by

M.F. Ker
Maritimes Forest Research Centre Fredericton, New Brunswick

Information Report M-X-148

[^0]
©Minister of Supply and Services, Canada 1984

Catalogue no. Fo46-19/148E
ISBN 0-662-12998-9
ISSN 0704-769X

Copies of this report may be obtained from

Maritimes Forest Research Centre Canadian Forestry Service
P.O. Box 4000

Fredericton, N.B. Canada E3B 5P7

Une copie française de ce rapport peut être mise a la disponibilité de quiconque en fait la demande.

Ker. M.F., 1984. Biomass equations for seven major Maritimes tree species. Can. For. Serv., Marit. For. Res. Cent. Fredericton, New Brunswick. Inf. Rep. $\mathrm{M}-\mathrm{X}-148$.

Abstract

Equations are given for estimating fresh and ovendry weights of biomass components for seven major Maritimes tree species (balsam fir, white spruce, red/black spruce, jack pine, red maple, white birch, and trembling aspen). Two equations are given for each component, one using diameter at breast height (DBH) alone as the independent variable, and the other using both DBH and height. A set of stump biomass equations are included which use DBH and stump height as independent variables. These equations are based on 1400 sample trees from throughout New Brunswick and Nova Scotia. Stem disc and branch samples were oven-dried and used to estimate ovendry/fresh weight ratios for each sample tree. A FORTRAN subroutine is included to assist in tree biomass calculations.

RESUME

Ce rapport présente des équations permettant d'estimer les masses à l'état vert et à l'état sec des composantes de la biomasse pour sept essences importantes des Maritimes: le sapin baumier, l'épinette blanche, l'épinette rouge-noir, le pin gris, l'érable rouge, le bouleau à papier et le peuplier faux-tremble. Il donne deux équations pour chaque composante, l'une utilisant le diamètre à hauteur de poitrine (dhp) comme unique variable indépendante et l'autre utilisant le dhp et la hauteur. Une série d'équations pour la biomasse de la souche utilisant le dhp et la hauteur de la souche comme variables indépendantes sont également incluses. Ces équations reposent sur un échantillon de 1400 arbres choisis dans 1 'ensemble du Nouveau-Brunswick et de la Nouvelle-Ecosse. Le rapport de la masse anhydre à la masse à l^{\prime} état frais a été estimé pour chaque arbre à l^{\prime} aide d'échantillons de la tige et des branches qui ont été séchés à l'étuve. Un sous-programme FORTRAN destiné à faciliter les calculs de la biomasse des arbres est présenté.

FOREWORD
ENFOR is the acronym for the Canadian Government's ENergy from the FORest (ENergie de 1a FORêt) program of research and development aimed at securing the knowledge and technical competence to facilitate in the medium to long-term a greatly increased contribution from forest biomass to our nation's primary energy production. This program is part of a much larger federal government initiative to promote the development and use of renewable energy as a means of reducing dependence on petroleum and other non-renewable energy sources.

The Canadian Forestry Service (CFS) administers the ENFOR Biomass Production program component which deals with such forest-oriented subjects as inventory, harvesting technology, silviculture and environmental impacts. (The other component, Biomass Conversion, deals with the technology of converting biomass to energy or fuels and is administered by the Renewable Energy Branch of the Department of Energy, Mines and Resources.) Most Biomass Production projects, although developed by CFS scientists in the light of ENFOR program objectives, are carried out under contract by forestry consultants and research specialists. Contractors are selected in accordance with science procurement tendering procedures of the Department of Supply and Services. For further information on the ENFOR Biomass Production program, contact

```
ENFOR Secretariat Canadian Forestry Service Department of the Environment Ottawa, Ontario K1A 1G5
```

... or a CFS research laboratory.
This report, based on ENFOR project $P-159$, was prepared by the Canadian Forestry Service. Field data were collected under contract (DSS Contract Nos. OSC80-00003) by Woodlot Service (1978) Ltd.

TABLE OF CONTENTS

ABSTRACT i
FOREWORD ii
INTRODUCTION 1
DATA COLLECTION 2
ANALYSIS OF DATA 5
RESULTS AND DISCUSSION 11
ACKNOWLEDGEMENTS 14
REFERENCES AND ADDITIONAL READING 15
LIST OF TABLES 18
LIST OF FIGURES 19
APPENDIX I: SUBROUTINE WEIGHT 20

INTRODUCTION

The sharp increase in oil prices over the last decade has prompted widespread efforts to develop alternate energy sources and technologies and has also made investments in conservation of energy much more attractive. One of these efforts, the federal government's ENFOR program, is a seven year forest biomass research and development program which began in 1977 with two main objectives: 1) quantification of the forest biomass resources available, and 2) development of economically feasible systems for harvesting biomass and converting it to useful forms of energy or fuels. One of the major results of the biomass measurement work being carried out under this program is a national biomass inventory being compiled by the Forestry Statistics and Systems Branch of the Canadian Forestry Service in cooperation with the provincial forestry agencies and due to be published in 1984. These biomass inventory statistics will be derived using two basic methods: 1) application of biomass/volume ratios to existing provincial volume inventory figures and 2) application of tree biomass equations to existing stand table and inventory plot data. The second approach, which is more accurate but more time-consuming, is being used to produce the biomass inventories for the Maritime Provinces.

Biomass equations for several Maritimes species have been developed by Baskerville (1965), MacLean and Wein (1976), Ker (1980 a, b), Ker and van Ralte (1981), Duinker (1981) and Telfer (1969). Most of these equations are based on relatively small samples from a specific area within the Maritimes. Baskerville's (1965) equations, for example, are based on data
from the Green River watershed in northwestern New Brunswick.

This report provides biomass equations for seven major Maritimes tree species, based on 1400 sample trees which were distributed throughout New Brunswick and Nova Scotia. These equations and others will be used in deriving the biomass inventory statistics for the three Maritime provinces, and can be used in a wide variety of other applications. Biomass equations and studies for other species and regions have been summarized by Stanek and State (1978), Tritton and Hornbeck (1982), Hitchcock and McDonnell (1979) and Young (1976).

DATA COLLECTION

Sample tree selection

Sample trees were selected from random locations throughout New Brunswick and Nova Scotia during the summers of 1980 , 1981, and 1982 (Fig. 1). Two hundred pairs of random (X, Y) coordinates were generated by computer and plotted on base maps. One sample tree of each of the seven species was selected from within a 5 -mile radius of the plot center. The seven species sampled were the most important commercial species of the Maritimes:

1) balsam fir (Abies balsamea (L.) Mill.)
2) white spruce (Picea glauca (Moench) Voss)
3) black/red spruce (Picea mariana (Mi11.) B.S.P. and Picea rubens Sarg.)
4) jack pine (Pinus banksiana Lamb.)
5) red maple (Acer rubrum L.)
6) white birch (Betula papyrifera Marsh.)
7) trembling aspen (Populus tremuloides Michx.)

Any species not found within the 5 -mile radius was sampled at the next plot along with the samples for that plot. Sampling was carried out by the contractor (Woodlot Service (1978) Ltd.), in consultation with provincial and industry foresters, who provided assistance in locating particular species.

Sample trees were selected from throughout the full range of tree diameters to minimize the variance of the regression coefficients which were estimated from the data and thereby help to reduce the total sampling error of the biomass inventories. A total of 1400 sample trees was measured over the 3 -year sampling period - 200 for each of the seven species. The distribution of sample trees by diameter class, species, and province is given in Table 1.

Field measurements and procedures

Diameter outside bark was measured at 1.3 m above ground. Crown width was recorded as the average of two measurements taken at right angles to each other. Crown class, cover type, slope percent, and aspect were recorded. The tree was then felled and total height, stump height, and live crown length were measured.

Stem discs were cut at 2 -m intervals, starting at the base of the stem. The fresh weight of each $2-\mathrm{m}$ stem section and top was obtained using platform scales ($\pm 0.1 \mathrm{~kg}$). Discs were labelled and the fresh weight $(\pm 0.1 \mathrm{~g})$ of wood and of bark was obtained for each disc at a trailer located near the work site.

A stratified sampling system (Cochran 1967) was used for estimating crown weights. Live softwood branches of each sample tree were sorted
into $2-\mathrm{cm}$ size classes (strata) using the diameter of the branch at 3 cm from the base as the stratification criterion. The total fresh weight of each stratum was obtained and one branch was randomly selected from each stratum for dry weight determination.

Live hardwood branches were cut into sections not longer than 2 m in length and then sorted into $2-\mathrm{cm}$ size classes based on the mid-diameter of the section. The smallest, foliage bearing branches were all assigned to the 0 to $2-\mathrm{cm}$ class. As with softwoods, the total fresh weight of each stratum was obtained using platform scales. Two sample branches were randomly selected from the 0 to $2-\mathrm{cm}$ class and their combined fresh weight was determined. For each of the remaining strata, five branch discs were cut from the branches in that stratum, and their total fresh weight was measured at the trailer.

Dead branches were weighed separately. For softwoods, one dead sample branch was selected and its fresh weight was obtained. For hardwoods, the sample consisted of three branch discs, whose total fresh weight was determined.

A11 sample discs and branches were bagged, labelled, and sent to the Canadian Forestry Service laboratory in Fredericton for oven-drying and dry weight measurements. Ovendry weights of sample material provided the basis for conversion of fresh weights to ovendry weights.

Laboratory measurements and procedures
All sample discs and branches were oven-dried for at least 24 h and then weighed. Softwood follage was separated from branches after drying using a-standard winnowing machine fitted with appropriate screens. Jack
pine and hardwood foliage was separated manually. Dry foliage and branches (wood plus bark) were weighed separately for each branch sample. The total dry weight of each set of hardwood branch discs was determined. Branch wood and bark were not separated. Stem disc wood and bark samples were dried and weighed separately.

Climatle data

The average values of five climatic variables were obtained for each sample plot from available climatic maps (Can. Dep. Energy, Mines, Resources 1974, Gates 1975) and used to test for large-scale differences in tree biomass relationships which might be related to climatic differences within the region. The five variables selected for testing were 1) growing degree-days, 2) mean total precipitation (May to September), 3) mean annual temperature, 4) July mean temperature, and 5) mean total annual precipitation.

ANALYSIS OF DATA

Data analysis involved two main steps: 1) calculation of fresh and ovendry weight of each biomass component for each sample tree, and 2) derivation of a set of regression equations for predicting biomass component weights from tree diameter and height. These two phases of analysis are described separately in the following sections.

Estimation of component weights of sample trees

1) Stem components

Stump weights were estimated using the observed stump height, tree diameter (DBH), basic relative densities (Can. Dep. Res. Dev 1951,

Mullins and McKnight 1981), fresh and ovendry weights of the first stem disc, and a taper model (Alemdag and Honer 1973; Honer et al. 1983) which gives stump diameter as a function of stump height and tree diameter. Ovendry weight of stump wood was first calculated from the basic relative density, DBH, stump height, and a volume integral:

$$
\text { OSTMPW }=0.07854 \mathrm{BRD}_{0}^{s}\left(\mathrm{~b}_{3}+\mathrm{D}\left(1-0.04365 b_{2}\right)\left(b_{4}+b_{5} \ln (1.6764 /(\mathrm{S}+0.3048))\right)\right)^{2} \mathrm{dS}
$$

where

$$
\begin{aligned}
\text { OSTMPW } & =\text { ovendry weight of stump wood } \\
\text { BRD } & =\text { basic relative density (specific gravity) } \\
\mathrm{S} & =\text { stump height }(\mathrm{m}) \\
\mathrm{D} & =\text { diameter at } 1.3 \mathrm{~m} \text { outside bark } \\
\mathrm{b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}, \mathrm{~b}_{5} & =\text { regression coefficients (from Honer et al. 1983) } \\
\ln & =\text { natural logarithm }
\end{aligned}
$$

The remaining stump weights were then estimated by multiplying the appropriate weight ratio obtained from the first stem disc to the ovendry or fresh weight of stump wood:

$$
\begin{aligned}
& \text { FSTMPW }=\left(w_{1} / w_{1}^{\prime}\right) \text { OSTMPW } \\
& \text { OSTMPB }=\left(b_{1}^{\prime} / w_{1}\right) \text { FSTMPW } \\
& \text { FSTMPB }=\left(b_{1} / w_{1}\right) \text { FSTMPW }
\end{aligned}
$$

where

$$
\begin{aligned}
\text { FSTMPW } & =\text { fresh weight of stump wood } \\
\text { OSTMPB } & =\text { ovendry weight of stump bark } \\
\text { FSTMPB } & =\text { fresh weight of stump bark } \\
w_{1} & =\text { fresh weight of wood, disc no. } 1
\end{aligned}
$$

$$
\begin{aligned}
& w_{1}^{\prime}=\text { ovendry weight of wood, disc no. } 1 \\
& b_{1}^{\prime}=\text { ovendry weight of bark, disc no. } 1 \\
& b_{1}=\text { fresh weight of bark, disc no. } 1
\end{aligned}
$$

