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Abstract
Tree crown recognition using high spatial resolution remotely sensed imagery provides useful information
relating the number and distribution of trees in a landscape.  A common technique used to identify tree
locations uses a local maximum (LM) filter with a static-sized moving window.  LM techniques operate on
the assumption that high local radiance values represent the centroid of a tree crown.

While success has been found using LM techniques various authors have noted the introduction of error
through the inclusion of falsely identified trees.  Missing trees, or omission error, are primarily the result
of too coarse an image spatial resolution (in relation to the size of the trees present).  Falsely indicated
trees (commission error) may be removed through image processing post-LM filtering.

In this paper we present a variety of techniques for addressing commission error when applying a LM
technique.  Methods exploiting spatial and spectral information are applied.  The best results, where the
number of correct trees is high with few false positives, are found for a spatial filter applied to LM
generated within variable window sized as suggested by image spatial structure.

Introduction

Individual trees may be discerned, in medium to
dense forested areas, on high spatial resolution
imagery as regions of high reflectance.  The spatial
structure of this reflectance, for conifers, results in
a local maximum (LM) value found at, or near, the
centre of trees.  The structure of this reflectance is
related to the contrast between pixels representative
of trees and the relative brightness of the
background material present.  In LM filtering, a
window is passed over all pixels in an image to
determine if a given pixel is of higher reflectance
than all other pixels within the window (Dralle and
Rudemo, 1997).  Pixels identified as the largest
digital number within the window are noted as tree
locations. When a window of a fixed size is passed
over an image it does not account for the presence
of trees with different crown sizes, i.e., static sized
windows do not take into account the object-
resolution relationship that exists between the trees
(objects) and the image spatial resolution.  The
concept of H-resolution, posited by Strahler et al.
(1986), presents the relationship between image
spatial resolution and image object representation
in terms of variance.  An H-resolution pixel is
spectrally representative of a single object (e.g. tree
crown), with a number of similar pixels composing
the individual object. As a result, the ability to

isolate trees with an LM filter requires an image
spatial resolution that is finer than the mean crown
size of trees present.

The image spatial resolution necessary for
locating stems on digital remotely sensed image
data will vary based upon the relationship between
the spatial resolution and the tree crown size
distribution.  In this study, the key crown size
threshold for successful identification using LM
filters is at 1.5 m crown radius.  Trees smaller
than this threshold may be successfully located,
but at a lower rate of success. These
generalizations are applicable for the object-
resolution relationship present between the 1 m
spatial resolution image data and the unique field
data under consideration.  These results may
influence the desired image spatial resolution of
subsequent studies of coniferous forests based
upon knowledge of the mean tree size
distributions under consideration.

Observation of changing omission and
commission errors as a function of crown radii
provides an indication of the relation between tree
size and image resolution required to resolve
individual trees with a LM filter.  The distribution
of the error by tree size is important as the large
trees account for a greater proportion of the stand
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basal area than the smaller trees. An investigation
of the success of tree identification by tree crown
radius demonstrates the relationship between image
spatial resolution and LM filtering success.  At an
image spatial resolution of 1 m, a tree crown radius
of 1.5 m appears to be the minimum size for
reliable identification of tree locations using LM
filtering (Wulder, et al., 2000).

At the 1 m spatial resolution, an object-resolution
exists which precludes the locating of smaller trees
with LM filters.  Yet, if the larger trees in the stand
are consistently located, it may be possible to
account for most of the stand basal area.  Wulder,
et al., (2000) demonstrated that commission error
resulted in the over estimation of basal area.  In
some cases it is illustrated that reducing commision
error may come at the cost of increasing omission
error.  The increase in omission error is rationalized
as the trees that are “lost” with decreased
commision are usually small and accounting for a
small amount of stand basal area. The trade-off
between total proportion of trees correct and the
level of commission error allows the user to
determine which is more important based upon the
intended use of the LM filter-generated tree
locations.  The presentation of a process to estimate
basal area from the LM filter-generated tree
locations demonstrated that slightly lower
proportions of successful stem identification may
be quite acceptable as the majority of basal area is
accounted for by large trees, and achieving a
minimum of commission error is more important.

