THE MEASUREMENT OF SPRUCE BUDNGHM MOETALITY CAUSED BX DISEASE

by<br>M. M. Neilson

ANNOAL TECHNICAL REPORT 1954-7
(SECTION 8, GREHN RIVER PROJECT)
FOREST BIOLOGY LABORATORY
FREDERICTON, N. B.

## CANADA

DEPARTMENT OF AGRICULTURE
SGIENCE SERVICE
FOREST BIOLOGY DIVISION
August, 1955
(This report may not be published in whole or in part without the written consent of the Chief, Forest Biology Division, Science Service, Department of Agriculture, Ottawa, Canada.)

## TABLE OR CONTENTS

Page
INTRODUCTION ..... 1
MATERIALS AND METHODS ..... 2
Study Plots ..... 2
Collecting alid Recrring ..... 2
Sectioning ..... 4
Diagnosis of Disease ..... 5
Virus Disease。 ..... 5
Fungi and Bacteria ..... 6
Mierosporidia ..... 7
External Symptoms ..... 7
Fungi ..... 7
Bacteria ..... 8
Microsporidia ..... 8
Virus ..... 8
CALCULATION OF PERCENTAGE MORTALTTY ..... 8
Lervee ..... 8
Pupae ..... 11
Adults ..... 12
INPRINSIC MORTAETPY ..... 12
REQUIRED SAMPLE SIZR ..... 13
COMPARISON BRTTHEN PLOTS ..... 14
GOMPARTSON BEIWHEN TECHNIQUES ..... 16
INTERPRETATION OF RESULTS ..... 17
SUMMARY ..... 18
REFPEREHCRS ..... $20^{\prime}$
APPENDIX ..... 22

THE MEASURENENI OF
SPRUCE BUDWORM MORTALITY CAUSED BY DISEASE

M. M. Neilison

1.0 INTRODUCTION

The spruce budworm is now the most important forest insect in New Brunswick from the point of view of numbers involved, axea affected, and potential damage to stands of spruce and fir. In 1945 a comperative project was set up between Fraser Companies Limited, Canada Forestry Branch, Canade Department of Agriculture, and the New Brunswick Forest Service with the object of studying the spruce budwom and its possible control by forest management, As a direct result of this arrangement a Forest Biology field Jaboratory was exected on the Creen River Watershed in northwestem New Brunswick for the study of the biology and eptdemiology of the spruce budworm.

One of the major objects of this venture has been to prepare life tables for the spruce budworm for different stand types. A requisite inor Iife tables is that all mortality factors and their effect on spruce budworn populations be studied. This requisite had not been fully satisiied prior to 1953 since the effects of disease as a mortality factor had been more or less neglected A preliminary suxvey undertaken in 1953 emphasized the need to fill this gap, with the result that in 1954 intensive studies of diseases and their role in spruce budworm epidemiology were initiated.

The objects of these studies were:
(1) Po follow the present infestation through its courses determining what part diseases play im population fluctaatione from year to years and in the eventual decline of the infestation This involwes the esthmation of mortality from disesse for inclusion in life tablea.
(2) To find what diseases are present in the field, which of them
exert, reasurabie control, and in what stage of the host they kill.
(3) To find, if possible, a simple and rapid, yet statistically sound, method of obtaining geliable estimate of the incidence of disease on regular sample plots.
(4) To assess unidentified mortality mader identical and optimum rearing conditions each year, its relation to infestation age, and the possibility of intwinsic larval weakness in old populations.
(5) To check on the smear tecknique ased to diagnose cause of death, especially in the case of capsule whrus disease.

The following is a prelimatary xeport on the progress made in 1954 wowarde gathertuy the above obyetw.

$$
200 \text { MATERIALS AND METHODS }
$$

## 2na Study Plota

Two plots, K2 and Gll, aituated in northwestern New Brunswick were selected for this atudy. These wexe two out of several plots under intensive study by the staff of the Green Rivex Project. Both plots are fairly close (10 to 12 miles) to one of the oxiginal fock of the budworm infestation in norbhera New Bmanswick and bave suffered severe defoliation for the past four years. Stand types are almost identical. the stands boing composed of dense balsam fir 35 years old. They differ ony in that GII has been partially isolated by cuttings and budworm populations on K 2 have always been slightly higher than on Gll.

In addition a collection was made from each of three other plota at about the mid point in the foeding season to see if there might be differences in incidence of disease between different stand types and different ages of ixnertation. A briex desmiption of atand type infestation history and present level of insestation for these plots is given in Table 1 .

### 2.2 Golleoting snd Rearing

Collectiong of 100 to 140 insects were made once a week from

Peble 1
Third-Instar Population in 1954, Defoliation History, and Approxinate Age of Plots $\mathrm{Cq} \mathrm{g}^{\prime} \mathrm{II}, \mathrm{Kl}, \mathrm{K} 2$ and K 3

| Plot | Populatiom per 10 sg . At. | Approximete$\qquad$ age | Past defoliation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1950 | 1951 | 1952 | 1953 | 1954 |
| cat | 6 | 105 | M | I | L | $\pm$ | L |
| Q11 | 200 | 35 | Mms | $s$ | S | S | S |
| LI | 97 | 203 | S | S | $s$ | S | $S$ |
| K2 | 123 | 35 | M | Mos | S | S | S |
| II | 98 | 35 | N | N | L | M | S |
| K3 | 27 | 35 | d | S | S | S | $L$ |

Legend: $N=$ Hil: $L=$ Light: $M=$ Moderate, $S=$ Severe
oach of the the intersively studied plots, commenciug with the begimang of larval getivity in the groing and continuing until adult eclosion in late sumers. One collection was taken at about the midepoint in larval life from
 branches of trees adjacent to population sampling trees. Handling was winmimed by smpping off the feeding sita mlong with the larva and placing both in an individual, serile, acrewacap wisho Sterile technique was cmployed in collection as far as was prectically possiole.

Pupae were pollected by felling a tree and then shaking it Figoroully oves a square canves mat: loose pupae falling on the mat were then picked up, usually with the fingers, and placed in individual vials. This method of pupal collection will be changed in future years because of the high mortelity reswating fron excessiwe hondling during collection.

All colloctions were ghipped to Fredericton as soon after collection as possible, where they were divided into two equsil portions: one to be reared and the othex to be sectioned.

The former insectg were reared through to the adult stage, and were examined every second day for general state on health and external symptoms of disease. Diagnosis of the amase of death was attempted for all that died. Whe vials contring inseuts were kept in a dark facubator at $72 \pm 5^{\circ} F$ with
 which were gathered from budvonnoree areas behird the laboratory in Fredericton. pon pupation the ingent was removed to a clean vial. Individual rearing was employed so that notes could be kept on external symptoms of disease. Also it was desired to (1) know incidence of disease at the time of collectiong (2) elrampent any empor due to the effects of crowding and (3) avoid possible spread of disease irga one individual to mothex. A souple of mothe energing from eadelearing lot was prepared for
sectioning cherc were mater to blama forthe egge for experimenta to to described betwro

### 2.3 Sestioniry

All insesta that were to be secthoned were first killed by iwnersing them in bot water tor 30 weconds. The integrant was then piereed In semeral piaces to ensure good panetration of the ferative before fixing
 alchol watil the winter when they were sectioned. The insects sectioned included onemoll of nll weekiy soliectionas a sample of sdults emerging Prom each rearing lots and a samplo of treshly unerged second-instar laryae which had beea collocted in bibernewias in the fall of 1993.