Above-stump stem weights were computed from the fresh and ovendry disc weights and the fresh stem section weights. Ovendry weight of stem wood, for example, was computed as

$$
\operatorname{TDW}=\sum_{i=1}^{n-1}\left(\left(w_{i}^{\prime}+w_{i+1}^{\prime}\right) /\left(t_{i}+t_{i+1}\right)\right) T_{i}+\left(w_{n}^{\prime} / t_{n}\right) T_{n}+10^{-3} \sum_{i=1}^{n} w_{i}^{\prime}
$$

where

$$
\begin{aligned}
\text { TDW } & =\text { ovendry weight of above-stump stem wood (kg) } \\
W_{i}^{\prime} & =\text { ovendry weight of wood for } i^{\text {th }} \text { disc (} g \text {) } \\
T_{i} & =\text { total fresh weight of } i^{\text {th }} \text { stem section (kg) } \\
\mathrm{t}_{\mathrm{i}} & =\text { total fresh weight of } i^{\text {th }} \text { disc (g) } \\
\mathrm{n} & =\text { number of discs for a given tree }
\end{aligned}
$$

Weights of fresh stem wood, fresh stem bark, and ovendry stem bark were calculated in a similar fashion. Stump weights were then added to above-stump stem weights to obtain total stem weights.
2) Crown components

Ovendry weights of foliage and branches were estimated using a stratified ratio-of-means estimator:

$$
\begin{aligned}
\text { ODF } & ={ }_{i}{ }_{i=1}^{k} \text { AVGRF }_{i} \cdot \text { STRFW }_{i} \\
\text { ODCRWB } & ={ }_{i=1}^{k} \text { AVGRWB }_{i} \cdot \text { STRFW }_{i}
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{AVGRF}_{i} & =\left(\sum_{j=1}^{m} F_{i j}\right) /\left(\sum_{j=1}^{m} \text { FWSB }_{i j}\right) \\
\text { AVGRWB }_{i} & =\left(\sum_{j=1}^{m} W B_{i j}\right) /\left(\sum_{j=1}^{m} F W S B_{i j}\right)
\end{aligned}
$$

```
    F}\mp@subsup{i}{j}{}=\mathrm{ ovendry weight of foliage for j }\mp@subsup{j}{}{\mathrm{ th }}\mathrm{ sample in crown
        stratum i
FWSB ij = fresh weight of branch sample j in crown stratum i
        WB
            j, crown stratum i
        ODF = ovendry foliage weight for given sample tree
ODCRWB = ovendry weight of branches (wood plus bark) for a
    given sample tree
STRFW }\mp@subsup{i}{i}{= total fresh weight of i th crown stratum for given
    sample tree
    k = number of live crown strata for given tree
    m = total number of branch samples in given crown
        stratum, all sample trees combined
```

Ovendry weight of dead branches was estimated in a similar way, using the ratio of mean ovendry weight to mean fresh weight of dead branch samples.

Derivation of tree biomass equations

The second phase of analysis consisted of development of a set of regression equations which could then be used for estimating the fresh and ovendry weights of the various tree components from measurements of tree diameter and height.

Three basic models were tested:

1) $W=a D^{b}$
2) $W=a D^{b} H^{c}$
3) $W=a D^{b} S^{c}$
where

$$
\begin{aligned}
W= & \text { weight }(\mathrm{kg}) \\
D= & \text { tree diameter at breast height outside bark } \\
& (D B H O B)(\mathrm{cm}) \\
H= & \text { total height }(\mathrm{m}) \\
S= & \text { stump height }(\mathrm{m}) \\
a, b, c= & \text { regression coefficients }
\end{aligned}
$$

Model 1 is intended for applications such as the New Brunswick biomass inventory where tree height data are not available. Model 2 requires an estimate of height but is more accurate than Model 1 and is thus recommended for general applications. Model 2 explicitly takes account of the variation in tree height for a given diameter which arises from differences in stand age, site quality, and stand density.

Model 3 was developed for estimation of stump weights from DBH and stump height.

The coefficients of these models were estimated using a nonlinear least squares procedure (SAS Inst 1979), as recommended by Payandeh (1981). Three types of plots were obtained for each model: 1) predicted versus observed weights, 2) residuals versus predicted weights, and 3) predicted and observed weights versus DBH. These plots were used to help identify gross measurement errors, data entry errors, and to identify any tree diameter values for which the model gave biased estimates of mean weight.

Since these models are nonlinear, they would give nonadditive estimates of biomass if separate equations were developed for each biomass component (Kozak 1970). Additivity can be simply achieved, however, by
however, by developing equations for only a subset of all components and then calculating the weights of remaining components as the sum or difference of other components. For example, total stem weight can be calculated as the sum of predicted stem wood weight and predicted stem bark weight, rather than using a third equation. A general system of additive equations based on this approach was developed (Table 2).

Merchantable stem biomass for any top diameter and stump height can be estimated by applying the ratio(R) of merchantable volume to total volume (Honer et al. 1983) to total stem biomass, since volume is proportional to weight. This approach is incorporated in the general set of equations in Table 2. Coefficients for estimating this ratio are given in Honer et al. (1983) and in Table 3. Because this ratio requires an estimate of height, a set of height/diameter equations were developed for estimating height when Model 1 is used. The model used was Meyer's (1940) height/diameter equation:

$$
H=1.3+b_{0}\left(1-\exp \left(b_{1} D\right)\right)
$$

where

$$
b_{o}, b_{1} \text { are regression coefficients. }
$$

The hypothesis of differences in weight/diameter relationships caused by climatic differences within the Maritimes was tested using the general 1inear model

$$
\ln W=b_{0}+b_{1} \ln D+b_{2} \ln H+\sum_{i=1}^{5} c_{i} \ln X_{i}
$$

where

$$
W=\text { total ovendry aboveground weight (kg) }
$$

$X_{1}, \ldots, X_{5}=$ climatic variables
The five climatic variables tested were described earlier in the DATA COLLECTION section. Regression coefficients (c_{i}) and R^{2} values for all possible subsets of independent variables in this model were computed using Furnival and Wilson's (1974) algorithm for subset selection. The existence and magnitude of regional differences in tree biomass relationships was then evaluated by examining the statistical significance of the climate coefficients in the models and by the change in R^{2} values caused by inclusion of climatic variables in the models.

RESULTS AND DISCUSSION

Mean weights and dimensions

The mean values of DBH , height, and weights of the various biomass components together with the standard deviations, ranges, and sample sizes are summarized in Table 4. The ranges of $D B H$ and height in this table indicate the sizes of trees to which the biomass equations of this study are applicable.

Distribution of biomass within tree

The relative amounts of biomass in the various tree components will vary with the size of the tree and stand conditions such as age, density, and site quality. In general, larger trees will have a higher proportion of their total biomass in the form of stem wood, and conversely, smaller trees will have a greater proportion of their total biomass in the form of branches and foliage. We can, however, get a general idea of biomass
distribution within the tree by expressing mean ovendry component weights as a percentage of mean total ovendry above-ground weight. These percentages are given in Table 5 and Figure 2. In Table 6, the mean ovendry component weights are expressed as a percentage of mean ovendry stem wood weights.

Ratio of ovendry to fresh weight

The ratios of 1) mean ovendry foliage weight to mean total fresh weight and 2) mean ovendry branch weight to mean total fresh weight for the branch sample data were used to convert fresh crown weights to ovendry foliage and branch weights, using the stratified ratio-of-means estimators described previously. These ratios are given in Tables 7 and 8, by species and crown stratum.

The AVGRWB ratios (Table 8) show little variation between the larger hardwood branch size classes, which suggests that two or three strata would be sufficient for estimating hardwood branch weights. This has been observed in previous studies (Ker 1980b). The AVGRWB ratios are similar to the ratios of ovendry branch weights to fresh branch weights reported by Alemdag (1981) for some of the same species.

The ratios of mean ovendry to mean fresh weights for the various components are given in Table 9. Average moisture content (dry basis) can be derived fron these ratios using the formula

$$
M C=100\left(x^{-1}-1\right)
$$

where

```
MC = moisture content (%), dry basis.
    r = ratio in Table 9
```


Tree biomass equations

Tests for regional differences in weight/diameter relationships revealed small but statistically significant differences for four of the seven species (jack pine, red maple, white birch, and trembling aspen). These differences were related to differences in mean annual temperature, annual precipitation, and total summer precipitation. In all of these cases, however, the increase in R^{2} values over models using only DBH and height was so small that it would have no practical significance in most forestry applications. In subsequent analyses, therefore, only diameter and height were used as independent variables and regional differences were ignored.

Regression coefficients, \mathbb{R}^{2} values and standard errors for the two tree biomass models are given in Tables $10-16$, and for the stump biomass model in Tables 17-23. Weight estimates for components not included in these tables are obtained using addition or subtraction of other weights following the general system of equations in Table 2.

Coefficients for the height/diameter equation are given in Table 24. This equation can be used to estimate height for estimation of the ratio (R) of merchantable stem biomass to total stem biomass.

A FORTRAN 77 subroutine was developed to handle the calculations involved in the general system of Table 2 and to facilitate the application of these biomass equations to the provincial biomass inventories and other applications (Appendix I). This subroutine was developed using the structured - design concepts described by Yourdon (1975) and others, as a relatively independent module which can be "plugged-in" to an inventory
or growth modelling system with minimal interfacing problems. Documentation for the subroutine is given in the subroutine listing in Appendix I. This subroutine could easily be modified to handle additional species and/or different types of models.

ACKNOWLEDGEMENTS

Field work for this project was done by Woodlot Service (1978) Ltd. under ENFOR contract OSC80-00003. Mr. Ben Weale, Maritimes Forest Research Centre, provided technical assistance in processing the data. Mr. M. Oudemans, MFRC, prepared the figures, and Mr. G. van Raalte, MFRC, provided contract management services.

REFERENCES AND ADDITIONAL READING

Alemdag, I.S. 1981. Aboveground-mass equations for six hardwood species from natural stands of the research forest at Petawawa. Can. For. Serv., Petawawa Nat. For. Inst., Inf. Rep. PI-X-6.

Alemdag, I.S.; Honer, T.G. 1973. Relationships between breast-height and stump diameters for eleven tree species from eastern and central Canada. Can. For. Serv., For. Manage Inst., Inf. Rep. FMR-X-49.

Baskerville, G.L. 1965. Dry matter production in immature balsam fir stands. For. Sci. Monogr. 9.

Burwe11, C.C. 1978. Solar biomass energy: an overview of U.S. potential. Science 199:1041-1048.

Canada Department Energy, Mines, and Resources. 1974. National Atlas of Canada. 4th ed. Ottawa, Ont.

Canada Department Resources and Development. 1951. Canadian Woods. 2nd ed. Ottawa, Ont.

Cochran, W.G. 1967. Sampling Techniques. 2nd ed. J. Wiley and Sons, Inc. New York.

Duinker, P.N. 1981. Biomass prediction equations for ten tree species in central Nova Scotia. M.E.S. thesis. Dalhousie University, Institute for Resource and Environmental Studies. Halifax, Nova Scotia.

Flewelling, J.W.; Pienaar, L.V. 1981. Multiplicative regression with lognormal errors. For. Sci. 27:281-289.

Furnival, G.M.; Wilson, R.W. 1974. Regression by leaps and bounds. Technometrics 16:499-511.

Gates, A.D. 1975. The tourism and outdoor recreation climate of the Maritime provinces. Can. Dep. Environ., Atmospheric Environment Service. REC-3-73.

Hitchcock, H.C. III; McDonne11, J.P. 1979. Biomass measurements: a synthesis of the literature. Forest Resources Inventories Vol. II. Fort Collins, Co. Colorado State Univ. p. 544-595.

Honer, T.G.; Ker, M.F.; Alemdag, I.S. 1983. Metric timber tables for the commercial tree species of central and eastern Canada. Can. For. Serv., Marit. For. Res. Cent., Inf. Rep. M-X-140.

Ker, M.F. 1980a. Tree biomass equations for ten major species in Cumberland County, Nova Scotia. Can. For. Serv., Marit. For. Res. Cent., Inf. Rep. M-X-108.

Ker, M.F. 1980b. Tree biomass equations for seven species in southwestern New Brunswick. Can. For. Serv., Marit. For. Res. Cent., Inf. Rep. M-$\mathrm{X}-114$.