As indicated, omission error with the LM technique
is largely a function of image resolution.
Additional tree detection errors may arise through
factors such as close proximity of neighboring
trees, trees being located under other trees, trees
found in shadows, or trees having low spectral
contrast with respect to the understorey vegetation.
As a result, a primary aim when applying LM
filters is to maximize the number of legitimate trees
found while also minimizing the amount of pixels
falsely identified as tree locations.  This paper
focuses upon minimizing the commision error, or
false positives, identified using an LM filter.  To
reduce the commision error related to LM filtering
additional spectral and spatial information is
applied.  To reduce commision error we apply and
observe the consequences of:

- variable window sizes,
- a spectral threshold and local variance

within LM window,
- a spatial dependence threshold, and
- LM filtering of spatial dependence data.

The results of processing with the error reduction
methods is compared to benchmark fixed window
LM processing with no error reduction applied.

Methods

Study area
The Greater Victoria Watershed is located at 48°
23’ latitude and 123° 41’ longitude, which is
northwest of Victoria, British Columbia.  Within
this watershed, a 0.72-ha study area with little
topographic variability, composed of a 40-year-
old plantation and a 150-year-old naturally
regenerating mature stand (GVWD 1991) was
selected.  The plantation (planted in 1965 and
thinned in 1975) is composed of trees ranging in
height from 8.6 to 25 m and is a mixture of
Douglas-fir (Pseudotsuga menziesii) and western
redcedar (Thuja plicata), while the mature stand
contains trees from 140 to 250 years of age
ranging in height from 20 to 70 m, and is
dominated by Douglas-fir.  Also present in the
study site is a dense layer of understorey
consisting of hemlock (Tsuga heterophylla), some
red alder (Alnus rubra), salal (Gaultheria
shallon), sword fern (Polystichum munitum),
Oregon grape (Mahonia nervosa) and Oregon
beaked moss (Kindbergia oregana).

Field data
The 0.72-ha study area was partitioned into 72
grid cells of 10 m by 10 m within which all trees
were measured and located to 0.1 m of precision
to allow for the creation of a stem map. In total
209 trees were located with 159 trees in the
plantation stand and 50 trees in the mature stand.
As part of the field work for Hay and Niemann
(1994), crown radius, diameter at breast height
(DBH), species type, tree height at crown apex,
and height at maximum crown radius were
measured.

Image data
The second generation Multi-detector Electro-
optical Imaging Sensor (MEIS-II) (Till et al.,
1983) was flown at an altitude of 1428 m over the
study site at 11:30 hr PST on September 2nd, 1993
during the first field campaign of the SEIDAM
(System of Experts for Intelligent Data
Management) project (Goodenough et al., 1994).
The resulting ground pixel size is 1 m, with all
images resampled to 720 pixels across track.  The
raw data were geometrically corrected using
British Columbia Ministry of Environment
Terrain Resource Information Management
(TRIM) digital elevation data with a horizontal



accuracy of ± 20 m.  Solar altitude and azimuth
angles at the time of the flight were 52° and 133°
respectively.

The MEIS-II is a pushbroom scanner with a
temperature stabilized CCD linear array and a
spectral range from 380 to 1100 nm.  Within the
720 nm spectral range six user-defined, nadir-
looking channels may be selected by mounting
filters in front of the lens.  A panchromatic channel
was simulated by averaging the six available
channels to summarize the spectral response found
over the MEIS-II spectral available range from
432.85 to 847.65 nm. This enables a comparison
with the 1 m panchromatic image data available on
the IKONOS satellite (with a 450-900 nm
panchromatic channel) and forthcoming high
spatial resolution satellite sensors (Aplin et al.,
1997).  Additionally, in previous work it was
evident that there was no statistically significant
difference between the results LM generated from
differing spectral channels (Wulder, et al., 2000).

LM filtering procedure
Individual trees may be discerned, in medium to
dense forested areas, on high spatial resolution
imagery as regions of high reflectance.  The spatial
structure of this reflectance, for conifers, results in
a local maximum (LM) value found at, or near, the
centre of trees.  In LM filtering, a window is passed
over all pixels in an image to determine if a given
pixel is of higher reflectance than all other pixels
within the window (Dralle and Rudemo, 1997).
Pixels identified as the largest digital number
within the window are noted as tree locations.