Sections were cut at sour microns with the exceptions of pupae and adulta. Dificcution were anconatered in trying to cut thixs section of these two stages becase of the large nmouts of hardened chitin present in the exoskeletons, and aiso becanse complete penetrotion of the paraffin into
 gectioned at tom mirowas.

This mectanding progran was wndertaken as a cheok on diagnoses made from insects dying in the rearings, ard on Live swearing, ospecially in tivae quag whre death was athelbuted to capsude Fixus. There is some



 that sectionixy techaiques whow be employed The captale virus disease in this insect apparenty causes abareateristic collular chamge that canot be detected in blow or awher body sinears. This change occurs primarily in the wuten ar the selis of the fot bode and conmists of a
coagulation and later aligwent of the chromatin into long dark-staining ropy strands. This phenomenon has bean considered as indicative of positive presence of capsule disease (1). However, since this project was initiated some doubt has been introduced as to the validity of this mathod of diagnosis (2). Meanwhile, diagnoses of the cause of death as capsule virus may be doubtful. However, the mortality listed in this report under this category does represent mortality due to spme cause, and until this "capsule" situation has been elucidated this heading will be maintained with the reservation that mortality listed under it may later be attributed to some other cause.

Sectioning has also served as a check on diagnoses of other diseases. The differences obsewred between incidence of infection with a pathological organism as detemined by examination of stained sections of living budworm, and mortality due to disease in rearings was only slight. Observation of micro-organisms multiplying within the cells of any insect was interpreted as infection with a pathological organisw.

### 2.4 Diagnosis of Disease

Smears of crushed cadavers of insects that died in the rearings were mode in sterile distilled water. These snears were examined microscopically utilizing dark field fllumination at a magnification of 950 x . Positive diagnosis of death due to a disease was based primarily on the observance of bodien usualiy associated with the disease in question. In some cases a combination of this and results obtained from observation of stained sections of living budworm was used as described belowe A selection of smears was aent to the Laboratozy of Insect Pathology at Sault Ste. Marie to cheok on diagroses.
(1) Virus Disease:

Three virus diseases are frequently found in budworm populations a cytoplasmic and a nuclear polyhedral disease and a capsule disease. In
this study only two of these were emountered. The two polyhedral diseases are differentiated mainly by the tissues they attack and by theix size. Polyhedra of the cytoplasmic disease are found in the digestive cells of the wiongut opithelium as colonies of nniformy dispersed crystal-like bodies enclosed by a moxbrane. they measure approximately 0.5 in diameter, with some up to $3 /$. In the nuclear disease, on the other hand, the polyhedra are formed within the nuclel of the tracheal matrix, hypodernal fat and blood colls, and measure on the average 2fin diameter (3). Even though there is a relatively large difference in sise between the two types of polyhedra, separation was found difficult using the light mioroscope. Therefore, they were sepestred on the basis of stained sections prepared from living Insects. No evidence of the novlear polyhedral disease was noted in these sections.

Dificulties encountered in diagnosing the capsule disease of the spruce budworn were mentioned above. In dxagnosing death due to capsule virus disease from observation of amears a note was made as to the abundance of cepsule or caprulemine bodies prement. The slides were recorded as excellent, good, fair, or poor examples. since evidence of capsule disease from stained sections differed slightly srom smear diagnosis, poor and fair gramplea were taken out of the capsule category and placed under unknown causes of mortality. This resulted in much better agreemert between the two methods.
(2) Fund and Broueris:

Diagnosis of fungal diseases was based on the presence of fungal spores, byphal bodies or mycelia in the anoars, and bacterial diseases on the presence of bacteria. A number of amears and budworn cadavers were sent to the Laboratory of Insect Pathology at Samt Ste. Marie for possible identification of fungl and bactexial present. Mont of these were returned
labelled as Erpobably secondar? so the sectioned material wes used in assessing moraltuy from nugi and bacteria the resulting figures do not constitute a definsto assesment of mortality but rather ${ }^{2}$ as mentioned above, indicate the presence of pathological orgendix. However, since the numbers involved were so sual this would have Ittrie effect.
(3) Microsporidia:

Positive diagnosim of deatit due to microspoxidia was based on the presence of the oharacteristic spores of this protomoan. No attempt was made to separate mpeciea.

It should be pointed out here that difuroms of disease becomes Inoreasingly difficalt becuse of histolygis as the lawae progress from the 1ate 5 th and Gth instars to the pupa. At this time the fot body, generally the first tiasue to who the affem of histolysing becomes filled with laxge daxkostainimg basophillis granules, scempanied by an overall break down mhis makes observation of any possible effect of the capsule disease on the chromatis of the nuches of the dat body alnost inpossible.

### 2.5 External Symators

Notes were kept throughout mill reariags to see if it might be possible to digtinguish between the warious digeases asing external symptoms as the cxiteria. In general this wes mot found poscible since external
 condition within the wial at the tine of death. Howevers distinction between diseased and nomodiseased materiel on thin baris does seem feasible. Listed below are the warious diseases and the most constant exterad symptras assoriated with themo
(1) Funce:

Insects dying from fungus diseases vere most constant as fay as external symptoms were comerased. The body first became bard and mumified.
followed by the eppearemee of mycelial growth all over the integument.
(2) Bactoriz:

Laryee dring from bacterial diseases were few in number. Those that were obaerved showed an overgil darkening alter death accompanied by by fiaccid appearance resulting from liquefaction of the body contents. (3) Mierosporidia:

Chauges in body appearance after death were very slight, but larvae exhibited rectal and orel discharges. On several oceasions smears were made of these discharges and were found to be conposed of alnost pure spores of microspowida.

## (4) Virus:

Since the methods used in diagnosis of capsule disease may be invalid and also since insects dying from a polyhtral disease were so few In number no external symptoms ean be given.

### 3.0 CALCULATTON OR PERCENTACR MORTALITY

One of the objectives of this study was to detemine percentage mortality due to disease in such a maner as to permit inclusion of the figures in life tables. The advantages of this will be pointed out in a later section where this and another method of imempretation are compared.