Ker, M.F.; van Raalte, G.D. 1981. Tree biomass equations for Abies balsamea and Picea glauca in northwestern New Brunswick. Can. J. For. Res. 11:13-17.

Kozak, A. 1970. Methods for ensuring additivity of biomass components by regression analysis. For. Chron. 46:402-404.

Love, P.; Overend, R. 1978. Tree power: an assessment of the energy potential of forest biomass in Canada. Can. Dep. Energy, Mines, and Resources. Rep. ER78-1.

MacLean, D.A.; Wein, R.W. 1976. Biomass of jack pine and mixed hardwood stands in northeastern New Brunswick. Can. J. For. Res. 6:441-447.

Meyer, A.H. 1940. A mathematical expression for height curves. J. For. 38:415-420.

Mullins, E.J.; McKnight, T.S. (eds.) 1981. Canadian Woods. 3rd ed. Univ. Toronto Press. Toronto, Ont.

Nautiyal, J.C. 1979. The place of forestry in the energy question. Can. J. For. Res. 9:68-75.

Pardé, J. 1980. Forest biomass. Forest Products Abstracts 3(8):165-184.
Payandeh, B. 1981. Choosing regression models for biomass prediction equations. For. Chron. 57:229-232.

SAS Institute. 1979. SAS User's Guide. Cary, North Carolina, U.S.A.
Singh, T. 1982. Biomass equations for ten major tree species of the prairie provinces. Can. For. Serv., North. For. Res. Cent., Edmonton, Alberta. Inf. Rep. NOR-X-242.

Stanek, W.; State, D. 1978. Equations predicting primary productivity (biomass) of trees, shrubs and lesser vegetation based on current literature. Can. For. Serv., Pac. For. Res. Cent. Victoria, B.C. Inf. Rep. BC-X-183.

Telfer, E.S. 1969. Weight-diameter relationships for 22 woody plant species. Can. J. Bot. 47:1851-1855.

Tillman, D.A. 1978. Wood as an energy resource. Academic Presis, New York, N.Y.

Tritton, L.M.; Hornbeck, J.W. 1982. Biomass equations for major tree species of the northeast. USDA For. Serv., Northeastern For. Exp. Sta., Gen. Tech. Rep. NE-69.

Young, H.E. 1976. A summary and analysis of weight table studies. In 0slo Biomass studies, pp. 251-282. Co1lege of Life Sciences and Agriculture. Univ. Maine, Orono.

Young, H.E.; Ribe, J.H.; Wainwright, K. 1980. Weight tables for tree and shrub species in Maine. Misc. Rep. 230. Life Sciences and Agric. Exp. Sta., Univ. Maine at Orono.

Yourdon, E. 1975. Techniques of program structure and design. PrenticeHall, Inc., Englewood Cliffs, N.J.

LIST OF TABLES

1. Distribution of sample trees by diameter class, species, and province.
2. A general set of additive tree biomass equations.
3. Merchantable volume conversion factor coefficients.
4. Means, standard deviations (SD), and ranges of sample tree data.
5. Mean ovendry component weights as percentage of mean total ovendry weight.
6. Mean ovendry component weights as percentage of mean ovendry stem wood weight.
7. Ratio of ovendry weight of foliage to total fresh branch weight based on ratio of means estimator ($\Sigma y / \Sigma x)$ and 4734 branch samples.
8. Ratio of ovendry weight of branch wood and bark to total fresh branch weight, based on ratio of means estimator ($\Sigma y / \Sigma x$) and 4734 branch samples.
9. Ratio of mean ovendry weight to mean fresh weight by species and component.
10. Tree biomass equations for balsam fir.
11. Tree biomass equations for white spruce.
12. Tree biomass equations for red/black spruce.
13. Tree biomass equations for jack pine.
14. Tree biomass equations for red maple.
15. Tree biomass equations for white birch.
16. Tree biomass equations for trembling aspen.
17. Stump biomass equations for balsam fir.
18. Stump biomass equations for white spruce.
19. Stump biomass equations for red/black spruce
20. Stump biomass equations for jack pine.
21. Stump biomass equations for red maple.
22. Stump biomass equations for white birch.
23. Stump biomass equations for trembling aspen.
24. Height diameter equations for seven Maritimes tree species.

LIST OF FIGURES

1. Location of sample plots.
2. Distribution of above-ground biomass.

APPENDIX I

710 C
720 C
730 C
740 C
750 C
760 C
770 C
780 C
790 C
800 C
810 C
820 C
830 C
840 C
850 C
860 C
870 C
880 C
890 C
900 C
910 C
920 C
930 C
940 C
950 C
960 C
970 C
980 C
990 C
1000 C
1010 C
1020 C
1030 C
1040 C
1050 C
1060 C
1070 C
1080 C
1090 C
1100 C
1110 C
SUBROUTINE WEIGHT(D, H,MODEL,KSP,S,T,DMIN,TOL,W,IRC)

```
FUNCTION: COMPUTE TREE BIOMASS COMPONENT WEIGHTS
    FOR SEVEN MAJOR MARITIMES SPECIES
    (BF,WS,BS,JP,RM,WB,TA) USING EQUATIONS FROM
    ENFOR PROJECT P-159 (MFRC INFO. REP. M-X-148)
DATE: APRIL 1983
    REVISED OCT. }8
AUTHOR: M. F. KER
    MARITIMES FOREST RESEARCH CENTRE
    FREDERICTON,N.B,CANADA E3B 5P7
ARGUMENTS: D = DBHOB (CM)
H = HEIGHT (M)
MODEL = MODEL TYPE: \ W=F(D)
2W=F(D,H)
```

KSP = SPECIES CODE
$S=S T U M P$ HEIGHT (M)
$T=T O P$ DIAMETER INSIDE BARK (CM)
DMIN = MERCHANTABLE DBHOB LTMTT (CM)
TOL $=$ ERROR TOLERANCE (\%):NEGATIVE TOP WEIGHTS
CAN OCCUR FOR JACK PINE FOR STUMP HEIGHTS
ABOVE 0.15 M AND DIAMETERS ABOVE 31 CM . IF THIS
CONDITION OCCURS THEN STEM WEIGHTS ARE RECALCULATED
USING AN AVERAGE RATIO OF TOP WEIGHT TO TOTAL
ABOVEGROUND WEIGHT AS LONG AS THE NEGATIVE TOP
WEIGHTS ARE WITHIN A SPECIFIED ERROR TOLERANCE
LIMIT (TOL). IF THIS LIMIT IS EXCEEDED, THE RETURN
CODE IRC IS SET TO 5. WITH TOL SET TO 1.0, THE
SUBROUTINE DID NOT PRODUCE ANY RETURN CODES = 5
IN TESTING USING A VARIETY OF TOP DIAMETERS AND
STUMP HEIGHTS.
$W=T R E E$ COMPONENT WEIGHTS (INDEXED AS IN TABLE 2)
IRC = RETURN CODE : $0=$ NO ERRORS DETECTED
$1=$ SPECIES ERROR
$2=$ MODEL TYPE ERROR
3 = STUMP HEIGHT OUT OF RANGE
$4=D L E T$ AND $D G E D M I N$
5 = ERROR TOLERANCE EXCEEDED
$6=\mathrm{D}$ LE O OR H LE 1.3
7 = FRESH WEIGHT LT DRY WEIGHT

VARIABLES:
SPECIES CODES: ISP(1) = BALSAM FIR CODE
ISP(2) $=$ WHITE SPRUCE
$\operatorname{ISP}(3)=$ RED/BLACK SPRUCE
$\operatorname{ISP}(4)=\mathrm{JACK}$ PINE
$\operatorname{ISP}(5)=\operatorname{RED} \operatorname{MAPLE}$
$\operatorname{ISP}(6)=$ WHITE BIRCH
$\operatorname{ISP}(7)=\operatorname{ASPEN}$
COEFFICIENTS:
$\operatorname{RE}(I, J)=$ ADJUSTED SQUARED-DIAMETER RATIO
METHOD (K (I) IN TABLE 3)
B2 (I) = TAPER COEFFICIENT (P IN TABLE 3)
HB(I,J) $=$ HEIGHT/DIAMETER COEFFICIENTS (TABLE 24)
W1(I,J) = BIOMASS COEFFICIENTS, COMPONENT 1,
SPECIES I, COEFFICIENT J (MODEL 1: J = 1,2 ;
MODEL 2: J = $3, \ldots, 5$; STUMP BIOMASS: $J=1,3$)
In general, wn(i, J) Contains the coefficients for COMPONENT 'N', WHERE N IS THE COMPONENT INDEX
GIVEN IN TABLE 2.
PERCNT(I) $=$ WEIGHT OF COMPONENT I AS $\%$ OF TOTAL
ABOVEGROUND WEIGHT
DIMENSION W(26), PERCNT(26)
COMMON /COEFF/ $\mathrm{RB}(7,3)$,
$1 \mathrm{~B} 2(7), \mathrm{HB}(7,2), \mathrm{W} 1(7,5)$, $\mathrm{W} 2(7,5), \mathrm{W} 3(7,5)$,
2 W14(7,5),W15(7,5),W16(7,5),W25(7,5),W26(7,5),
$\operatorname{ISP}(7), W 4(7,3), W 8(7,3), W 17(7,3), W 21(7,3)$
INITIALIZE WEIGHTS
DO $1 \mathrm{~J}=1,26$
$W(J)=0.0$
PERCNT(J) $=0.0$
CONTINUE
$I R C=0$

```
```

GET SPECIES INDEX K

```
```

GET SPECIES INDEX K
K=0
K=0
DO 5 I =1,7
DO 5 I =1,7
IF (ISP(I) .NE. KSP) GO TO 5
IF (ISP(I) .NE. KSP) GO TO 5
K = I
K = I
GO TO 10
GO TO 10
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CHECK FOR INVALID SPECIES CODE
CHECK FOR INVALID SPECIES CODE
IF(K .EQ. O) THEN
IF(K .EQ. O) THEN
IRC = 1
IRC = 1
RETURN
RETURN
SET RETURN CODES FOR OUT OF RANGE CONDITIONS
SET RETURN CODES FOR OUT OF RANGE CONDITIONS
ELSE IF (MODEL .NE. 1 . AND. MODEL .NE. 2) THEN
ELSE IF (MODEL .NE. 1 . AND. MODEL .NE. 2) THEN
IRC = 2
IRC = 2
RETURN
RETURN
ELSE IF (S .EQ. 0.0.OR. S .GT. 0.30) THEN
ELSE IF (S .EQ. 0.0.OR. S .GT. 0.30) THEN
IRC=3
IRC=3
RETURN
RETURN
ELSE IF ((D.GE. DMIN) .AND. (D .LE. T)) THEN
ELSE IF ((D.GE. DMIN) .AND. (D .LE. T)) THEN
IRC=4
IRC=4
RETURN
RETURN
ELSE IF (D .LE. 0.0 .OR. (H .LE. 1.3.AND. MODEL .EQ. 2)) THEN
ELSE IF (D .LE. 0.0 .OR. (H .LE. 1.3.AND. MODEL .EQ. 2)) THEN
IRC=6
IRC=6
RETURN
RETURN
END IF
END IF
IF(MODEL .EQ. 1) THEN
IF(MODEL .EQ. 1) THEN
W(1) = W1(K,1)* D**W1(K,2)
W(1) = W1(K,1)* D**W1(K,2)
W(2) = W2(K,1)*D**W2(K,2)
W(2) = W2(K,1)*D**W2(K,2)
W(3) = W3(K,1)*D**W3(K,2)
W(3) = W3(K,1)*D**W3(K,2)
W(15) = W15(K,1)*D**W15(K,2)
W(15) = W15(K,1)*D**W15(K,2)
W(16)=W16(K,1)*D**W16(K,2)
W(16)=W16(K,1)*D**W16(K,2)
W(25) = W25(K,1)*D**W25(K, 2)
W(25) = W25(K,1)*D**W25(K, 2)
W(26) = W26(K,1)*D**W26(K,2)
W(26) = W26(K,1)*D**W26(K,2)
H=1.3+HB(K,1)*(1.0-EXP(-HB(K,2)*D))
H=1.3+HB(K,1)*(1.0-EXP(-HB(K,2)*D))
ELSE
ELSE
W(1)=W1(K,3)*(D**W1(K,4))*(H**W1(K,5))
W(1)=W1(K,3)*(D**W1(K,4))*(H**W1(K,5))
W(2) = W2(K,3)*(D**W2(K,4))*(H**W2(K,5))

```
```

 W(2) = W2(K,3)*(D**W2(K,4))*(H**W2(K,5))
    ```
```


560 C
1570
1580
1590
1600
1610
16205
63010
1640 C
650 C
1660 C
1670
1680
1690
1700 C
1710 C
1720 C
1730
740
1750
750
760
60
70
0