Variable Window Sizes
Semivariance
Semivariance is a well-understood and frequently
applied image processing technique in remote
sensing (Curran and Atkinson, 1998).
Semivariograms provide a means of measuring the
spatial dependency of continuously varying
phenomena.  Variable window sizes are suggested
for each pixel location based upon an average
semivariance range values computed from transects
in the eight cardinal directions around each pixel in
the image.  If there is spatial structure in a given
data set, a semivariogram will reveal that
semivariance rises until reaching the sill, which
indicates the maximum variability between pixels.
The range is the number of lags, or distance, to the
sill (Curran and Atkinson, 1998).  Therefore,
within the range spatial dependence between pixel
values is indicated.  To minimize the potential

effects of image anisotropy, image semivariance is
computed for all eight cardinal directions out from
the central pixel with the average of the eight
results stored in a new image channel.  Computing
an average range value for each pixel in the image
reduces problems which arise when attempting to
select a representative single transect origin and
angle (Wulder et al., 1998).  The eight directional
range values are then averaged and written to file
as the range to represent that pixel location, this
procedure is applied to all pixels inside the image
buffer.

The conversion of semivariance ranges to window
sizes requires user intervention (Wulder, et al.,
2000).  The inter-pixel variability is limited at a 1
m spatial resolution, particularly in dense
homogenous stands, which results in ranges which
characterize the stand spatial dependency rather
than that of individual trees.  As a result,
semivariance range values are consistently scaled
to an appropriate window size.

Slope Breaks
To overcome the need for user intervention in the
determination of optimal window size “slope
breaks” were calculated.  Slope breaks are a
simple means of measuring a region of
dependence around a pixel.  Slope breaks are
based upon the assumption that every tree in an
image may be a local maximum.  For each pixel in
the imagery an omni-directional set of transects is
analyzed from the central pixel to assess the
number of pixels until a minimum radiance value
is reached.  The slope break may also be described
as the first inflection point in the gradient of
reflectance around the tree.  The inflection point
may be considered as an edge location.  The mean
value of the number of pixels to the slope reversal
for all eight cardinal directions is used as a custom
window size for that pixel.  If a pixel’s radiance is
lower than all surrounding pixels, a value of zero
is assigned for the window size.  The conversion
from slope break value for a pixel to customized
window size requires no user intervention.

Spectral Threshold and Local
Variance within LM window
One of the characteristics of the imagery, and one
that affects the number of commission errors
encountered in extracting the imagery is the
occurrence of random local maximum
associations. When this occurs in the imagery the
logic of the approach adopted results in a tree top
as the main assumption used is that all of the local



maxima are tree tops. The reality however is that in
many situations where local maxima occur in areas
where there are no trees the range in values within
the 3X3 evaluation window is quite low. To
address these issues, we developed a filter that
eliminates candidate LMs which fall below a user
specified difference comparing the maximum grey
level and the minimum difference within the 3X3
window.  User investigation of a series of
maximum grey level and minimum difference
values is used to determine the most appropriate
combination for a particular study location.

Spatial Dependence (Getis statistic)
In contrast to semivariance, the Getis statistic (Gi

*),
generates values which relate variations within
patterns of spatial dependence.  Thus, it has the
potential to uncover discrete spatial regimes which
might be overlooked by existing techniques.
Semivariance and Gi

* values are complementary
techniques with semivariance computing an
indication of a region of pixel similarity and Gi

*

results providing the strength of pixel association
within this region of spatial dependence.

Wulder and Boots (1998) have adapted the Getis
statistic for processing remotely sensed imagery.
The Getis statistic, Gi

*, yields a standardized value
which indicates both the degree of autocorrelation
in the values of the digital numbers centered on a
given pixel and the magnitude of these values in
relation to those of the entire image.  In
consideration of remotely sensed imagery, the Gi

*

values measure the extent to which a pixel is
surrounded by a cluster of high or low values of a
particular variable, such as image digital number
(DN) values.  Large positive Gi

* values denote a
cluster of high DN values; large negative Gi

* values
denote a cluster of low DN values.  In a high
spatial resolution forestry context, Gi

* values
indicate the spatial dependence within a tree crown
or between shadow elements.  High positive values
generated from panchromatic image data indicate
the presence of a tree object whereas high negative
values correspond to a non-tree feature.
Accordingly, Gi

* values computed upon near
infrared image data may be applied to assist in the
screening for false positives generated from the
peak radiance filtering routine.  Further, as the Gi

*

are sensitive to the presence of tree objects, tree
locations may be accentuated by the transformation
of radiance values to Gi

* values.  Processing the
transformed Gi

* values for local maxima may allow
for improved tree recognition.  The ability to
extract tree locations from radiance values
transformed to Gi

* values is likely highly dependant

upon image spatial resolution as the Gi
* values

tend to form clusters from the radiance values
(Wulder 1999).  As a result, processing Gi

*

transformed radiance values for LM may only be
appropriate on high resolution imagery where
many pixels comprise an individual tree crown.