### 3.1 Lerves

In Cuse to minimize the possible effect of laboratory rearing on diaease, ony the first week of reaxing of eack collection was considered. Since collections were made one week apart, these weekly rearing figures could be combined to profide a total morballty figur for disease for the larval stages; the actual method of analysis is giver below and is supported by axamples in Wables 3, 48 and 5. The larval development and population figures on which many of the calmulations are based were obtained from the staff of the Grean River Project (Table 2)。

Table 2
Population and Larval Development on Plots G11 and K2 for 2954


Table 3
Per Cent Mortality from Disease on Plots Gll and K2 Based on Rearing for One Week

| Plot | Colll. date | No, in sample | Microm sporidia | $\begin{aligned} & \text { Capen } \\ & \text { sules } \end{aligned}$ | Fung | Polyhedra | Bacteria | $\begin{aligned} & \mathrm{Un}^{-} \\ & \text {known } \end{aligned}$ | Total disease |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K 2 | 6/15 | 57 | 5.3 | 7.0 | 0 | 0 | 0 | 18.0 | 12.3 |
|  | 6/23 | 63 | 3.2 | 0 | 3.2 | 0 | 0 | 0 | 6.4 |
|  | 6/30 | 66 | 6.1 | 3.0 | 0 | 0 | 0 | 5.0 | 9.1 |
|  | $7 / 7$ | 65 | 0 | 0 | 1.5 | 0 | 0 | 3.1 | 1.5 |
|  | 7/13 | 40 | 5.0 | 2.5 | 5.0 | 0 | 0 | 0 | 12.5 |
|  | 7/21 | 6 | 0 | 0 | 0 | 0 | 0 | 16.7 | 0 |
| G11 | $6 / 2$ | 70 | 1.4 | 2.9 | 0 | 0 | 0 | 7.5 | 4.3 |
|  | 6/15 | 64 | 0 | 4.7 | 0 | 1.6 | 0 | 18.3 | 6.3 |
|  | $6 / 23$ | 61 | 4.9 | 8.2 | 0 | - | 0 | 11.3 | 13.1 |
|  | 6/30 | - 65 | 1.5 | 1.5. | 1.5 | 1.5 | 0 | 1.7 | 6.0 |
|  | $7 / 7$ | 57 | 0 | 1.7 | 0 | 0 | 0 | 3.6 | 1.7 |
|  | 7/13 | 44 | 0 | 4.5 | 0 | 0 | 0 | 11.9 | 4.5 |
|  | $7 / 21$ | 15 | 26.7 | 0 | 0 | 0 | 6.7 | 30.0 | 33.4 |

In life tables prepered for the spruce budworm by Morris and Miller (10) the larval period is broken down into intervals corresponding to periods when eartain important parasites are causing mortality. There appears to be no particular point in the laryal life of this insect when the effect of disease is much more pronounced than another (Table 3); therefore Just about any breakdow would be feasible as far as inclusion of disease in life tables is concerned. For convenience the existing divisions are omployed.

Potential rather than actual mortality is used throughout the following calculations because of the difficulties involved in determining actual mortality in the larval stage when two or more mortality factors are acting on the same inseot. Potential mortality may be defined as that mortality that would be expected if there were no other moxtality factors present which might cause interference. The assumption iss made when using potential mortality that all mortality factorg act independently of one another. It is calculated by the following formulaes

(2) Jnknown mortality $=$ (No. insects in sample dying from minown causes) $\times 100$
(No. insects in sample) (No. insects in sample dying
from disease and parasites)
Formala 1 may appear to be incorrect on first inspection because the number of insecta dying from unknown causes has not been subtracted from the gample size in the denominator. This was not done because the numerator sontains both ingects that died from disease alone and those few insects that died from one or a combination of wnkown canses and/or disease. It is impossible to separate these two types of mortality by smearing, because

Table 4
D* Values for Rotential Mortality
from Disease on Plote all and K2 Hased on Eearing for One Week


Where $d_{k}=(A / E x 100) \times 6$
A $=$ The No. of lurvae dying in one week rearing
$B=\%$ f fin the ample
$c=$ The larval popuiation per 10 wqu fto athe begimaing of the week
diagnosie as diseased is besed upon the preseree of diseasecasing bodies observed in the sucar. In shorto some Iarvae jupected with diseane may acturly have died from whrnown factoreo

A figure for per cent potential moxtalthy wes derived from weekly rearing data for each weel of rearing. These per cent mortality figurea were then appled to the lamvel population ( $I_{3}$ ) on the particular plot for the datm on whioh the collection was mude to give a $d_{x}$ figure for each collection data. The population figure uned were obtained fron the Green Ryer project, gand are expressed as the number of insects per ten square foct of branch area (branck area being the sample unit) (Green River Ahad Technicy Poport 1954) 。 For later collectivas a deduction for that per cent of the population that had pupated had to be made from these figures to give the larval population ow which the detaraination of dy is based. ( $\mathrm{D}_{\mathrm{x}}$ denotes the muber of insects dying during a specified interval, $\mathrm{x}_{\mathrm{o}}$ ) Sumation of these $d_{s}{ }^{7}$ provided a totall dx for the larval period. Sube division of mortmitoy into larym periode wa based on thia total dx (Table 5).

Perlod I (10) falls at the peak of the thipd instar" so all cola Iections containing thirduinstar larve were cheoked for larvae dying as thirds. The percentage of thitwingtar lawne in each collaction wes detero mined (uning lavval dewelopment fingures) and these percentages were them applied to the collection sinen to find the number of thirds ln each colo 1ection. Since Iarval Instar mas moted at dentla in wet possible to calculate a figure for the potemtisi per cent of thirdwixstar larvae dying in rearings Thas procedure wes repeated for each of the three remming periods, and a potential percontage dying worked out for each. These potential mortality
 to epportion, wy means of rationg the botal dy figure worked out from weekly reariags to each one of the periods. (Wable 5). Wha does not change total

## Table 5

Potential $d_{x}{ }^{*}$ by Period and Diseasea for Plote K2 wnd Gll for the Larval Stages

| Period | Disergme |  |  |  |  | Disease |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cap | Mero | Fung | $\begin{aligned} & \text { ther } \\ & \text { seas } \end{aligned}$ | $\begin{aligned} & \text { Ynom } \\ & \text { cnowa } \end{aligned}$ | Gag |  | Fung | 0 Oine seas | $\begin{aligned} & \text { Une } \\ & 5 \text { known } \end{aligned}$ |
| I | 0 | 0 | 0 | 0 | 19.5 | 0 | 0 | 0 | 0 | \$5.6 |
| II | 3.1 | 4.7 | 0 | 0 | 3.1 | 304 | 1.2 | 1.2 | 1.2 | 6.8 |
| III | 1.8 | 3.5 | 1.7 | 0 | $7 \%$ | 2.4 | 0.7 | 0 | 0 | 4.1 |
| IV | 2.1 | 4.2 | 6.3 | 2.1 | 6.3 | 3.7 | 9.2 | 1.8 | 1.8 | 12.8 |

*Where $d_{x}$ for any 1 period is celculated by the following formula:

$$
d_{x}=\frac{(A / B \times 100) \times C}{D}
$$

Where: A The mumer of insects in those instars covered by the period in question that die from a disease.
$B=$ The total number of insects in the sample which are in those instars covered by the period in question.
$C=$ Total $a_{\text {m }}$ fox all periods and all diseases (from Table 4) $D=\sum A / B$ for all periods and disoases.
$\mathrm{d}_{\mathrm{y}}$ for larvae, of course; it is merely g method of subodividing it into the periods comonly shown in the sxpplementary Iffe tables.