```
            W(3) = W3(K,3)*(D**W3(K,4))*(H**W3(K,5))
            W(15) = W15(K,3)*(D**W15(K,4))*(H**W15(K,5))
            W(16) = W16(K,3)*(D**W16(K,4))*(H**W16(K,5))
            W(25) = W25(K,3)*(D**W25(K,4))*(H**W25(K,5))
            W(26) = W26(K,3)*(D**W26(K,4))*(H**W26(K,5))
```

 END IF
 \(W(7)=W(2)-W(3)\)
 \(W(20)=W(15)-W(16)\)
 \(W(11)=W(1)-W(2)\)
 \(W(24)=W(25)+W(26)\)
 \(W(14)=W(15)+W(24)\)
 \(W(12)=W(11) *(W(25) / W(24))\)
 \(W(13)=W(11)-W(12)\)
 IF (D .GE. DNIN) THEN
 \(\mathrm{X}=(\mathrm{T} * * 2) *(1 .+\mathrm{S} / \mathrm{H}) /((\mathrm{D} * * 2) *(1,-0.04365 * \mathrm{~B} 2(\mathrm{~K})) * * 2)\)
 \(R=R B(K, 1)+R B(K, 2) * X+R B(K, 3) * X * 2\)
 \(W(4)=W 4(K, 1) *\left(D^{* *} W 4(K, 2)\right) *(S * * W 4(K, 3))\)
 \(W(5)=R^{*} W(3)\)
 \(W(6)=W(3)-W(4)-W(5)\)
 \(W(8)=W 8(K, 1) *\left(D^{* *} W 8(K, 2)\right) *\left(S^{* *} W 8(K, 3)\right)\)
 \(W(9)=R^{*} W(7)\)
 \(W(10)=W(7)-W(8)-W(9)\)
 \(W(17)=W 17(K, 1) *(D * W 17(K, 2)) *(S * * W 17(K, 3))\)
 \(W(18)=R^{*} W(16)\)
 \(W(19)=W(16)-W(17)-W(18)\)
 \(W(21)=W 21(K, 1) *(D * W 21(K, 2)) *(S * * W 21(K, 3))\)
 \(W(22)=R^{*} W(20)\)
 \(W(23)=W(20)-W(21)-W(22)\)
 END IF
 becalculate jack pine stem weights if any top weights
WERE NEGATIVE AND WITHIN ERROR TOLERANCE
DO $30 \mathrm{~J}=1,26$
IF (W(J) .LT. 0.0) THEN
$\operatorname{IF}(J . L E .13) \operatorname{PERCNT}(J)=100 . z A B S(W(J) / W(1))$
$\operatorname{IF}(J . G T .13) \operatorname{PERCNT}(J)=100 . * A B S(W(J) / W(14))$
IF (PERCNT(J) .GT. TOL) THEN
IRC $=5$
RETURN
END IF
IF (J.EQ. $6 . O R$. J.EQ. 19) THEN
$W(6)=0.016^{*} W(1)$

```
            W(5)=W(3)-W(4)-W(6)
```

 W(5)=W(3)-W(4)-W(6)
 W(19) = 0.016*W(14)
 W(19) = 0.016*W(14)
 W(18) =W(16) -W(17) -W(19)
 W(18) =W(16) -W(17) -W(19)
 ELSE IF(J .EQ.10 .OR. J.EQ. 23) THEN
 ELSE IF(J .EQ.10 .OR. J.EQ. 23) THEN
 W(10) = 0.00053*W(1)
 W(10) = 0.00053*W(1)
 W(9) =W(7) -W(8) -W(10)
 W(9) =W(7) -W(8) -W(10)
 W(23) = 0.00053*W(14)
 W(23) = 0.00053*W(14)
 W(22) =W(20) -W(21) -W(23)
 W(22) =W(20) -W(21) -W(23)
 END IF
 END IF
 END IF
 END IF
 CONTINUE
 CONTINUE
 DO 55 I= 1,13
 DO 55 I= 1,13
 IF(W(I) .LT.W(I + 13)) IRC = 7
 IF(W(I) .LT.W(I + 13)) IRC = 7
 CONTINUE
 CONTINUE
 RETURN
 RETURN
 END
 END
 BLOCK DATA
 BLOCK DATA
 COMMON /COEFF/ RB(7,3),
 COMMON /COEFF/ RB(7,3),
 B2(7),HB(7,2),W1(7,5),W2(7,5),W3(7,5),
 B2(7),HB(7,2),W1(7,5),W2(7,5),W3(7,5),
 W14(7,5),W15(7,5),W16(7,5),W25(7,5),W26(7,5),
 W14(7,5),W15(7,5),W16(7,5),W25(7,5),W26(7,5),
 ISP(7),W4(7,3),W8(7,3),W17(7,3),W21(7,3)
 ISP(7),W4(7,3),W8(7,3),W17(7,3),W21(7,3)
 COEFFICIENTS FOR RATIO OF MERCH. STEM BIOMASS
 COEFFICIENTS FOR RATIO OF MERCH. STEM BIOMASS
 TO TOTAL STEM BIOMASS USING
 TO TOTAL STEM BIOMASS USING
 ADJUSTED SQUARED DIAMETER RATIO METHOD (TABLE 3)
 ADJUSTED SQUARED DIAMETER RATIO METHOD (TABLE 3)
 DATA ((RB(I,J),J=1,3),I=1,7)/
 DATA ((RB(I,J),J=1,3),I=1,7)/
 1 0.9352, -0.0395, -0.8147,
1 0.9352, -0.0395, -0.8147,
2 0.9611, -0.2456, -0.6801,
2 0.9611, -0.2456, -0.6801,
3 0.9526, -0.1027, -0.8199,
3 0.9526, -0.1027, -0.8199,
0.9604, -0.1660, -0.7868,
0.9604, -0.1660, -0.7868,
0.9057, -0.0708, -0.8375,
0.9057, -0.0708, -0.8375,
0.9087, -0.3049, -0.5107
0.9087, -0.3049, -0.5107
0.9354, 0.0957, -1.1613/
0.9354, 0.0957, -1.1613/
TAPER COEFFICIENTS (TABLE 3)
TAPER COEFFICIENTS (TABLE 3)
DATA (B2(I),I=1,7)/
DATA (B2(I),I=1,7)/
1 0.152, 0.176,0.164,0.154,0.145,0.176,0.127/
1 0.152, 0.176,0.164,0.154,0.145,0.176,0.127/
HEIGHT-DIAMETER COEFFICIENTS (TABLE 24)
HEIGHT-DIAMETER COEFFICIENTS (TABLE 24)
DATA ((HB(I,J),J=1,2),I=1,7)/