Spatial data threshold
The spatial dependence threshold is based upon an
application of Getis statistic values as a threshold
filter.  Low Gi

* values indicate a cluster of low
DN values; while, high Gi

* values relate clusters
of higher DNs.  For each pixel that is identified as
a potential LM the Gi

* value at that location must
be above zero for the LM to pass the threshold
filter.

LM filtering of spatial dependence
data
Passing the LM filter directly over the spatial
dependence data automatically applies the spatial
dependence threshold, as LM are inherently
greater then the defined threshold value.
Additionally, the Gi

* will have a maxima value at
the tree centre while also being surrounded by
transformed values extending to the region of
local dependence.  The extent of the local spatial
dependence indicated is variable as related to the
size of the tree crowns present.  High local Gi

* will
indicate centroids of local regions of spatial
autocorrelation.  The centroids indicated are
representative of high panchromatic digital
numbers over a region of local dependence.

Results and Discussion

Fixed Sized LM Filters with No
Error Reduction Applied
Prior to comparison of error reduction methods, a
performance benchmark is required.  In Table 1
we present the proportion of correct, omitted
(missed) , and committed (falsely identified) trees
for fixed window LM filtering of image spectral
data.  (Note, as the omission level is the inverse of
the correct value, omission is not noted on each
table.)  The 3x3 LM filter represents a super-set of
all possible LM which may be isolated using a
local maximum technique. The 3x3 LM filter
finds all local maxima, without regard to any
image spatial structure and, as a result, the
commission error is generally high.  In an
operational application, the detailed field data
would likely not be present; in that situation, there
would be no way to detect false positives,
resulting in an over estimate of stems, which



emphasizes the need to minimize commission
error.  In this case the 67% accuracy overall must
be taken in the context of 22% commission error,
with out the stem map developed for this study a
89% accuracy could be erroneously interpreted.  As
a result, it is important to consider commission
reduction in conjunction with overall numbers of
tress correctly identified.

The increase in window size from 3x3 through 5x5
to 7x7 results in increasingly poor results (i.e. more
missed trees) for the plantation stand with less of
an effect upon the mature stand, indicating that data
with resolution higher than 1 m are required for
small tree detection.  Comparison of the younger
plantation stand with the naturally regenerating
mature stand, provides an indication of the object-
resolution relationship present.  The lower success
in identifying field located trees in the plantation
stand in comparison to the mature stand indicates
an inability to discern the smaller trees with 1 m
data.  The maximum of 67% correct overall may be
interpreted as a function of the object-resolution
relationship.

With a minimum of 33% of the plantation trees
being missed with LM techniques in this study, it
appears that 1 m imagery is too coarse for
individual tree crown recognition in a Douglas-fir
stand with crown radii less that 1.5 m.  The mature
stand, with an omission level of 20%, appears to
have a stand structure that is more appropriate for
LM filtering of 1 m spatial resolution imagery.
The omission error may be interpreted as being
largely a function of the image spatial resolution,
whereas the commission error is related to the
occurrence of spurious local maxima unrelated to
the reflective characteristics of the crown canopy.

Table 1. Results of fixed window size LM filter
processing of panchromatic image data.
Wavelength PAN (|448-875 nm)
Window Size 3 5 7
All (n=209)

Correct 0.67 0.50 0.30
False Positive 0.22 0.04 0.02

Plantation (n=159)
Correct 0.62 0.43 0.21

False Positive 0.05 0.02 0.01
Mature (n=50)

