Figure 4b. Classification accuracy of pixels for
NFI level 3.

Figure 5a. Classification accuracy of polygons
for NFI level 2.

Figure 5b. Classification accuracy of polygons
for NFI level 3.



The following general trends are evident from
examining these figures, and will be discussed
further.

• The classification accuracies follow
similar trends for pixels and polygons.
• Overall, there is no consistent positive
or negative effect caused by buffering.
• The classification accuracies tend to be
quite different among the NFI land
cover classes.

The pattern and values of the results shown
between Figures 4a and 5a, and between Figures
4b and 5b, are quite similar, which indicates that
the results are not affected by the method of
summarization. For example, in Figures 4a and
4b, the number of correctly classified pixels is
simply totaled for each NFI land cover class
over the entire validate area. In contrast, the
results in Figures 5a and 5b were calculated by
averaging the posterior probability of each pixel
by polygon, and labeling the polygon with the
NFI land cover class that has the highest average
posterior probability. Because the results are
similar, it suggests that pixels within a polygon
have a relatively low variance in their spectral
values, and on average, a clear majority is
classified to the same NFI land cover class.

Figures 4a to 5b show that there is no consistent
positive or negative effect of using training data
with or without boundary pixels. Buffering the
polygons does not increase accuracy across all
NFI land cover classes, nor does it decrease
accuracy. However, there are some interesting
trends when we look at the results within
specific NFI land cover classes. There is
virtually no effect caused by buffering for the
non-treed and treed categories in Figures 4a and
5a (<5%), and the same result is evident for the
further subdivision of these categories
represented in figures 4b and 5b. The accuracy
of the crops/pasture, shrub-low, shrub-tall, tree-
broadleaved, and tree-coniferous categories all
change positively or negatively by less than
about 10%. The tree-mixedwood has slightly
more of a change at about 15%. These cover
classes represent over 85% of the test area, and
have average posterior probabilities that are all
less than 0.41 (Table1). In other words, there is a

large population of pixels, with inherently mixed
signatures, which are used for training, and
removing boundary pixels obviously has little
influence on classification accuracies.

For the land category in Figures 4a and 5a, there
is consistent, but small decrease in classification
accuracy between 5% and 15% due to buffering.
And there is a similar result for the further
subdivision of these categories into exposed-
land and rock in Figures 5a and 5b. The
exposed-land category often occurs as a smaller,
more linear shaped polygon, and has over 77%
boundary pixels. Losing boundary pixels
probably weakens the discriminant functions and
reduces the classification accuracy. The
strongest effects appear in the water categories.
Buffering reduces the classification accuracy by
9% in the water category (Figure 4a) to almost
90% in the lake category (Figure 4b), and
increases the accuracy for rivers. The main
reasons for these results can be derived from
Table 1. There are only 8229 pixels, found in 78
polygons, for lakes in the test area. Buffering
reduces this amount to less than 4000, which
may not be enough to train on. Even though lake
pixels have a relatively high average posterior
probability (0.73), which indicates a unique
signature, there are just too few pixels remaining
to derive good discriminant criteria.
Interestingly, most of the remaining lake pixels
were predicted as rivers or treed-coniferous,
which suggests that they resemble rivers or the
dark bands of coniferous trees. It is uncertain
why the accuracy for rivers increased from
buffering, as they tend to be found in long,
narrow polygons. Perhaps they have a unique
reflectance that is captured in the analysis, or
contain boundary pixels that are very different
from the interior pixels.

The overall classification accuracies vary
considerably among the NFI land cover classes.
A majority of the classes have accuracies less
than 50 %, which we consider quite low. This
may suggest that the 30 m resolution and
spectral characteristics of Landsat TM images
are not conducive for delineating the NFI land
cover classes. Wynne et al. (2000) report similar
findings in their study. They state that is difficult
to exceed 85 % accuracy on a per-pixel basis for



just two classes, forest and nonforest, and that
accuracy is significantly reduced for more
specific forest types such as deciduous and
coniferous. Also, discriminant analysis may not
be the most suitable method for classifying the
information content of satellite data. Magnussen
et al. (2000) found that other techniques,
including fuzzy classifiers, neural nets, and
Bayesian analysis, can predict certain land cover
classes more accurately.

We have inferred several times that
polygon size may influence the accuracy of our
predictions. Figures 6a, 6b, 6c, and 6d shows the
effects of polygon size on classification
accuracy for the crops/pasture, lake, tree-
broadleaved, and treed-coniferous NFI land
cover classes. Again, the results are somewhat
mixed and specific to the cover type, but
generally, larger polygons are predicted with as
good or slightly better accuracy, than small
polygons.

Figure 6a. Classification accuracy vs. polygon
size for crops/pasture.

Figure 6b. Classification accuracy vs. polygon
size for lakes.

Figure 6c. Classification accuracy vs. polygon
size for tree-broadleaved.

Figure 6d. Classification accuracy vs. polygon
size for tree-coniferous.



These figures also show how polygon size
interacts with buffering. For the tree-
broadleaved and tree-coniferous categories, the
effects of buffering are very similar across all
polygon sizes. For the crops/pasture category, it
appears that the smaller polygons are less
affected by buffering than the larger polygons. It
is difficult to state any trends for the lake
category.

Conclusions

Buffering the polygons intuitively seems like a
reasonable method to increase classification
accuracy. However, as this study shows,
removing the boundary pixels has really no
overall positive or negative effect. Also, the
classification accuracy is less than 50% for
many of the categories, especially for NFI level
3, which we consider quite low. Discriminant
analysis does not seem to be an appropriate
classification method for predicting NFI land
cover classes from Landsat TM images, and our
attempt to improve the results with buffering
was unsuccessful. There are other factors that
have invariably influenced our results, including
accuracy of georeferencing and co-registering
Landsat TM images with other data sources, the
lack of consistent spectral information within
polygons of the same label, and time differences
between acquisition of inventory and image
data. Minimizing these factors is crucial, but we
believe that significant improvements in the
results may be achieved by using finer resolution
imagery and classification techniques more
suited to the information content of satellite
images.
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