```
    DATA ((HB(I,J),J=1,2),I=1,7)/
```

| 2840 | 1 | 27.1757, | 0.02632 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2850 | 2 | 59.8597, | 0.00938 | 85 | | |
| 2860 | 3 | 28.9866, | 0.02486 | | | |
| 2870 | 4 | 21.2668, | 0.04650 | | | |
| 2880 | 5 | 15.8876, | 0.07780 | | | |
| 2890 | 6 | 19.9768, | 0.04864 | | | |
| 2900 | 7 | 20.5601, | 0.05257 | | | |
| 2910 | C | | | | | |
| 2920 | BIOMASS COEFFICIENTS (TABLES 10-16) | | | | | |
| 2930 | C | | | | | |
| 2940 | DATA $\left.\left.\left(\begin{array}{l}\text { W1 }\end{array} \mathrm{I}, \mathrm{J}\right), \mathrm{J}=1,5\right), \mathrm{I}=1,7\right) /$ | | | | | |
| 2950 | 1 | 0.5157 , | 2.0434, | 0.2419, | 1.6862, | 0.7175, |
| 2960 | 2 | 0.2476 , | 2.2937, | , 0.2367, | 2.0464, | 0.3205, |
| 2970 | 3 | 0.2694 , | 2.2548, | , 0.1700, | 1.9597, | 0.5249, |
| 2980 | 4 | 0.5454, | 2.0369, | , 0.2946, | 1.8634 , | 0.4272, |
| 2990 | 5 | 0.3496, | 2.1753, | , 0.0769, | 1.8790 , | 0.9183, |
| 3000 | 6 | 0.3129, | 2.2604, | 0.1636, | 1.8867 , | 0.6793 , |
| 3010 | 7 | 0.2399 , | 2.3236, | , 0.1357, | 2.2104, | $0.3361 /$ |
| 3020 | DATA | ((W2 (1 , J | , $\mathrm{J}=1,5$), | , $\mathrm{I}=1,7) /$ | | |
| 3030 | 1 | 0.2203 , | 2.2010, | , 0.0733, | 1.6955, | 1.0247, |
| 3040 | 2 | 0.1088, | 2.4252, | , 0.0942, | 1.6798, | 0.9676, |
| 3050 | 3 | 0.1504 , | 2.3215, | , 0.0657, | 1.7709, | 0.9674 , |
| 3060 | 4 | 0.3922, | 2.0589, | , 0.0917, | 1.6568, | 0.9976 , |
| 3070 | 5 | 0.2224, | 2.2166, | , 0.0282, | 1.8128, | 1.2503, |
| 3080 | 6 | 0.1545 , | 2.3800, | , 0.0575, | 1.7989, | 1.0478, |
| 3090 | 7 | 0.1744 , | 2.3237, | , 0.04601 | 2.0736, | $0.7681 /$ |
| 3100 | | DATA ($\mathrm{W} 3(\mathrm{I}, \mathrm{J}$) , J $=1,5), \mathrm{I}=1,7) /$ | | | | |
| 3110 | 1 | 0.2124 , | 2.1637, | , 0.0705, | 1.6367, | 1.0520, |
| 3120 | 2 | 0.0914, | 2.4411, | , 0.0787, | 1.6919, | 0.9740 , |
| 3130 | 3 | 0.1189 , | 2.3545, | , 0.0493, | 1.7800, | 1.0153, |
| 3140 | 4 | 0.3163, | 2.0991, | , 0.0718, | 1.6929, | 1.0131, |
| 3150 | 5 | 0.1779 , | 2.2420, | , 0.0213, | 1.8277 , | 1.2848, |
| 3160 | 6 | 0.1338 , | 2.3806, | , 0.0498, | 1.8026, | 1.0441, |
| 3170 | 7 | 0.1417 , | 2.3273, | , 0.03325, | 2.0565, | $0.8338 /$ |
| 3180 | DATA | (W14 (I) | J), $J=1,5)$ | $), I=1,7) /$ | | |
| 3190 | 1 | 0.1746 , | 2.1555, | , 0.1104, | 1.9209, | 0.4561 , |
| 3200 | 2 | 0.1077 , | 2.3308, | , 0.1029, | 2.0606, | 0.3490, |
| 3210 | 3 | 0.1444 , | 2.2604, | , 0.0884, | 1.9339, | 0.5740 , |
| 3220 | 4 | 0.2131, | 2.1283, | , 0.1004, | 1.9168, | 0.5211, |
| 3230 | 5 | 0.1970 , | 2.1933, | , 0.0377, | 1.8706, | 1.0019, |
| 3240 | 6 | 0.1545 , | 2.3064 , | , 0.0754, | 1.8910, | 0.7537, |
| 3250 | 7 | 0.1049, | 2.3910, | , 0.05533 | 2.2699, | $0.3703 /$ |

| 3270 | 1 | | 0.0671 , | 2.3381, | 0.0286, | 1.9586, | 0.7794, | |
|---|---|---|---|---|---|---|---|---|
| 3280 | 2 | | 0.0445 , | 2.4737, | 0.0385 , | 1.6343, | 1.0826, |
| 3290 | 3 | | 0.0849 , | 2.3130, | 0.0358 , | 1.7073 , | 1.0468 , |
| 3300 | 4 | | 0.1470 , | 2.1673, | 0.0307 , | 1.7264, | 1.0838, |
| 3310 | 5 | | 0.1351 , | 2.2215, | 0.0150, | 1.7946, | 1.3264, |
| 3320 | 6 | | 0.0847 , | 2.4029, | 0.0296 , | 1.7864, | 1.1120, |
| 3330 | 7 | | 0.07736, | 2.3971 , | 0.01983 , | 2.1551, | $0.7685 /$ |
| 3340 | | DATA | ((W16 (I, |), $J=1,5)$, | 1,7)/ | | |
| 3350 | 1 | | 0.0645 , | 2.2962, | 0.0289, | 1.9157, | 0.7625, |
| 3360 | 2 | | 0.0376, | 2.4883, | 0.0325 , | 1.6447, | 1.0883, |
| 3370 | 3 | | 0.0690 , | 2.3387, | 0.0275 , | 1.7010, | 1.1058, |
| 3380 | 4 | | 0.1172 , | 2.2116, | 0.0238 , | 1.7646, | 1.1010, |
| 3390 | 5 | | 0.1139 , | 2.2342, | 0.0119 , | 1.7964, | 1.3639, |
| 3400 | 6 | | 0.0739, | 2.3982, | 0.0261 , | 1.7911, | 1.0971, |
| 3410 | 7 | | 0.06392, | 2.3938, | 0.01511 , | 2.1369, | $0.8147 /$ |
| 3420 | | DATA | (W25 (I, J) | $\mathrm{J}=1,5$), | 1,7)/ | | |
| 3430 | 1 | | 0.0909, | 1.8405, | 0.0909, | 1.8405 , | 0.0 , |
| 3440 | 2 | | 0.0435, | 2.1490, | 0.0445 , | 3.0518 , | -1.1236, |
| 3450 | 3 | | 0.0287 , | 2.2679, | 0.0460, | 2.5410, | -0.5032, |
| 3460 | 4 | | 0.0353 , | 2.1113, | 0.2462, | 2.7691, | -1.4849, |
| 3470 | 5 | | 0.0634 , | 2.0709 , | 0.0634, | 2.0709 , | 0.0 , |
| 3480 | 6 | | 0.0579 , | 2.1458, | 0.0579 , | 2.1458, | 0.0 , |
| 3490 | 7 | | 0.01922 , | 2.4468, | 0.06642 , | 2.7190, | -0.7639 |
| 3500 | | DATA | ((W26 (I) |), $\mathrm{J}=1,5$) | (1,7)/ | | |
| 3510 | 1 | | 0.09982 , | 1.6421 | 0.09982 , | 1.6421, | 0.0, |
| 3520 | 2 | | 0.06101 , | 1.8465 , | 0.06373, | 2.5314, | -0.8613 |
| 3530 | 3 | | 0.04949 , | 1.8761 , | 0.04949, | 1.8761, | 0.0 , |
| 3540 | 4 | | 0.04892 , | 1.7140 , | 0.1875 , | 2.2318, | -1.1012 |
| 3550 | 5 | | 0.04082 , | 1.5518, | 0.04082 , | 1.5518, | 0.0 , |
| 3560 | 6 | | 0.03943 , | 1.6286 , | 0.03943 , | 1.6286, | 0.0 , |
| 3570 | 7 | | 0.01977 , | 1.8031 , | 0.05002 , | 2.0766, | -0.6540 |
| 3580 | | | | | | | |
| 3590 | StUMP BIOMASS COEFFICIENTS (TABLES 17-23) | | | | | | |
| 3600 | | | | | | | |
| 3610 | | | | | | | |
| 3620 | $\begin{array}{cl} \text { DATA }((W 4(I, J), J=1,3), I=1,7) / \\ 1 & 0.08370, \quad 1.9116, \quad 0.9487, \end{array}$ | | | | | | |
| 3630 | 23 | | 0.05977,0.06534, | 2.0442, | 0.9487,0.8989, | | |
| 3640 | | | 2.0221, | 0.9227 , | | |
| 3650 | 3 | | | 0.06236,0.06029, | 1.9805, | 0.8941 , | | |
| 3660 | | | 2.0500 , | | 0.9263, | | |
| 3670 | 56 | | 0.08203, | 1.9812, | 0.8856 , | | |
| 3680 | | | | 2.0492, | 0.8704/ | | |
| 3690 | DATA | | | $, \mathrm{J}=1,3)$, | 1,7)/ | | |

Table 1. Number of trees sampled by diameter class, species, and province

Table 2. A general set of additive tree biomass equations

| Component | General equation | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Fresh (green) | | Ovendry | |
| | Index | Equation | Index | Equation |
| Total live above ground | 1 | $\mathrm{W}_{1}=\mathrm{f}_{1}(\mathrm{D}, \mathrm{H})$ | 14 | $W_{14}=W_{15}+W_{24}$ |
| 1. Total bole | 2 | $\mathrm{W}_{2}=\mathrm{f}_{2}(\mathrm{D}, \mathrm{H})$ | 15 | $W_{15}=f_{15}(\mathrm{D}, \mathrm{H})$ |
| a) Total bole wood | 3 | $W_{3}=f_{3}(\mathrm{D}, \mathrm{H})$ | 16 | $W_{16}=f_{16}(D, H)$ |
| (i) Stump wood | 4 | $\mathrm{W}_{4}=\mathrm{f}_{4}(\mathrm{D}, \mathrm{S})$ | 17 | $\mathrm{W}_{17}=\mathrm{f}_{1},(\mathrm{D}, \mathrm{S})$ |
| (ii) Merchantable wood | 5 | $W_{5}=R \cdot W_{3}$ | 18 | $W_{18}=R \cdot W_{16}$ |
| (iii) Top wood | 6 | $W_{6}=W_{3}-W_{4}-W_{5}$ | 19 | $W_{19}=W_{16}-W_{19},-W_{18}$ |
| b) Total bole bark | 7 | $W_{7}=W_{2}-W_{3}$ | 20 | $W_{20}=W_{15}-W_{16}$ |
| (i) Stump bark | 8 | $W_{B}=f_{B}(D, S)$ | 21 | $W_{21}=\mathrm{F}_{21}(\mathrm{D}, \mathrm{S})$ |
| (ii) Merchantable bark | 9 | $\mathrm{W}_{9}=\mathrm{R} \cdot \mathrm{W}_{7}$ | 22 | $\mathrm{W}_{22}=\mathrm{R} \cdot \mathrm{W}_{20}$ |
| (iii) Top bark | 10 | $W_{10}=W_{7}-W_{8}-W_{9}$ | 23 | $W_{23}=W_{20}-W_{21}-W_{22}$ |
| 2. Total crown | 11 | $W_{11}=W_{1}-W_{2}$ | 24 | $W_{24}=W_{25}+W_{26}$ |
| a) Live branches | 12 | $W_{12}=W_{11} \cdot\left(W_{25} / W_{24}\right)$ | 25 | $W_{25}=f_{25}(\mathrm{D}, \mathrm{H})$ |
| b) Foliage | 13 | $W_{13}=W_{11}-W_{12}$ | 26 | $W_{26}=\mathrm{f}_{26}(\mathrm{D}, \mathrm{H})$ |

Table 3. Merchantable volume conversion factor coefficients for adjusted squared diameter ratio method (from Honer et al., 1983)

| Species | Regression coefficients | | | | R^{2} | Standard error of estimate | $\begin{gathered} \% \\ \text { Accuracy* } \\ \hline \end{gathered}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | p | k_{1} | k_{2} | k_{3} | | | | 1 | 2 |
| White pine | 0.184 | 0.9735 | -0.2348 | - 0.7378 | 86.20 | 0.083 | \pm | 24.6 | ± 12.1 |
| Red pine | 0.151 | 0.9672 | -0.0393 | - 1.0523 | 89.18 | 0.074 | \pm | 22.5 | ± 10.4 |
| Jack pine | 0.151 | 0.9635 | -0.1500 | - 0.8081 | 88.49 | 0.074 | \pm | 24.4 | ± 11.3 |
| Lodgepole pine | 0.118 | 0.9658 | -0.1278 | - 0.8108 | 91.59 | 0.064 | \pm | 18.1 | ± 7.1 |
| Black spruce | 0.164 | 0.9526 | -0.1027 | - 0.8199 | 92.84 | 0.057 | \pm | 20.7 | ± 7.3 |
| Red spruce | 0.169 | 0.9644 | -0.0995 | - 0.7658 | 88.61 | 0.068 | | Not | tested |
| White spruce | 0.176 | 0.9611 | -0. 2456 | - 0.6801 | 91.54 | 0.062 | \pm | 21.9 | $\pm \quad 7.4$ |
| Balsam fir | 0.152 | 0.9352 | -0.0395 | - 0.8147 | 93.95 | 0.052 | \pm | 20.9 | ± 6.8 |
| Softwoods | 0.155 | 0.9645 | -0.1616 | - 0.7945 | 89.09 | 0.072 | \pm | 23.7 | ± 10.1 |
| Poplar | 0.127 | 0.9354 | 0.0957 | - 1.1613 | 93.68 | 0.062 | \pm | 22.6 | ± 15.0 |
| White birch | 0.176 | 0.9087 | -0.3049 | - 0.5107 | 82.25 | 0.095 | \pm | 35.7 | ± 15.4 |
| Yellow birch | 0.181 | 0.8778 | -0.2417 | - 0.5247 | 83.32 | 0.089 | \pm | 39.2 | ± 14.0 |
| Hardwoods | 0.145 | 0.9057 | -0.0708 | - 0.8375 | 86.15 | 0.087 | \pm | 37.6 | ± 16.3 |
| All species | 0.154 | 0.9604 | -0.1660 | - 0.7868 | 88.66 | 0.076 | \pm | 31.1 | ± 13.5 |

*Percent accuracy: Column 1 incorporates the errors associated with the total volume equation as well as the conversion factor equation. Column 2 figures based on conversion factor errors only.