Correct 0.80 0.72 0.60
False Positive 0.78 0.10 0.08

Variable Window Sizes
Variable window sizes were applied to the LM
filtering process in an attempt to reduce the level
of commission error, or false positives, by
integrating scene spatial structural information.
Semivariance range and slope breaks are
computed for each pixel and applied as a unique
window size for that location.  In the simulated
panchromatic channel LM filtering with a variable
window size determined by the semivariance
method correctly located 64% of the trees in the
entire stand, and resulted in a commission error of
19% (Table 2).  The lack of a consistent
improvement in comparison to the fixed window
LM filtering is likely due to the selection of small
window sizes from the same image spatial
features that results in local maxima being found
where no trees are present.  Instead of a poorly fit
window identifying spurious local maxima and
resulting in a high commission level, variable
sized windows are being generated for the false-
positives.  The LM generated from slope breaks
have fewer false positives than those from the
semivariance range.  The measurement of slope
breaks from the imagery appears more sensitive to
the actual extent of the crown.  The semivariance
range values, at the study image spatial resolution
of 1 m, have a greater likelihood of generating
stand level information rather than individual
crown information and are thus, less locally
adaptive.

The slope break suggested window sized LM filter
results illustrate a good relationship between
number of trees correctly identified and
commission level.  For example, the commission
for the Mature stand is down from 78% with the
fixed 3x3 LM filter to 38% with the same number
of trees correctly identified.

Table 2.  LM proportion results as computed within
variable sized windows suggested from semivariance
and local breaks in slope

Wavelength PAN (|448-875 nm)
Window Size SVR SB

All (n=209)
Correct 0.64 0.62

False Positive 0.19 0.11
Plantation (n=159)

Correct 0.60 0.56
False Positive 0.05 0.03

Mature (n=50)
Correct 0.76 0.80

False Positive 0.64 0.38



Spectral Threshold and Local
Variance within LM window
The application of a spectral threshold and local
variance within the LM window resulted in an
overall commision error level of 13% (Table 3).
The low commision error for the Plantation, of 7%,
is expected as the density of the stand in
conjunction with the spatial resolution results in
many LM hits.  More importantly, for the Mature
stand, where the opportunity for commision is
greater due to the tree size and large spaces
between the trees, a false positive rate of 32% is
measured.  The 32% level of false positives for the
LM filter with a threshold and local variance test is
an improvement over the use of a fixed 3x3
window with no additional screening, yet the level
correct is less than that found for the fixed window
analysis.  For the mature stand the spectral
threshold with the local variance test the
commission level is only slightly better than the
variable window size dictated from slope breaks,
yet the level correct for the is lower than the 80%
correct computed for the variable window sizes
from slope breaks.

Table 3. Results of the application of a local variance test
and threshold value within the LM filter for processing of
panchromatic image data.

Wavelength PAN (|448-875 nm)
Window Size 3x3

All (n=209)
Correct 0.59

False Positive 0.13
Plantation (n=159)

Correct 0.55
False Positive 0.07

Mature (n=50)
Correct 0.70

False Positive 0.32

Spatial dependence threshold
The spatial dependence filtering results in a strong
reduction in commission error in relation to the
unfiltered results (Table 4).  A good relationship
between number of trees correctly identified is
evident for the Mature stand, where correct levels
are high and commission is low.  Yet, overall the
correct level is low, too low to make up for the also
low commission level.

The stratification of the results based upon the tree
age and size distribution demonstrates superior
results for the larger Mature trees over the smaller
Plantation trees.  Of the larger Mature trees up to

74% are accounted for, while for the smaller
Plantation trees, the maximum success rate is
40%.  The desired use of the resultant tree
locations from the LM filtering will dictate what
are acceptable levels of success.  For example,
this high omission rate may be acceptable if the
use of the tree locations is for subsequent
signature extraction or basal area estimation.  The
success of the LM filter based upon Gi

* values to
decrease the commission error indicates a
potential for directly processing the Gi

* values for
local maxima.

Table 4.  Variable window size LM filter processing of
spectral image data with spatial dependence (Gi

*)
threshold filter.