### 3.2 Fupae

A very large differeace in overall mortality was noticed between fleld-collected and laboratoryareared pupae. Laterature available on rearing the spruce budworw shows that other workere (2, 13) have experienced high mortality in the papel stage, and have attaribated it to the result of excessive handing. Stehr (13) recomends that budwoma pupae newer be touched directly during rearing. Since pupae in this study, as montioned above, were subjected to rigorous handing, it was decided that a different approach from that used for lamye should be usea in calculatiog pupal mortality due to disease.

All dead intact pupae from fleld collections, and those dead intact pupae restulting fron lamee that did not exist as lawne for rore than three days in the laboratory were examized for the presence of disease. The resulting figures for plots Gll and K2 were poaled to provide an estinate of potential molity percentege diseased. These pooled figures, when appifed to data on pupal mortelity supplied by the Green River stafe, would yield an ostimate of $100 \mathrm{c}_{\mathrm{Z}}\left(100 \mathrm{c}_{\mathrm{w}}\right.$ is the nwber dying in any period, $\mathrm{x}_{\mathrm{m}}$, expressed as a percentage of the numbers alive, $\lambda_{\text {a }}$ at the begixaing of the periodd The data obtained
 were collected fron sanple trees at the time when 80 per cent of the adults had owerged from papae. Prapal population per 10 square feet of branch area was obtained by counting both energed and sound intact pupae on these branches. All sound intact pupae were reated; of these some emerged, some were paraitimed, and the remainder died of unmonn causes. The figure for potential per cent mortality from disease was appied to this number dying
from wonowa oguses, giving the number dying from disease Application of this figure to the population sige at the tine of amplixg (I. ) gave the desired $d_{\text {x }}$. figure for papas. The remining pupas dying from other causes provided the figure for ax for death due to wanaow or "intrinsice causes. Using pupal mortality figures dorived from all and K 2, papal $100 \mathrm{q}_{\mathrm{z}}$ figurea for disease and unknows candes of mortality vere calculated for all plots (Table 6).

### 3.3 Advit:

Only very few adultw were sectioned so driflexes were not calo culated (Table 7).

### 4.0 IMTRTNSTC WORTAKITY

During the rearing of spruce budworm from year to year in connection With parasite studiea at Geen River a significant perceatage mortality from What has bean termed "death due to other causes" has inwariably been encountered. Other workers having occasion to rear the apruce budworm have also run into this type of mortality (12, 13). During the past two years disease studies have bean carried out on Green River material with the reaut that mortality. due to other aguses has been reduced bewnse it no longer inoludes mortality due to disease. The remaining figare, consisting of mortality outside the range of dragnosis using light microscope techniques, nevartheless remains a fairly substantirn figure. Ever though rearing techniquea were welected with the gin of mpplying conditions close to the optimum, intexpretation of the figures listed under "unknowa mortality as representing mortality due to intrinsic causes may be queetionable. Probiems arise whea considering data of this sort as to bow muoh of this figure may be attributed to the exfects of rearing, handing, intrinsic causeas, and most fmportant how these factors may be separated, A solution to this problen may lie in the determination of the intrinsic rate of natural incresse for the aprace budworm under optimal conditions. Such an approach might provide m most gunservative estimate for

Table 6
Pupal Mortality (100 $\alpha_{\text {g }}$ ) for All Green River Project Sample Plots Usine Pooled Estimate of 17.3 Per Cent for Disease (from Rearings) in the Calculation.

| Flot | Q2 | G 6 | G5 | G8 | G9 | 910 | 611 | G12 | 013 | $\underline{31}$ | K2 | $k 3$ | M1 | II |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $100 \mathrm{q}_{\mathrm{x}}$ for disease | 1.3 | 2.9 | 3.6 | 4.6 | 1.0 | 1.1 | 2.6 | 2.9 | 2.0 | 1.6 | 3.5 | 1.3 | 4.9 | 3.6 |
| $100 \mathrm{c}_{\mathrm{g}}$ for mknown | 6.2 | 13.8 | 17.3 | 22. 1 | 4.6 | 5.3 | 12.2 | 14.0 | 9.8 | 7.9 | 26.6 | 6.0 | 23.4 | 17.1 |

```
ExampIe - 69
    Intact = 59 Dead = 25% Collection size = 266 % % diseased = 27.3
    25% of 59=14.% 17.3% of 14.7 = 2.5
    100 \mp@subsup{q}{x}{}=2.3/266x100=1.0
```

Table 7
Results of Rxamination of Stained Slides of Budworm Adults

| Plot | Coll. <br> date | $\begin{gathered} \text { No. insect } \\ \text { in } \\ \text { gample } \\ \hline \end{gathered}$ | $\begin{array}{r} \text { Meroa } \\ \text { seoridia } \\ \mathrm{No}_{\mathrm{e}} \mathrm{~K} \end{array}$ |  | $\begin{aligned} & \text { Polyo } \\ & \text { nedra } \\ & \text { No. } \quad \mathrm{I} \end{aligned}$ |  | $\frac{\text { Diseased }}{\text { No. } \quad \%}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K2 | June 15 | 6 | 2 | 33.3 | $\cdots$ | - | 2 | 33.3 |
| K2 | ฯ. 23 | 9 | 2 | 22.2 | " | $\infty$ | 2 | 22.2 |
| K2 | ฯ 30 | 8 | 2 | 12.5 | $\infty$ | $\cdots$ | 1 | 12.5 |
| 152 | July 7 | 9. | 3 | 33.3 | - | $\cdots$ | 3 | 33.3 |
| 011 | June 15 | 5 | 2. | 40.0 | $\infty$ | $=$ | 2 | 40.0 |
| Q11 | $\# 23$ | 8 | 0 | 0 | $\cdots$ | $\infty$ | 0 | $\cdots$ |
| II | \% 30 | 5 | 0 | 0 | $\pm$ | $\cdots$ | 0 | - |
| K2M | \% 30 | 5 | 1 | 20.0 | $\cdots$ | $\cdots$ | 1 | 20.0 |
| G4. | 1. 30 | 8 | 2 | 25.0 | $\cdots$ | $\infty$ | 2 | 25.0 |
| GSM | $\because 30$ | 9 | 2 | 22.2 | 1 | 11.1 | 3 | 33.3 |
| Total | $\begin{gathered} 72 \\ \text { Male Female } \end{gathered}$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | $37$ |  |  |  |  |  |  |  |

Total diseased 8 8
Wiseased using total figures $=22.2$
this type of nortality. However, the important thing ia this study is
 techniques are stabilized rearing records from year to year should provide' a reasonable answer, because deaths due to faulty rearing would be expected to remain constant.

Because of the similarity of techniques erployed in this and disease studies, a prellminaxy effort towards measuring this type of mortality is included here. For want of a better term this mortelity will be labelled as "intrinsie" mortality. Rearing records on the spruce budworm for the past five years by C. A. Miller were summarized for death due to other causes (including disease) to see if there might be a difference between years and between plots (Table 8). Records on death due to other causes (excluding disease) were kept during the present study and the results are tabulated under "unknown" eauses in all tables concerned with mortality. There appears to be very littile difference between years and plots from records kept for five years, but rearing records for 1954 do indicate that this type of mortality may be highest in the earlier instars.