where $\quad V M_{m}=$ merchantable volume; $V_{m}=$ total cubic volume; $X=t_{m}^{2} D^{-2}(1-0.043 \quad 65 \mathrm{p})-2\left(1+S_{m} / H_{m}\right)$

$$
V M_{m}=V_{m}\left(k_{1}+k_{2} X+k_{3} X^{2}\right)
$$

$t_{m}=$ top diameter inside bark; $D=D B H O B ; S_{m}=s t u m p h e i g h t ; H_{m}=t o t a l$ height.

Table 4. Means, standard deviations (SD), and ranges of sample tree data

| Variable | Species | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \text { Balsam } \\ \text { fir } \end{gathered}$ | White spruce | Biack/red spruce | Jack pine | $\begin{gathered} \text { Red } \\ \text { maple } \end{gathered}$ | White birch | Trembling aspen | Softwood | Hardwood |
| n | 195 | 196 | 195 | 195 | 194 | 195 | 194 | 781 | 583 |
| DBHOB (cm) | | | | | | | | | |
| mean | 17.0 9.0 | 18.1 9.5 | 17.5 | 16.4 8.8 | 15.6 9.1 | 15.0 8.3 | 15.9 9.2 | 17.2 | 15.5 8.8 |
| range | 35.6 | 39.3 | 36.6 | 37.6 | 35.2 | 32.8 | 35.9 | 39.3 | 36.0 |
| Height (m) | | | | | | | | | |
| Mean | 10.5 | 10.4 | 11.0 | 11.7 | 11.3 | 10.9 | 11.9 | 10.9 | 11.4 |
| SD | 4.7 | 4.9 | 4.7 | 4.9 | 4.1 | 4.4 | 4.9 | 4.8 | 4.5 |
| range | 19.6 | 22.2 | 19.6 | 18.9 | 18.7 | 17.9 | 19.2 | 22.2 | 19.4 |
| Stump height (m) | | | | | | | | | |
| mean | 0.15 | 0.15 | 0.15 | 0.10 | 0.15 | 0.15 | 0.13 | 0.14 | 0.14 |
| SD | 0.09 | 0.09 | 0.09 | 0.06 | 0.09 | 0.09 | 0.08 | 0.09 | 0.09 |
| range | 0.47 | 0.44 | 0.44 | 0.39 | 0.44 | 0.44 | 0.36 | 0.47 | 0.44 |
| $\begin{aligned} & \text { Stump w.ood } \\ & \text { volume }\left(\mathrm{m}^{3}\right) \end{aligned}$ | | | | | | | | | |
| mean | 0.007 | 0.010 | 0.009 | 0.004 | 0.006 | 0.007 | 0.006 | 0.008 | 0.006 |
| SD | 0.009 | 0.013 | 0.010 | 0.006 | 0.009 | 0.008 | 0.008 | 0.010 | 0.008 |
| range | 0.050 | 0.076 | 0.054 | 0.037 | 0.055 | 0.041 | 0.044 | 0.076 | 0.055 |
| Ovendry stump | | | | | | | | | |
| wood (kg) | | | | | | | | | |
| mean | 2.5 | 3.6 | 3.4 | 1.9 | 3.2 | 3.3 | 2.2 | 2.8 | 2.9 |
| SD | 3.2 | 4.7 | 4.2 | 2.5 | 4.4 | 4.2 | 3.0 | 3.8 | 3.9 |
| range | 16.9 | 26.4 | 21.4 | 15.4 | 27.9 | 20.9 | 16.4 | 26.4 | 27.9 |

Table 4. (Continued)

| Fresh stump wood (kg) mean | 5.0 | 7.3 | 6.3 | 3.3 | 5.0 | 5.5 | 3.8 | 5.4 | 4.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SD | 6.3 | 9.4 | 7.7 | 4.3 | 6.9 | 6.8 | 5.2 | 7.3 | 6.4 |
| range | 33.9 | 55.9 | 38.8 | 25.7 | 43.2 | 36.1 | 27.8 | 55.9 | 43.2 |
| Ovendry stump bark (kg) | | | | | | | | | |
| mean | 0.4 | 0.4 | 0.4 | 0.2 | 0.3 | 0.5 | 0.4 | 0.4 | 0.4 |
| SD | 0.7 | 0.5 | 0.5 | 0.3 | 0.4 | 0.7 | 0.5 | 0.5 | 0.5 |
| range | 5.0 | 3.2 | 2.3 | 1.5 | 2,1 | 4.2 | 2.1 | 5.0 | 4.2 |
| Fresh stump
 bark (kg) | | | | | | | | | |
| mean | 0.8 | 0.8 | 0.7 | 0.4 | 0.6 | 0.8 | 0.7 | 0.7 | 0.7 |
| SD | 1.1 | 0.9 | 0.8 | 0.4 | 0.7 | 1.1 | 0.8 | 0.9 | 0.9 |
| range | 8.1 | 5.5 | 3.6 | 2.5 | 3.8 | 7.3 | 3.9 | 8.1 | 7.3 |
| $\begin{aligned} & \text { Total fresh } \\ & \text { stem wood (kg) } \end{aligned}$ | | | | | | | | | |
| mean | 131.0 | 158.4 | 142.1 | 147.6 | 125.4 | 126.1 | 134.0 | 144.8 | 128.5 |
| SD | 128.4 | 167.7 | 143.3 | 147.4 | 139.5 | 134.6 | 150.4 | 147.5 | 141.4 |
| range | 673.4 | 804.0 | 682.9 | 668.4 | 797.6 | 538.0 | 658.0 | 804.0 | 797.6 |
| Total ovendry stemwood (kg) | | | | | | | | | |
| mean | 60.9 | 75.9 | 78.0 | 78.1 | 78.4 | 73.6 | 75.0 | 73.2 | 75.6 |
| SD | 60.8 | 81.2 | 78.8 | 80.7 | 87.3 | 79.0 | 85.0 | 76.1 | 83.8 |
| range | 304.6 | 414.2 | 371.3 | 343.8 | 507.8 | 323.6 | 362.5 | 414.2 | 507.8 |
| $\begin{aligned} & \text { Total fresh } \\ & \text { stem bark (kg) } \end{aligned}$ | | | | | | | | | |
| mean | 22.2 | 20.7 | 19.6 | 13.6 | 19.3 | 19.4 | 29.5 | 19.0 | 22.7 |
| SD | 23.0 | 20.6 | 18.0 | 11.8 | 20.6 | 21.1 | 33.0 | 19.0 | 26.0 |
| range | 124.4 | 109.2 | 85.0 | 51.5 | 120.8 | 90.9 | 168.7 | 124.4 | 168.7 |

Table 4. (Continued)

| Total ovendry | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| stem bark (kg) | | | | | | | | | |
| mean | 11.6 | 9.9 | 10.4 | 7.0 | 11.0 | 12.1 | 16.9 | 9.7 | 13.3 |
| SD | 12.6 | 10.1 | 9.8 | 6.2 | 12.2 | 13.5 | 19.8 | 10.1 | 15.7 |
| range | 68.7 | 55.7 | 42.2 | 28.2 | 76.6 | 58.4 | 102.4 | 68.7 | 102.4 |
| Total fresh | | | | | | | | | |
| stem (kg) | | | | | | | | | |
| mean | 153.1 | 179.1 | 161.7 | 161.2 | 144.7 | 145.4 | 163.5 | 163.8 | 151.2 |
| SD | 150.9 | 187.8 | 161.0 | 158.8 | 159.6 | 155.1 | 182.9 | 165.2 | 166.2 |
| range | 797.8 | 913.2 | 755.1 | 712.1 | 900.5 | 623.0 | 826.7 | 913.2 | 900.5 |
| Total ovendry | | | | | | | | | |
| stem (kg) | | | | | | | | | |
| mean | 72.5 | 85.7 | 88.5 | 85.1 | 89.4 | 85.6 | 91.7 | 83.0 | 88.9 |
| SD | 73.0 | 91.2 | 88.4 | 86.7 | 99.1 | 92.0 | 104.5 | 85.2 | 98.5 |
| range | 373.4 | 470.0 | 403.4 | 361.9 | 566.4 | 375.8 | 456.5 | 470.0 | 566.4 |
| Fresh dead | | | | | | | | | |
| Branches (kg) | | | | | | | | | |
| mean | 6.7 | 6.9 | 7.9 | 7.5 | 4.4 | 2.5 | 4.0 | 7.3 | 3.6 |
| SD | 16.3 | 10.3 | 11.6 | 12.5 | 10.2 | 10.0 | 10.8 | 12.8 | 10.4 |
| range | 209.6 | 67.9 | 91.3 | 102.2 | 125.1 | 129.5 | 129.0 | 209.6 | 129.5 |
| Ovendry dead | | | | | | | | | |
| branches (kg) | | | | | | | | | |
| mean | 5.3 | 5.5 | 6.2 | 6.0 | 3.3 | 1.6 | 3.0 | 5.8 | 2.6 |
| SD | 12.8 | 8.2 | 9.2 | 10.1 | 7.7 | 6.4 | 8.0 | 10.2 | 7.4 |
| range | 164.3 | 54.0 | 72.4 | 82.3 | 94.1 | 83.1 | 96.0 | 164.3 | 96.0 |
| Total fresh | | | | | | | | | |
| mean | 63.8 | 87.6 | 72.5 | 47.9 | 53.8 | 57.4 | 60.1 | 68.0 | 57.1 |
| SD | 61.2 | 87.2 | 72.4 | 52.0 | 61.8 | 59.8 | 72.0 | 70.8 | 64.7 |
| range | 276.8 | 500.1 | 332.1 | 231.4 | 317.4 | 294.3 | 345.2 | 500.4 | 345.2 |

Table 4 . (Continued)

| Total ovendry crown (kg) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mean | 32.3 | 45.0 | 39.0 | 23.9 | 29.1 | 29.8 | 29.6 | 35.1 | 29.5 |
| SD | 31.3 | 45.5 | 39.5 | 26.3 | 34.1 | 32.0 | 36.1 | 37.2 | 34.0 |
| range | 140.6 | 260.3 | 182.3 | 115.9 | 174.6 | 159.6 | 170.8 | 260.5 | 174.6 |
| ```Ovendry branch (kg)``` | | | | | | | | | |
| | | | | | | | | | |
| mean | 20.2 | 29.3 | 26.1 | 17.0 | 25.7 | 26.1 | 26.0 | 23.2 | 25.9 |
| SD | 20.3 | 31.1 | 27.7 | 19.7 | 31.0 | 29.0 | 32.7 | 25.6 | 30.9 |
| range | 89.1 | 177.7 | 131.1 | 84.0 | 158.1 | 147.5 | 151.3 | 177.8 | 158.1 |
| $\begin{aligned} & \text { Ovendry } \\ & \text { foliage }(\mathrm{kg}) \end{aligned}$ | | | | | | | | | |
| | | | | | | | | | |
| mean | 12.1 | 15.7 | 13.0 | 6.9 | 3.4 | 3.7 | 3.6 | 11.9 | 3.6 |
| SD | 11.0 | 14.5 | 11.9 | 6.7 | 3.2 | 3.2 | 3.6 | 11.8 | 3.3 |
| range | 51.5 | 82.6 | 51.2 | 31.9 | 16.5 | 13.6 | 19.5 | 82.7 | 19.5 |
| Fresh total
 above ground (kg) | | | | | | | | | |
| mean | 217.0 | 266.7 | 234.2 | 209.2 | 198.4 | 203.0 | 223.6 | 231.8 | 208.3 |
| SD | 204.0 | 266.7 | 227.9 | 204.8 | 216.0 | 209.2 | 247.6 | 228.0 | 224.7 |
| range | 934.0 | 1223.7 | 1087.2 | 876.7 | 1081.2 | 824.6 | 1063.8 | 1223.8 | 1081.2 |
| Ovendry total above ground (kg) | | | | | | | | | |
| mean | 104.8 | 130.7 | 127.5 | 109.0 | 118.5 | 115.4 | 121.3 | 118.0 | 118.4 |
| SD | 99.8 | 131.6 | 124.5 | 109.3 | 130.0 | 120.8 | 136.9 | 117.3 | 129.2 |
| range | 443.2 | 589.1 | 575.5 | 435.2 | 663.2 | 495.2 | 584.7 | 589.1 | 663.2 |

Table 5. Mean ovendry component weights as percentage of mean total ovendry weight

| Component | Species | | | | | | | Softwood | Hardwood |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \text { Balsam } \\ \text { fir } \end{gathered}$ | White spruce | Black/red spruce | Jack pine | Red maple | White birch | Aspen | | |
| Stem wood | 58.1 | 58.0 | 61.2 | 71.6 | 66.1 | 63.7 | 61.7 | 62.0 | 63.8 |
| Stem bark | 11.1 | 7.6 | 8.2 | 6.5 | 9.3 | 10.5 | 13.9 | 8.3 | 11.3 |
| Total stem | 69.2 | 65.6 | 69.4 | 78.1 | 75.4 | 74.2 | 75.6 | 70.3 | 75.1 |
| Stump wood | 2.4 | 2.7 | 2.7 | 1.7 | 2.7 | 2.9 | 1.8 | 2.4 | 2.5 |
| Stump bark | 0.4 | 0.3 | 0.3 | 0.2 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 |
| Total stump | 2.8 | 3.0 | 3.0 | 1.9 | 3.0 | $3 \cdot 3$ | 2.1 | 2.7 | 2.8 |
| Live branches | 19.3 | 22.4 | 20.4 | 15.6 | 21.8 | 22.6 | 21.4 | 19.6 | 21.9 |
| Foliage | 11.5 | 12.0 | 10.2 | 6.3 | 2.8 | 3.2 | 3.0 | 10.1 | 3.0 |
| Total live crown | 30.8 | 34.4 | 30.6 | 21.9 | 24.6 | 25.8 | 24.4 | 29.7 | 24.9 |
| Total above ground | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |

Table 6. Mean ovendry component weights as a percentage of mean ovendry stem wood weight

| Component | Species | | | | | | | Softwood | Hardwood |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Balsam fir | White spruce | Black/red spruce | Jack pine | $\begin{gathered} \text { Red } \\ \text { maple } \end{gathered}$ | White birch | Aspen | | |
| Stem wood | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | $100.0{ }^{\prime}$ | 100.0 | 100.0 | 100.0 |
| Stell bark | 19.0 | 13.0 | 13.4 | 9.0 | 14.1 | 16.4 | 22.5 | 13.3 | 17.6 |
| Total stem | 119.0 | 113.0 | 113.4 | 109.0 | 114.1 | 116.4 | 122.5 | 113.3 | 117.6 |
| Stump wood | 4.1 | 4.7 | 4.4 | 2.4 | 4.1 | 4.5 | 3.0 | 3.9 | 3.8 |