Wavelength PAN (|448-875 nm)
Window Size SVR SB

All (n=209)
Correct 0.47 0.46

False Positive 0.03 0.03
Plantation (n=159)

Correct 0.40 0.38
False Positive 0.02 0.01

Mature (n=50)
Correct 0.70 0.74

False Positive 0.08 0.10

LM filtering of spatial dependence
data
The promising application of Gi

* values as a
threshold filter in conjunction with an LM filter
indicated the potential for direct processing of the
spatial dependency values with a LM filter to
isolate individual trees.  The result of processing
the spatial dependence values with fixed sized LM
filters is presented in Table 5.  The success rates
vary by window size and stand age.  The tendency
of Gi

* values to represent clusters of similar DN
values (Wulder and Boots 1998; Wulder 1999)
results in a loss of individual tree location detail,
especially in the dense Plantation stand.  The
clustering effect is clearly demonstrated for 3x3
LM filter on the panchromatic data, illustrated
with the result over all age classes with the
success level of 16%.  An increase in window size
results in an improvement in the number of trees
correctly identified which relates to the size of the
domain of the spatial process.  The variable sized
windows when applied to the spatial dependence
data result in more consistent levels of success
(Table 6), with successful identification of trees
occurring at a rate of approximately 35%.
Successful identification of trees increases as the
sizes of the trees increase.  The relatively low rate



of tree identification is aided by the low amount of
commission error.  Locations that are identified
with the LM filtering of the spatial dependence
values are almost invariably trees.

The low, to absent, commission error is related to
the manner in which the radiance values are
transformed into Gi

* values, with the clusters of
high DNs becoming high Gi

* values.  The high Gi
*

values, accordingly, when processed with a LM
filter, act similarly to the Gi

* thresholded results.
As with the results for the LM filter suite processed
with a Gi

* threshold filter, the desired use of the
digitally isolated trees will dictate the success of
the LM isolation.  The low commission error is of
concern if the identified trees are to be utilized for
further analysis.  For example, the LM located trees
may be appropriate for signature development for
multispectral classification of the trees.  Further, at
the 1 m spatial resolution the large trees are being
found with the LM filtering method.  An analysis
of the distribution of the error by the size of the tree
is presented in the next section.

Table 5.  Fixed window size LM filter processing of
spatial dependence (Gi

*) transformed image data.
Wavelength PAN (|448-875 nm)
Window Size 3 5 7
All (n=209)

Correct 0.16 0.30 0.25
False Positive 0.00 0.00 0.00

Plantation
(n=159)

Correct 0.25 0.19 0.14
False Positive 0.01 0.01 0.01

Mature (n=50)
Correct 0.66 0.64 0.60

False Positive 0.00 0.00 0.00

Table 6. Variable window size LM filter processing of
spatial dependence (Gi

*) transformed image data.
Wavelength PAN (|448-875 nm)
Window Size SVR SB

All (n=209)
Correct 0.35 0.34

False Positive 0.01 0.00
Plantation (n=159)

Correct 0.25 0.24
False Positive 0.01 0.01

Mature (n=50)
Correct 0.66 0.66

False Positive 0.00 0.00

Conclusions
The efficacy of a given error reduction method
must be consider in the context of the number of
trees that are correctly identified.  When
considering the number of trees correctly
identified, the size of the trees found in relation to
the image spatial resolution must be considered.
If small trees, below the range of detection given
the spatial resolution available, is beyond the
scope of these error reduction methods.  Yet, for
large trees which are in the realm of delectability
omission and commission are more significant.
Large omitted trees are unavailable for further
analysis, committed trees falsely indicate trees
that are not there.  Our creation of a detailed stem
map allow for the reporting of omission and
commission error; without a detailed stem map the
committed trees are assume to be incorrectly
assumed to be legitimate.

The comparison of error reduction methods must
be kept in reference to the comments above.  The
success, or failure, of a given method is not
indicated from commission level alone, the
proportion correct must also be considered.  The
goals of the analysis, that is, what are the stems
required for, must also be kept in mind.  The error
rates found for the Plantation stand are largely a
function of the image spatial resolution and little
can be done to recover sub-pixel trees.  The limits
to the plantation results are also at play when
interpreting the results over both stands combined.
When considering the entire stand, favorable
results are found for the variable window size
techniques and the threshold/within window
variance filters.  For the Mature stand, with large
crown sizes, encouraging results are found for the
spatial dependence filtering of LM generated
within windows of sizes suggested by local slope
breaks, where correct proportion is high (74%)
and the false positive level is low (10%).  The
results related to the Mature stand indicate that
when many pixels comprise an individual crown
detection is possible as are useful means for
reducing the number of falsely indicated trees.

For future work additional error reduction may be
attempted to test species based constraints (such
as diameter, size, expected for a given species and
age – using a priori info), and iterative techniques
combining a variety of high and low certainty
filters.
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