Experinemts were set up on a small scale to measure possible mortality resulting from sonn first-instar larvae failing to enter diapause. This type of mortality would be classified undor intrinsic causes. The method employed was almost identical with that described by Stehrin rearing spruce budworn for getting freshly-hatched larvee to spin hibernacalae (13). The main dif." ference was that food was supplied for those few larrae that did not enter diapanse. The figure calculated for this mortality of 3.7 per cent is come parable to that obtained by other woxkers ( $5,7,23$ ).

$$
5.0 \text { REQUTRED SAMPLE SIEE }
$$

One objective of this study was to try to find a simple and rapid, yet statistically sound method of obtaining an estimste of the incidence of

Table 8
Per Gent Mortality from Unknown Causes
(Incl. Disease) in Rearings for Various Plots for the Years 1949 to 1954

| Year |  |  |  | E2 |  |  | G |  |  | 6/ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | June I June 15 Triy 1 June 25 June 30 गwl 1 |  |  | $\begin{aligned} & \text { time I } \\ & \text { Iune 1 } \end{aligned}$ | $\begin{aligned} & \text { June } 1 \\ & \text { June? } \end{aligned}$ | $\begin{aligned} & \text { duI } \\ & \text { duly } \end{aligned}$ | $\begin{aligned} & \text { Tune } 1 \\ & \text { Tune } 15 \end{aligned}$ | $\begin{aligned} & \text { Jume } \\ & \text { Jume } \end{aligned}$ | $\begin{aligned} & \text { Jrag } 1 \\ & \text { enty } 1 \end{aligned}$ | Juse 1 <br> June 1 | Thae 16 duly? <br> Jxae 30 JuIT 15 |  |
| 1954 | $\cdots$ | 12.3 | 9.7 | - | 19.5 | 10.5 | $\infty$ | $\cdots$ | 19.8 | 18.9 | $\infty$ | 15.1 |
| 1953 | 27.7 | 12.0 | 13.3 | 64.3 | 21.0 | 14.8 | 9.3 | - | 21.0 | - | 25.2 | 18.2 |
| 1952 | $\cdots$ | 12.0 | 12.5 | - | - | 22.2 | 11.5 | 25.0 | 30.0 | 32. | 32.8 | 13.8 |
| 1951 | $=$ | $=$ | - | $\cdots$ | $=$ | $=$ | 6.5 | 27.9 | 3hom | 16.2 | 19.3 | 18.9 |
| 1950 | - | $=$ | $\cdots$ | $\bigcirc$ | $\cdots$ | - | - | - | - | - | 17.4 | 33.3 |
| 1949 | $\cdots$ | $\infty$ | $\cdots$ | $=$ | - | $\infty$ | $\cdots$ | - | - | - | 140.8 | - |
|  |  | 95 |  |  | 9 |  |  | 99 |  |  | 07 |  |
| 1954 | $=$ | $\cdots$ | 5.9 | 17.3 | $\cdots$ | $\infty$ | $=$ | $\bigcirc$ | - | - | - | - |
| 1953 | 16.2 | 13.9 | 13.0 | - | 11.2 | 27.8 | 17.2 | 29.1 | 9.8 | 9.1 | 8.6 | $\cdots$ |
| 1952 | $\cdots$ | 27.8 | 32.1 | 1790 | 30.5 | 14.4 | $\cdots$ | 55.8 | 15.9 | 5.3 | 31.1 | $\infty$ |
| 1951 | 9.6 | 6.9 | 16.7 | 10.2 | 23.8 | 12.4 | - | - | $=$ | 6.8 | 9.2 | $=$ |
| 1950 | - | 6.8 | 11.7 | - | 21.0 | 10.0 | $=$ | - | - | - | 8.3 | = |
| 1949 | - | 16.4 | $\cdots$ | $=$ | 13.3 | - | - | - | - | - | - | - |

mortality due to disease on permanent sample plots. A portion of this object could be fulfilled by finding the average sample size necessary to establish this estimate. The data accumulated in the present study have not yet been subjected to a complete statistical analysis. Application of a sequential. analysis, however, has given an indication of the sample size necessary to establish the percentage incidence of disease within fairly broad classifications. Outlined below is a derivation of the average sample size required for determining incidence of disease for several classifications. The classi. fications selected in the following example are arbitrary and can be altered to conform to future demands of the work.

The sequential analyais applied was that outlined by Oakland for the binomial background (11). A binomial distribution was assumed for this work (i.e., either diseased or not diseased). The two atts of classification, chosen on the basis of experience gained from previous work, were 5 to 15 per cent and 25 to 35 per cent. The two types of error that may be encountered (denoted by and $\beta$ ) were accepted as 10 per cent. Using the above data it is possible to construct the two pairs of lines shown in Figure 1. The average sample size required to place the percentage disease within these categories may also be deriyed from these data by constructing the average sample number curve for each set of lines (Fig. 2).

### 6.0 COMPARISON BETWEEN PLOTS

From casusal inspection of the data (Table 3) it appeared that incidence of disease on plots Gll and K2 was the same. They were subjected to a test for similarity using $X^{2}$ and no gignificant difference was found at the 5 per cent level of significance. This was to be expected beceuse of the similerities in the two plots in stand composition and infestation history. At the same time, the five plots from which one collection was made on June 30 also appeared to show about the seme peroentage incidence of disease


Fig. 1. Graph of sequential sampling plan for finding incidence of disease.


Fig. 2. Average sample number curves for 5 to $15 \%$ and 25 to $35 \%$ acceptance and rejection line。
(Table 9). These were subjected/a x $^{2}$ homogeneity test and were also found to be similar fn rate of disease at the 5 per cent level. The result here is a little more surprising because of the differences between these plots in both stand composition and infestation history (Table 1).

These findings are in agreement with those of Thomson (17) and it appears that budworm diseases axe not acting as densityodependent factors. Steinhaus (15) states that insect diseases are certainly density-dependent, but in this case it would appear that they are not. It may well be that in the levels of population atudied the lowest population may have been high enough for the diseases present to have reached their maximum effectiveness in control. This, bowever, seems doubtful because thirdminstar populations per 10 square feet of branch area in the five plots concerned varied from 27 to 123 while at the same time the highest rate of disease was 15 per cent. Also, on plots such as K2 where defoliation has been severe for the past few years, and where resulting conditions appear to be getting more unfavourable each year for the budworm, one would certainly expect a bigher incidence of disease than on a plot in a relatively new infestation where numbers are less and conditions more favourable. A more likely postulation wonld be that a certain. percentage of budworm populations on all plots had become resistant to the more important diseases present, and that this percentage remains more or less constant.