| Stump bark | 0.7 | 0.6 | 0.6 | 0.3 | 0.4 | 0.7 | 0.5 | 0.5 | 0.5 |
| Total stump | 4.8 | 5.3 | 5.0 | 2.7 | 4.5 | 5.2 | 3.5 | 4.4 | 4.4 |
| Dead branches | 8.7 | 7.3 | 8.0 | 7.7 | 4.2 | 2.2 | 4.0 | 7.9 | 3.5 |
| Total crown | 53.0 | 59.3 | 50.0 | 30.6 | 37.1 | 40.5 | 39.5 | 47.9 | 39.0 |
| Total above ground | 172.0 | 172.3 | 163.4 | 139.6 | 151.2 | 156.9 | 162.0 | 161.2 | 156.6 |

Table 7. Ratio of ovendry weight of foliage to total fresh branch weight, based on ratio of means estimator ($\Sigma y / \Sigma x$) and 4734 branch samples

| $\begin{aligned} & \text { Crown } \\ & \text { stratum } \end{aligned}$ | Species | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{aligned} & \text { Balsam } \\ & \text { fir } \end{aligned}$ | White spruce | Black
 spruce | Jack pine | $\begin{gathered} \text { Red } \\ \text { maple } \end{gathered}$ | White birch | $\begin{gathered} \text { Trembling } \\ \text { aspen } \end{gathered}$ |
| 1 | 0.226 | 0.228 | 0.219 | 0.190 | 0.143 | 0.123 | 0.128 |
| 3 | 0.179 | 0.176 | 0.177 | 0.147 | 0 | 0 | 0 |
| 5 | 0.115 | 0.133 | 0.135 | 0.117 | 0 | 0 | 0 |
| 7 | 0.159 | 0.077 | 0.117 | 0.095 | 0 | 0 | 0 |
| 9 | 0.164 | - | - | 0.088 | 0 | 0 | 0 |
| 11 | - | - | - | - | 0 | 0 | 0 |
| 13 | - | - | - | - | 0 | 0 | 0 |
| 15 | - | - | - | - | 0 | 0 | 0 |
| 17 | - | - | - | - | 0 | 0 | 0 |
| 19 | - | - | - | - | 0 | 0 | 0 |

${ }^{1}$ Midpoint of branch size class in centimetres.

Table 8. Ratio of ovendry weight of branch wood and bark to total fresh branch weight, based on ratio of means estimator ($\Sigma y / \Sigma x$) and 4734 branch samples

| Crown Stratum ${ }^{1}$ | Species | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \text { Balsam } \\ \text { fir } \end{gathered}$ | White spruce | $\begin{aligned} & \text { Black } \\ & \text { spruce } \end{aligned}$ | Jack pine | $\begin{gathered} \text { Red } \\ \text { maple } \end{gathered}$ | White birch | $\begin{gathered} \text { Trembing } \\ \text { aspen } \end{gathered}$ |
| Dead | 0.784 | 0.795 | 0.793 | 0.805 | 0.752 | 0.642 | 0.744 |
| 1 | 0.262 | 0.264 | 0.299 | 0.290 | 0.339 | 0.341 | 0.318 |
| 3 | 0.333 | 0.336 | 0.364 | 0.348 | 0.582 | 0.575 | 0.520 |
| 5 | 0.420 | . 0.410 | 0.421 | 0.394 | 0.587 | 0.583 | 0.533 |
| 7 | 0.406 | 0.491 | 0.443 | 0.419 | 0.587 | 0.578 | 0.543 |
| 9 | 0.328 | - | - | 0.452 | 0.595 | 0.585 | 0.553 |
| 11 | - | - | - | - | 0.600 | 0.588 | 0.558 |
| 13 | - | - | - | - | 0.614 | 0.584 | 0.564 |
| 15 | - | - | - | - | 0.592 | 0.612 | 0.595 |
| 17 | - | - | - | - | 0.588 | - | - |
| 19 | - | - | - | - | 0.579 | - | - |

[^1]Table 9. Ratio of mean ovendry weight to mean fresh weight by species and component

| Component | Balsam
 fir | White
 spruce | Black/red
 spruce | Jack
 pine | Red
 maple | White
 birch | Aspen | Softwood | Hardwood |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stem wood | 0.465 | 0.479 | 0.549 | 0.529 | 0.625 | 0.584 | 0.559 | 0.506 | 0.588 |
| Stem bark | 0.523 | 0.476 | 0.532 | 0.516 | 0.572 | 0.622 | 0.573 | 0.511 | 0.587 |
| Total stem | 0.474 | 0.479 | 0.547 | 0.528 | 0.618 | 0.589 | 0.561 | 0.506 | 0.588 |
| Stump wood | 0.494 | 0.493 | 0.546 | 0.565 | 0.639 | 0.610 | 0.580 | 0.519 | 0.612 |
| Stump bark | 0.556 | 0.549 | 0.583 | 0.581 | 0.546 | 0.603 | 0.563 | 0.565 | 0.573 |
| Total stump | 0.503 | 0.498 | 0.550 | 0.579 | 0.629 | 0.609 | 0.577 | 0.524 | 0.607 |
| Dead branches | 0.784 | 0.795 | 0.793 | 0.567 | 0.752 | 0.642 | 0.744 | 0.795 | 0.723 |
| Total crown | 0.506 | 0.514 | 0.538 | 0.498 | 0.541 | 0.519 | 0.492 | 0.516 | 0.516 |
| Total above ground | 0.483 | 0.490 | 0.544 | 0.521 | 0.597 | 0.569 | 0.543 | 0.509 | 0.568 |

| Component | | N | Model 1: $W=a D$ | | | | $\text { Model 2: } W=a D^{b} c$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | R^{2} | S.E.E. | a | b | c | R^{2} | S.E.E. |
| 1 | Total live
 Above ground (fresh) | 198 | 0.5157 | 2.0434 | 0.968 | 54.4 | 0.2419 | 1.6862 | 0.7175 | 0.980 | 43.3 |
| 2 | Total bole (fresh) | 198 | 0.2203 | 2.2010 | 0.969 | 38.5 | 0.0733 | 1.6955 | 1.0247 | 0.993 | 18.8 |
| 3 | Total bole wood (fresh) | 198 | 0.2124 | 2.1637 | 0.967 | 33.9 | 0.0705 | 1.6367 | 1.0520 | 0.992 | 17.0 |
| 14 | Total 1ive Above ground (ovendry) | 196 | 0.1746 | 2.1555 | 0.982 | 19.6 | 0.1104 | 1.9209 | 0.4561 | 0.987 | 17.0 |
| 15 | Total bole (ovendry) | 198 | 0.0671 | 2.3381 | 0.978 | 15.4 | 0.0286 | 1.9586 | 0.7794 | 0.992 | 9.3 |
| 16 | $\begin{aligned} & \text { Total bole } \\ & \text { wood } \\ & \text { (ovendry) } \end{aligned}$ | 198 | 0.0645 | 2.2962 | 0.979 | 12.8 | 0.0289 | 1.9157 | 0.7625 | 0.992 | 7.8 |
| 25 | Branches (ovendry) | 196 | 0.0909 | 1.8405 | 0.857 | 10.9 | - | - | - | - | - |
| 26 | Foliage (ovendry) | 196 | 0.09982 | 1.6421 | 0.848 | $0.08{ }^{2}$ | - | - | - | - | - |

${ }^{2} \mathrm{~W}=$ weight (kg); $\mathrm{D}=$ diameter at 1.30 m outside bark (cm); H = total height (m).
${ }^{2}$ Weighted regression.

| Component | | N | Model $1: W=a D$ | | | | Model 2: $W=a D^{\text {a }} \mathrm{H}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | |
| Index | Name | | a | b | R^{2} | S.E.E. | a | b | c | R^{2} | S.E.E. |
| 1 | Total live above ground (fresh) | 197 | 0.2476 | 2.2937 | 0.972 | 63.0 | 0.2367 | 2.0464 | 0.3205 | 0.974 | 61.4 |
| 2 | Total bole (fresh) | 197 | 0.1088 | 2.4252 | 0.972 | 43.9 | 0.0942 | 1.6798 | 0.9676 | 0.985 | 32.0 |
| 3 | Total bole wood (fresh) | 197 | 0.0914 | 2.4411 | 0.969 | 41.0 | 0.0787 | 1.6919 | 0.9740 | 0.982 | 30.9 |
| 14 | ```Total live above ground (ovendry)``` | 197 | 0.1077 | 2.3308 | 0.978 | 27.5 | 0.1029 | 2.0606 | 0.3490 | 0.980 | 26.4 |
| 15 | Total bole (ovendry) | 197 | 0.0445 | 2.4737 | 0.974 | 20.1 | 0.0385 | 1.6343 | 1.0826 | 0.991 | 12.0 |
| 16 | Total bole wood (ovendry) | 197 | 0.0376 | 2.4883 | 0.974 | 17.9 | 0.0325 | 1.6447 | 1.0883 | 0.991 | 10.7 |
| 25 | Branches (ovendry) | 197 | 0.0435 | 2.1490 | 0.873 | 15.3 | 0.0445 | 3.0518 | -1.1236 | 0.892 | 14.2 |
| 26 | Foliage (ovendry) | 197 | 0.06101 | 1.8465 | 0.900 | 6.8 | 0.06373 | 2.5314 | -0.8613 | 0.911 | 6.4 |

[^2]| Component | | N | Mode1 1: $W=a D$ | | | | Model 2: $W=a D H$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | R^{2} | S.E.E. | a | b | c | R^{2} | S.E.E. |
| 1 | Total live above ground (fresh) | 195 | 0.2694 | 2.2548 | 0.975 | 51.8 | 0.1700 | 1.9597 | 0.5249 | 0.979 | 47.5 |
| 2 | Total bole (fresh) | 195 | 0.1504 | 2.3215 | 0.975 | 36.0 | 0.0657 | 1.7709 | 0.9674 | 0.989 | 24.2 |
| 3 | Total bole wood (fresh) | 195 | 0.1189 | 2.3545 | 0.973 | 33.6 | 0.0493 | 1.7800 | 1.0153 | 0.987 | 22.8 |
| 14 | Total live above ground (ovendry) | 195 | 0.1444 | 2.2604 | 0.978 | 26.2 | 0.0884 | 1.9339 | 0.5740 | 0.983 | 23.1 |
| 15 | Total bole (ovendry) | 195 | 0.0849 | 2.3130 | 0.976 | 19.3 | 0.0358 | 1.7073 | 1.0468 | 0.992 | 11.2 |
| 16 | Total bole wood (ovendry) | 195 | 0.0690 | 2.3387 | 0.974 | 18.1 | 0.0275 | 1.7010 | 1.1058 | 0.991 | 10.7 |
| 25 | Branches (ovendry) | 195 | 0.0287 | 2.2679 | 0.895 | 12.4 | 0.0460 | 2.5410 | -0.5032 | 0.898 | 12.2 |
| 26 | Foliage (ovendry) | 195 | 0.04949 | 1.8761 | 0.910 | 5.3 | - | - | - | - | - |

${ }^{2} \mathrm{~W}=$ weight (kg); $\mathrm{D}=$ diameter at 1.30 m outside bark (cm) ; $\mathrm{H}=$ total height (m).

| Component | | N | Model I: $W=a D$ | | | | Model 2: $\mathrm{W}=\mathrm{aD} \mathrm{H}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | |
| Index | Name | | a | b | R ${ }^{2}$ | S.E.E. | a | b | c | R^{2} | S.E.E. |
| 1 | Total live above ground (fresh) | 195 | 0.5454 | 2.0369 | 0.973 | 48.2 | 0.2946 | 1.8634 | 0.4272 | 0.975 | 46.3 |
| 2 | Total bole (fresh) | 195 | 0.3922 | 2.0589 | 0.973 | 37.2 | 0.0917 | 1.6568 | 0.9976 | 0.985 | 27.7 |
| 3 | Total bole wood (fresh) | 195 | 0.3163 | 2.0991 | 0.972 | 34.9 | 0.0718 | 1.6929 | 1.0131 | 0.984 | 26.3 |
| 14 | Total live above ground (ovendry) | 195 | 0.2131 | 2.1283 | 0.978 | 23.2 | 0.1004 | 1.9168 | 0.5211 | 0.981 | 21.5 |
| 15 | Total bole (ovendry) | 195 | 0.1470 | 2.1673 | 0.972 | 20.5 | 0.0307 | 1.7264 | 1.0838 | 0.986 | 14.6 |
| 16 | Total bole wood (ovendry) | 195 | 0.1172 | 2.2116 | 0.971 | 19.3 | 0.0238 | 1.7646 | 1.1010 | 0.985 | 14.0 |
| 25 | Branches (ovendry) | 195 | 0.0353 | 2.1113 | 0.845 | 10.3 | 0.2462 | 2.7691 | -1.4849 | 0.873 | 9.3 |
| 26 | Foliage (ovendry) | 195 | 0.04892 | 1.7140 | 0.870 | 3.5 | 0.1875 | 2.2318 | -1.1012 | 0.888 | 3.2 |

[^3]Table 14. Biomass equations ${ }^{1}$ for red maple (see also table 2)

| Component | | N | Mode1 1: $W=a D^{b}$ | | | | Model 2: $W=a D^{b}{ }_{H}{ }^{\text {c }}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | R ${ }^{2}$ | S.E.E. | a | b | c | R^{2} | S.E.E. |
| 1 | Total live above ground (fresh) | 198 | 0.3496 | 2.1753 | 0.967 | 55.5 | 0.0769 | 1.8790 | 0.9183 | 0.978 | 45.0 |
| 2 | Total bole (fresh) | 198 | 0.2224 | 2.2166 | 0.965 | 41.4 | 0.0282 | 1.8128 | 1.2503 | 0.987 | 25.8 |
| 3 | Total bole wood (fresh) | 198 | 0.1779 | 2.2420 | 0.964 | 36.8 | 0.0213 | 1.8277 | 1.2848 | 0.986 | 22.7 |