This similarity, in any case, does suggest that results may be pooled from several plots to obtain an estimate for disease for other plots In the same general area that were not studied. In the next year or so it is hoped that by including a wider range of plots in the study this similarity in percentage infected and dying from disease may be either substantiated or refuted. If the former is the case it mag well mean that only a few plots may havetto be sampled and the results pooled to derive a figure for incidence

Table 9
Per Cent Larval Mowtality from Disease on Plots
G1I, K1, K2, II and G4 Based on Bearing Records
from the Date of Collection to the Date of Pupation.

| Plot | $\begin{aligned} & \text { Collo } \\ & \text { date } \end{aligned}$ | $\begin{aligned} & \text { Col1. } \\ & \text { sige } \end{aligned}$ | Microm sporicia | $\begin{aligned} & \text { Capm } \\ & \text { sules } \end{aligned}$ | Fungt | $\begin{aligned} & \text { Poly } \\ & \text { bedra } \end{aligned}$ | Bac* teria | $\begin{aligned} & \text { Un }^{2} \\ & \text { known } \end{aligned}$ | Total disease |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K 2 | June 15 | 55 | 12.7 | 10.9 | 0 | 0 | 0 | 30.9 | 23.6 |
|  | 1123 | 62 | 11.3 | 0 | 3.2 | 0 | 0 | 1.9 | 14.5 |
|  | $\cdots 30$ | 65 | 6.1 | 3.1 | 0 | 0 | 0 | 6.8 | 9.2 |
|  | July 7 | 65 | 0 | 0 | 3.1 | 0 | 0 | 7.9 | 3.1 |
|  | 11 13 | 40 | 5.0 | 2.5 | 7.5 | 0 | 0 | 5.9 | 15.0 |
|  | 1121 | 6 | 0 | 0 | 0 | 0 | 16.7 | 20.0 | 16.7 |
| 911 | June 2 | 60 | 8.3 | 5.0 | 3.3 | 0 | 0 | 18.0 | 1.6 .6 |
|  | (1) 15 | 60 | 1.7 | 8.3 | 1.7 | 1.97 | 0 | 28.8 | 13.3 |
|  | 93 | 60 | 8.3 | 8.3 | 1.7 | 0 | 0 | 14.3 | 28.3 |
|  | - 30 | 65 | 1.5 | 1.5 | 1.5 | 1.5 | 0 | 3.3 | 6.0 |
|  | July 7 | 57 | 0 | 1.7 | 1.7 | 0 | 0 | 3.6 | 3.4 |
|  | " 13 | 43 | 0 | 4.6 | 2.3 | 0 | 0 | 12.5 | 6.9 |
|  | "17 | 15 | 26.7 | 0 | 0 | 0 | 6.7 | 30.0 | 33.4 |
| \% |  |  |  |  |  |  |  |  |  |
| KI | June 30 | 45 | 2.2 | 6.7 | 2.2 | 0 | 4.04 | 10.5 | 15.6 |
| I1 | \% 30 | 54 | 3.7 | 3.7 | 1.8 | 0 | 0 | 12.2 | 9.2 |
| ${ }^{4} 4$ | $\cdots 30$ | 37 | 506 | 5.4 | 0 | 0 | 0 | 15.1 | 10.8 |

of disease for all plots. Since no other estimate of the incidence of disease on other plots was available $100 q_{x}$ figures were calculated from the pooled data obtained from plots G1l and K2 (Tables 10 and 11). These $100 q_{x}$ figures were then applied to the population figures on each of the other plots thereby providing an estimate of mortality due to disease for each period.

### 7.0 GOMPARISON BEIWEEN THCHITGUES

The incidence of disease as calculated from measurement of mortality in rearings and by noting incidence of infection in stained sections of living insects differed only slightly. Included in this difference is a diserepancy between slide and rearing figures for infection with fungi and bacteria; those from insects dying,in rearings being higher. This discrepancy may be explained, at least in part, by the fact that many of the bacteria and fungi observed In dead insects may have been either fortuitous or secondary in nature.

Stained slides of the abdomens of living adult budworm indicate a high rate of infection with microsporidia (Table 7). This suggests that some larvae may be infected and yet be resistant to this disease (i, $e_{0}$, assuming the insect contracted the disease while in the larval stage). This observation is substantiated by the fact that the rate of infection as determined from stained slides of living budworm larvae was consistently higher than the rate of mortality from rearing records. If confidence may be expressed in the rearing techniques mployed (i.e., that the larvae did not become infected With the disease after they had been brought into the laboratory) it may be stated that young as well as older larvae may survive infection with microsporidia, since some adults originating from young larvae from early collections were infected. A cytoplasmic polyhedral disease was also found in an adult budworm, indicating larval resistance to mortality from this disease also. Since at least the protozoan disease may be transmitted via the egg plans for future investigations include a study of the effect of these and

Table 10
Pooled $d_{x}$ Values for G1l and K2 Based on Weekly Rearing and Using Gll Population Figures

| Date | $\begin{gathered} \text { Deduction } \\ \text { for } \\ \text { pupae } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Population } \\ \text { per } \\ 10 \mathrm{sg} \text {. ft. } \\ \hline \end{gathered}$ | Microsporidia | Capsules | Fungi | Polyhedra | Bacteria | Unknowa | Total diseased |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 15 | 0 | 93 | 2.32 | 5.39 | 0 | 0.74 | 0 | 16.93 | 8.46 |
| \% 23 | 0 | 74 | 2.96 | 2.96 | 1.18 | $\bigcirc$ | 0 | 4.00 | 7.18 |
| - 30 | 0 | 57 | 2.17 | 1.31 | 0.46 | 0.46 | 0 | 1.88 | 4.33 |
| July 7 | 0 | 40 | 0 | 0.32 | 0.32 | 0 | 0 | 1.32 | 0.64 |
| " 13 | 6 | 22 | 0.53 | 0.79 | 0.53 | 0 | 0 | 1.43 | 1.83 |
| - 21 | 14. | 6 | 1.14 | 0 | 0 | 0 | 0.29 | 1.50 | 1.43 |

Table 11
Pooled Estimate of $100 \mathrm{Q}_{\mathrm{x}}^{*}$ by Period and Disease frow 3 luts Gll and K2, Using Population Figures from $G 11$

| Period | Capsules | Microsporidia | Fungi | Other diseases | Unknown |
| :---: | :---: | :---: | :---: | :---: | :---: |
| II | 0 | 0 | 0 | 0 | 14.40 |
| II | 4069 | 3.80 | 0.89 | 0.89 | 7.48 |
| III | 4.98 | 6.20 | 2.48 | 0 | 13.38 |
| IV | 13.63 | 31.63 | 18.07 | 9.19 | 45.26 |

*Were $100 \mathrm{q}_{\mathrm{X}}$ for any period may be calculated by:

$$
\frac{A}{D_{x}} \times 100
$$

Where $A=$ Population per 10 sq. ft. branch area at the beginning of the period
$D_{x}$ taken from Table 5.