| 14 | Total live above ground (ovendry) | 198 | 0.1970 | 2.1933 | 0.965 | 34.0 | 0.0377 | 1.8706 | 1.0019 | 0.979 | 26.5 |
| 15 | Total bole (ovendry) | 198 | 0.1351 | 2.2215 | 0.962 | 26.9 | 0.0150 | 1.7946 | 1.3264 | 0.986 | 16.4 |
| 16 | Total bole wood (ovendry) | 198 | 0.1139 | 2.2342 | 0.961 | 23.9 | 0.0119 | 1.7964 | 1.3639 | 0.986 | 14.3 |
| 25 | Branches (ovendry) | 197 | 0.0634 | 2.0709 | 0.868 | 14.8 | - | - | - | - | - |
| 26 | Foliage (ovendry) | 197 | 0.04082 | 1.5518 | 0.879 | 1.6 | - | - | - | - | - |

${ }^{1} \mathrm{~W}=$ weight (kg); $D=$ diameter at 1.30 m outside bark (cm); $H=$ total height (m).

| Component | | N | Model 1: $W=a D^{b}$ | | | | Mode1 2: $W=a D^{b} H^{c}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | R^{2} | S.E.E. | a | b | c | R^{2} | S.E.E. |
| 1 | Total live above ground (fresh) | 196 | 0.3129 | 2.2604 | 0.981 | 40.6 | 0.1636 | 1.8867 | 0.6793 | 0.988 | 31.6 |
| 2 | Total bole (fresh) | 196 | 0.1545 | 2.3800 | 0.975 | 33.6 | 0.0575 | 1.7989 | 1.0478 | 0.992 | 19.4 |
| 3 | Total bole wood (fresh) | 196 | 0.1338 | 2.3806 | 0.976 | 28.7 | 0.0498 | 1.8026 | 1.0441 | 0.992 | 16.1 |
| 14 | Total live above ground (ovendry) | 196 | 0.1545 | 2.3064 | 0.978 | 24.5 | 0.0754 | 1.8910 | 0.7537 | 0.988 | 18.5 |
| 15 | Total bole (ovendry) | 196 | 0.0847 | 2.4029 | 0.973 | 20.6 | 0.0296 | 1.7864 | 1.1120 | 0.992 | 11.5 |
| 16 | Total bole wood (ovendry) | 196 | 0.0739 | 2.3982 | 0.974 | 17.5 | 0.0261 | 1.7911 | 1.0971 | 0.992 | 9.6 |
| 25 | Branches (ovendry) | 196 | 0.0579 | 2.1458 | 0.892 | 12.8 | - | - | - | - | - |
| 26 | Foliage (ovendry) | 196 | 0.03943 | 1.6286 | 0.861 | $0.03{ }^{2}$ | - | - | - | - | - |

${ }^{1} \mathrm{~W}=$ weight (kg); $\mathrm{D}=$ diameter at 1.30 m outside bark (cm); H = total height (m).
${ }^{2}$ Weighted regression.

Table 16. Biomass equations for trembling aspen (see also table 2)

| Component | | N | Model 1: $W=a D^{b}$ | | | | Mode1 2: $W=a D^{b}{ }_{H} c$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | R^{2} | S.E.E. | a | b | c | R^{2} | S.E.E. |
| 1 | Total live above ground (fresh) | 197 | 0.2399 | 2.3236 | 0.989 | 35.6 | 0.1357 | 2.2104 | 0.3361 | 0.990 | 33.6 |
| 2 | Total bole (fresh) | 197 | 0.1744 | 2.3237 | 0.986 | 29.5 | 0.04601 | 2.0736 | 0.7681 | 0.992 | 21.9 |
| 3 | Total bole wood (fresh) | 197 | 0.1417 | 2.3273 | 0.985 | 24.7 | 0.03325 | 2.0565 | 0.8338 | 0.993 | 17.4 |
| 14 | Total live above ground (ovendry) | 197 | 0.1049 | 2.3910 | 0.989 | 19.5 | 0.05533 | 2.2699 | 0.3703 | 0.991 | 18.1 |
| 15 | Total bole (ovendry) | 197 | 0.07736 | 2.3971 | 0.986 | 16.8 | 0.01983 | 2.1551 | 0.7685 | 0.992 | 12.5 |
| 16 | Total bole wood (ovendry) | 197 | 0.06392 | 2.3938 | 0.986 | 13.6 | 0.01511 | 2.1369 | 0.8147 | 0.993 | 9.6 |
| 25 | Branches (ovendry) | 197 | 0.01922 | 2.4468 | 0.872 | 15.8 | 0.06642 | 2.7190 | -0.7639 | 0.878 | 15.5 |
| 26 | Foliage (ovendry) | 197 | 0.01977 | 1.8031 | 0.874 | 1.9 | 0.05002 | 2.0766 | -0.6540 | 0.880 | 1.8 |

[^4]Table 17. Stump biomass equations ${ }^{1}$ for balsam fir

| Component | | N | General equation: $W=a^{\text {b }} S^{c}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | c | R^{2} | S.E.E. |
| 4 | Fresh
 stump wood | 196 | 0.08370 | 1.9116 | 0.9487 | 0.991 | 0.82 |
| 8 | Fresh stump bark | 196 | 0.008954 | 2.0651 | 0.9978 | 0.949 | 0.023^{2} |
| 17 | ovendry
 stump wood | 196 | 0.02722 | 2.0365 | 0.9440 | 0.999 | 0.0022^{2} |
| 21 | Ovendry
 stump bark | 196 | 0.004080 | 2.1560 | 1.0630 | 0.934 | 0.014^{2} |

${ }^{1} W=$ weight (kg); $D=$ diameter breast height outside bark (cm); $S=s t u m p$ height (m).
${ }^{2}$ Weighted regression.

Table 18. Stump biomass equations ${ }^{1}$ for white spruce

| Component | | N | General equation: $W=a D^{b} S^{c}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | c | R^{2} | S.E.E. |
| 4 | Fresh
 stump wood | 197 | 0.05977 | 2.0442 | 0.8989 | 0.986 | 1.44 |
| 8 | Fresh stump bark | 197 | 0.01046 | 1.8544 | 0.8161 | 0.964 | 0.24 |
| 17 | 0vendry
 stump wood | 197 | 0.02637 | 2.0848 | 0.9093 | 0.999 | 0.0048^{2} |
| 21 | Ovendry stump bark | 197 | 0.002706 | 2.0611 | 0.7707 | 0.951 | 0.16 |

${ }^{2} \mathrm{~W}=$ weight (kg); $\mathrm{D}=$ diameter breast height outside bark (cm); $\mathrm{S}=$ stump height (m). ${ }^{2}$ weighted regression.

Table 19. Stump biomass equations ${ }^{1}$ for red/black spruce

| Component | | N | General equation: $W=a D^{b} S^{c}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | c | R^{2} | S.E.E. |
| 4 | Fresh
 stump wood | 195 | 0.06534 | 2.0221 | 0.9227 | 0.989 | 1.03 |
| 8 | Fresh stump bark | 195 | 0.03575 | 1.5279 | 0.8745 | 0.961 | 0.22 |
| 17 | Ovendry stump wood | 195 | 0.03329 | 2.0484 | 0.9331 | 0.999 | 0.0031^{2} |
| 21 | Ovendry stump bark | 195 | 0.01303 | 1.6409 | 0.8033 | 0.954 | 0.14 |

${ }^{1} W=$ weight (kg); $D=$ diameter breast height outside bark (cm); S = stump height (m). ${ }^{2}$ Weighted regression.

Table 20. Stump biomass equations for jack pine

| Component | | N | General Equation: $W=a D^{b} S^{c}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | c | R^{2} | S.E.E. |
| 4 | Fresh stump wood | 195 | 0.06236 | 1.9805 | 0.8941 | 0.995 | 0.40 |
| 8 | Fresh stump bark | 195 | 0.02416 | 1.5235 | 0.7730 | 0.934 | 0.15 |
| 17 | Ovendry
 stump wood | 195 | 0.03229 | 2.0476 | 0.9607 | 0.999 | 0.0023^{2} |
| 21 | Ovendry
 stump bark | 195 | 0.01296 | 1.5630 | 0.7954 | 0.925 | 0.093 |

${ }^{1} W=$ weight (kg); $D=$ diameter breast height outside bark (cm); S = stump height (m).
2 Weighted regression.

Table 21. Stump biomass equations ${ }^{1}$ for red maple

| Component | | N | General equation: $W=a D^{\text {b }} \mathrm{S}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | c | R^{2} | S.E.E. |
| 4 | Fresh stump wood | 197 | 0.06029 | 2.0500 | 0.9263 | 0.998 | 0.49 |
| 8 | Fresh stump bark | 197 | 0.01326 | 1.8208 | 0.8685 | 0.949 | 0.28 |
| 17 | Ovendry
 stump wood | 197 | 0.03837 | 2.0480 | 0.9268 | 0.999 | 0.0060^{2} |
| 21 | ovendry
 stump bark | 197 | 0.006923 | 1.8520 | 0.9121 | 0.954 | 0.15 |

I W weight (kg); $D=$ diameter breast height outside bark (cm); $S=$ stump height (m).
2 Weighted regression. ${ }^{2}$ Weighted regression.

Table 22. Stump biomass equations ${ }^{1}$ for white birch

| Component | | N | General equation: $W=a D^{b} S^{c}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | c | R^{2} | S.E.E. |
| 4 | Fresh
 stump wood | 196 | 0.08203 | 1.9812 | 0.8856 | 0.996 | 0.53 |
| 8 | Fresh stump bark | 196 | 0.01784 | 1.8247 | 0.7885 | 0.873 | 0.50 |
| 17 | Ovendry
 stump wood | 196 | 0.05043 | 1.9955 | 0.9215 | 0.999 | 0.02 |
| 21 | Ovendry stump bark | 196 | 0.008852 | 1.8987 | 0.8127 | 0.886 | 0.29 |

${ }^{1} W=$ weight (kg); $D=$ diameter breast height outside bark (cm); S = stump height (m).

Table 23. Stump biomass equations for trembling aspen

| Component | | N | General equation: $W=a D^{b} S^{c}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Index | Name | | a | b | c | R^{2} | S.E.E. |
| 4 | Fresh stump wood | 198 | 0.04134 | 2.0492 | 0.8704 | 0.997 | 0.42 |
| 8 | Fresh stump bark | 197 | 0.02225 | 1.6215 | 0.6759 | 0.960 | 0.23 |
| 17 | Ovendry
 stump wood | 197 | 0.02449 | 2.0762 | 0.9444 | 0.999 | 0.0030^{2} |
| 21 | ovendry
 stump bark | 197 | 0.01311 | 1.6284 | 0.7148 | 0.956 | 0.14 |

${ }^{1} \mathrm{~W}=$ weight (kg); $\mathrm{D}=$ diameter breast height outside bark (cm); $\mathrm{S}=\mathrm{stump}$ height (m)
${ }^{2}$ weighted regression

Table 24. Height/diameter equations ${ }^{1}$ for seven major Maritimes tree species

| Species | General equation: $H=1.3+a(1-\exp (-b D))$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | n | a | b | R^{2} | S.E.E. |
| Balsam fir | 196 | 27.1757 | 0.02632 | 0.978 | 1.72 |
| White spruce | 197 | 59.8597 | 0.009385 | 0.978 | 1. 71 |
| Red/black spruce | 195 | 28.9866 | 0.02486 | 0.983 | 1.58 |
| Jack pine | 195 | 21.2668 | 0.04650 | 0.975 | 2.01 |
| Red maple | 197 | 15.8876 | 0.07780 | 0.983 | 1.59 |
| White birch | 196 | 19.9768 | 0.04864 | 0.980 | 1.67 |
| Trembling aspen | 197 | 20.5601 | 0.05257 | 0.983 | 1.70 |
| Softwood | 781 | 26.6095 | 0.02809 | 0.974 | 1.94 |
| Hardwood | 592 | 18.5305 | 0.05842 | 0.980 | 1. 72 |

[^5]

Figure 1. Location of sample plots

Figure 2. Distribution of total aboveground biomass for seven Maritimes species, based on mean ovendry weights of each component.

[^0]: Canadian Forestry Service
 Department of the Environment

[^1]: ${ }^{1}$ Midpoint of branch size class in centimetres.

[^2]: ${ }^{1} \mathrm{~W}=$ weight (kg); $\mathrm{D}=$ diameter at 1.30 m outside bark (cm); $H=$ total height (m).

[^3]: ${ }^{1} \mathrm{~W}=$ weight (kg); $\mathrm{D}=$ diameter at 1.30 m outside bark (cm); $H=$ total height (m).

[^4]: ${ }^{1} W=$ weight (kg); $D=$ diameter at 1.30 m outside bark (cm) ; $\mathrm{H}=$ = total height (m).

[^5]: ${ }^{2} H=$ height (m); $D=$ diameter outside bark (cm) at 1.3 m .