Table 12
Per. Gent Mortality in Rearings Based on Rearing
Hecords from the Time of Gollection to Pupation for Plots K2, G11, KI, Il and G\&

| Plot | Deduction for parasites |  | No. in sample | Microsporidia | Capsules | Fungus | Polybedra | BacteriA | Unknowi | Total diseased |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K2 June | 15 | 2 | 55 | 12.7 | 10.9 | 0 | 0 | 0 | 30.4 | 23.6 |
| * | 23 | 5 | 62 | 11.3 | 0 | 3.2 | 0 | 0 | 1.9 | 14.5 |
| $\because$ | 30 | 7 | 65 | 6.1 | 3.1 | 0 | 0 | 0 | 6.8 | 9.2 |
| July | 7 | 3 | 65 | 0 | 0 | 3.1 | 0 | 0 | 7.9 | 3.1 |
| ■ | 13 | 13 | 40 | 5.0 | 2.5 | 7.5 | 0 | 0 | 5.9 | 15.0 |
| " | 21 | 2 | 6 | 0 | 0 | 0 | 0 | 16.7 | 20.0 | 16.7 |
| G11 June | 2 | 11 | 60 | 8.3 | 5.0 | 3.3 | 0 | 0 | 18.0 | 16.6 |
|  | 15 | 4 | 60 | 1.7 | 8.3 | 1.7 | 1.7 | 0 | 28.8 | 13.3 |
| ${ }^{\prime \prime}$ | 23 | 9 | 60 | 8.3 | 8.3 | 1.7 | 0 | 0 | 14.3 | 18.3 |
| ${ }^{1}$ | 30 | 8 | 65 | 1.5 | 1.5 | 1.5 | 1.5 | 0 | 3.3 | 6.0 |
| Juyy | 7 | 12 | 57 | 0 | 1.7 | 1.7 | 0 | 0 | 3.6 | 3.4 |
| $1{ }^{1}$ | 13 | 22 | 43 | 0 | 4.6 | 2.3 | 0 | 0 | 12.5 | 6.9 |
| $\#$ | 21 | 21 | 15 | 26.7 | 0 | 0 | 0 | 6.7 | 30.0 | 33.4 |
| $K 1$ June | 30 | 13 | 45 | 2.2 | 6.7 | 2.2 | 0 | 4.4 | 10.5 | 15.6 |
| Il ${ }^{\text {n }}$ | 30 | 16 | 54 | 3.7 | 3.7 | 1.8 | 0 | 0 | 12.2 | 9.2 |
| G4 $\quad$ ! | 30 | 31 | 37 | 5.4 | 5.4 | 0 | 0 | 0 | 15.1 | 10.8 |

other diseases found in adults on meting, fecundity, and resulting progeny. The total $d_{x}$ figure as calculated from consideration of each cole lection for one week differed only slightly from that derived from one early collection that was reared through to the adult stage (Tables 4 and 13). It would appear from this comparison that (1) laboratory rearing has very little, if any, effect on mortality due to disease, and (2) that most of the disease is contracted in the very aariy stages or is passed down via the egg. As with most other observations in this report, more data are required to either substantiate or refute this.

## 8.O TNTEREREIATION OF RESULS

A comparison of two methods of measurement is presented below. The reason for the choice of Thompson's method (16) is that another worker has used this procedure for assessing mortality due to disease. Below are figures for 1 as dertred by the fomma $T=a+(1-a) b+(1 \operatorname{lom})(1-b) c+(1-a)(1-b)(1-c) d,+$ etc. and $100 q_{x}$ as derived from the method outlined in this report for the two plots intensively studied.

|  | Disease | E2 |  | Dnknown | Disease |
| :---: | :---: | :---: | :---: | :---: | :---: |
| G11 | Unknown |  |  |  |  |
| $100 \mathrm{~g}_{\mathrm{x}}$ | 35.7 | 37.1 | 52.2 | 57.6 |  |
|  | 30.4 | 25.2 | 18.5 | 26.4 |  |

It is obvions that when data such es population figures, larval development, and other morbalfty factors are taken into consideration in the measurement of any one mortality factor, the probability of reaching a correct evaluation is much greater than when they are not available. If in the \% absence of these data a method of evaluation such as that outlined by Thompson in 1928 (16) is used then the asquxption must be made that only the one factor is reducing population. Gaxtion mast therefore be employed in using an aggregate persentage mortality as represented by mpl for comparisons betwean

## Table 13

$D_{x}$ Values Based on Rearing Records from
Time of Collection to Pupation for Plots K2, GI1, K1, II, and G4

| Plot |  |  | Deduction for pupae | Larval population per 10 sq. $f t$. | Microsporidia | Capsules | Fungus | Polyhedra | Bacteria | Unknown | Total disease |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K2 | June | 15 | 0 | 119 | 15.1 | 13.0 | 0 | 0 | 0 | 36.8 | 28.1 |
|  | " | 23 | 0 | 102 | 11.5 | 0 | 3.3 | 0 | 0 | 1.9 | 14.8 |
|  | " | 30 | 0 | 87 | 5.3 | 2.7 | 0 | 0 | 0 | 5.9 | 8.0 |
|  | July | 7 | 1 | 73 | 0 | 0 | 2.3 | 0 | 0 | 5.8 | 2.3 |
|  | n | 13 | 12 | 48 | 2.4 | 1.2 | 3.6 | 0 | 0 | 2.8 | 7.2 |
|  | " | 21 | 32 | 12 | 0 | 0 | 0 | 0 | 2.0 | 2.4 | 2.0 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 611 | June | 2 | 0 | 122 | 10.1 | 6.1 | 4.0 | 0 | 0 | 22.0 | 20.2 |
|  | ! | 15 | 0 | 93 | 1.6 | 7.7 | 1.6 | 1.6 | 0 | 26.8 | 12.4 |
|  | $\square$ | 23 | 0 | 74 | 6.2 | 6.1 | 1.3 | 0 | 0 | 10.6 | 13.5 |
|  | $n$ | 30 | 0 | 57 | 0.8 | 0.9 | 0.8 | 0.9 | 0 | 1.9 | 3.4 |
|  | July | 7 | 0 | 40 | 0 | 0.7 | 0.7 | 0 | 0 | 1.4 | 1.4 |
|  | $\cdots$ | 13 | 6 | 22 | 0 | 1.0 | 0.5 | 0 | 0 | 2.7 | 1.5 |
|  | \# | 14 | 14. | 6 | 1.6 | 0 | 0 | 0 | 0.4 | 1.8 | 2.0 |
| KI | June | 30 | 0 | 63 | 1.4 | 4.2 | 1.4 | 0 | 2.8 | 6.6 | 15.6 |
| II | ' | 30 | 0 | 60 | 2.2 | 2.2 | 1.1 | 0 | 0 | 7.3 | 9.2 |
| G4 | " | 30 | 0 | 48 | 2.6 | 2.6 | 0 | 0 | 0 | 7.2 | 10.8 |

$d_{x}$ at any interval $=\%$ potential mortality resulting from disease $x$ larval population at beginning of interval.
plots and between years. Thie is especially important in those cases where samples are not takea from populationg at the same point in the life cycle of the insect in each zuccessive year and on each plot.

For the sake of comparison the aggregate T for each disease is listed for the Port Arthur and Crean Biver areas for 195 (Tables 14 and 15). A portion of the apparently large difference between the two sets of data may be explained by dissfuilarities in technique and in time and frequency of sampling. Even so some part of this difference could undoubtedly be demonstrated as due to differences in the two areas under consideration.

These atudies of diseases in the spruce budworm will be continued until at least the decline of the present infestation. Changes are anticipated in techniques and will be made from year to year as experience is gained. In 1955 most of the sectioning of larvas will be dropped. In the place of this studies on the efiects of disease on adults will be intensified. Other minor changes will also be made in methods and times of collection.

$$
9.0 \text { SIMMARY }
$$

(1) A survey of disease was made in budworm populations on two plots in northern New Brunswick to doternine whet diseases are present, which of these exert measurable control. and in what atage of the host they kill. Two methods were ased in diagrosis: stained sections of living insects, and body mears of insects dying in rearingso
(2) A method for analysing data for inclusion in life tables is presented. Using life tables as the method of eveluationg disease was found to have a potential of reducing the population by 24.5 per cent.
(3) At lesst one sample wes takex from each of five plots to see if there was a difference in ingideme of digease under different stand conditions and infestation historyo Ueing $\mathbb{Z}^{2}$ tests no difference was found.
(4) Disease wes found in adults, indicating possible resistance

Table 14
Aggregate Mortality from Disease as Represented by RTP for Grecer River and Port Arthur Districts for 1954

|  | Green River |  | Port Arthur |  |
| :--- | :---: | :---: | :---: | :---: |
| Plot | H2 | G11 | Joo Lake | Lake Marie Louise |
| Protozoa | 19.2 | 31.3 | 5.2 | 7.2 |
| Fungi | 9.4 | 1.5 | 0.6 | 2.1 |
| Bacteria | 0 | 6.7 | 1.6 | 0.5 |
| Polynedra | 0 | 3.1 | 0 | 0 |
| Capsules | 12.0 | 19.1 | 0 | 0 |

> Real \% Mortality fron Disease Using Thompson's Method - Flots Gll and K2

| Plot | Coll. <br> Sate | Microsporidia | Gaprules | Tuagus | Polybedra | Bacterit | Unkaown | Total discase | Total mortalty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L2 | June 15 | 5.3 | 7.0 | 0 | 0 | 0 | 18.0 | 12.3 | 30.3 |
|  | $\cdots 23$ | 3.0 | 0 | 3.2 | 0 | 0 | 0 | 5.6 | 4.5 |
|  | ¥ 30 | 5.6 | 2.8 | 0 | 0 | 0 | 4.1 | 7.5 | 9.2 |
|  | Ju2\% 7 | 0 | 0 | 1.6 | 0 | 0 | 2.4 | 1. 2 | 2.6 |
|  | \% 13 | 4.3 | 2.2 | 4.8 | 0 | 0 | 0 | 9.2 | 6.7 |
|  | \% 21 | 0 | 0 | 0 | 0 | 0 | 12.6 | 0 | 7.8 |
|  | Total | 19.2 | 12.0 | 9.4 | 0 | 0 | 37.1 | 35.7 | 61.1 |
| Q1 | Juse 15 | 0 | $4{ }^{4}$ | 0 | 2.6 | 0 | 18.3 | 6.3 | 24.6 |
|  | ¢ 23 | 4.9 | \%.8 | 0 | 0 | 0 | 9.2 | 12.3 | 18.8 |
|  | M 30 | 1.4 | 1.3 | 1.5 | 2.5 | 0 | 1.2 | 409 | 4.4 |
|  | du] ${ }^{\text {\% }}$ | 0 | 1.5 | 0 | 0 | 0 | 2.6 | 1.3 | 2.8 |
|  | 313 | 0 | 3.8 | 0 | 0 | 0 | 8.2 | 3.4. | 8.2 |
|  | $\bigcirc 21$ | 25.0 | 0 | 0 | 0 | 6.7 | \$8. 2 | 24.0 | 27.6 |
|  | Total | 31.3 | 19.1 | 1.5 | 3.1 | 6.7 | 57.6 | 52.2 | 86.0 |

Real \% mortalities from formula

```
    T=A+B+C where a,b, &, and d are apparent mortalities in % ages
where A=a
    B=(I-2)b
    c=(I-a) (I-b)c
    D=(1-a)(1-b)(1-c)d
```

of larvae to a protozon and poiyhedral disease after they had become infected.
(5) Preliminary studies of mortality due to intrinsic weakness were initiated.
(6) Data were subjected to asequential anelysia and an average samplo size that would permit the definition of disease within certain clasm gilications was determined.
(7) A comparison of the lifertable method of measuring mortality due to disease and another method is presented.

## REFEREMCES

1．Bird，Fomo and Whaleng MoMo 1949．Capsule virus disease in the spruce budworin with particular reference to histopathology and epidemiology．Ann．Ropt，2949，Forest Ingect Laboratory Sault Ste。Marie，Ont。

2．Bird，Fow 1955．Personal commanication．
3．Bird，$F_{0} T_{0,}$ and Whaleng $M_{0} M_{0}$ 1954o A auclear and a cytoplasmic polyhedral wirus disease of the spruce budworm．Can．Jour．Zool． 32：82～86．

4．Evans，F．C．and suith，Fo E．1952．The intrinsie rate of natural increase for the human louse，Podecnlus bumgns $L_{\text {．}}$ Amer．Nat．86： 299～310．

5．Harvey，G．To 1954．Absence of diapsuse in rearing of the spruce budworm． Can．Dept．Agxo，Div．For．Blolog BjaMon．Prog．Repte 10（4）．

6．Miller，C．A．1955．A technique for assessing spruce budworm larval mortality caused by parasites．Gan．Jour．Zool．33：5－17．

7．Miller，C．A．1954．In Green River Amn．Tech。Rept．1954o
8．Morton，S．S．1949．A preliminary report on the normal histology of the spruce budwomm．Ann．Bept．1949，Forest Insect Laboratory， Sault Ste．Marie，Onto

9．Morton，s．3．2950．The normal histology of the spruce budworm． Ann．Rept．1950，Ferest Insect Laboratory，Sault Ste，Marie，Onto
 tables for the spruce budworm．Gan．Jour． $4001.32 .283-301$.

11．OakJand，Go B．1951．Sequential analysis．Can．Depto Agro Processed publication．

12．Smith，S．Go 1955．Review of projects．Section of Cytology and Genetics．Intexix Temh．Rept．195m，10，Forest Insect Laboratoxy，

Savit Ste. Marie, Ont。
13. Stehr, G. 1954. A laboratory method for rearing the spruce budworm. Can. Ent. 86: 4230 4258 .
14. Steinhaus, E. A. 1949. Erimoiplea of insect patrology MoGraw Hill Book Co. ${ }^{2}$ Inc.
15. Stoinhaus, Fo A. 1954. The effect of disease on insect populations. Hylgardia 23: 9.
16. Thompson, W. R. 1928. A contribution to the study of biological control and parasite introduction in continental aneas. Parasitology 20: 90.
17. Thomson, E. M. 1955. Investigations of pethogens of the spruce budworm. Port Arthur Distroct. Sumary 1951-54. Tnterin Techo Repto - Forest Insect Laboratory, Sault Ste. Marie. Ont.
 sporidia from the spruce budworin. In press.
-22-

APPENDIX




