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ABSTRACT

Enpirical equations to describe the drop size to stain size

relationship of spray drops on Krarakote^ paper are derived for eight

models, linear, exponential and polynomial, using data from calibrations

of four similar oil-based forest spray formulations. Their goodness of

fit to the data and their upward and downward extrapolations are compared.

Three exponential models include an adjusting term to compensate for

evaporative shrinkage of the drops. One seems to provide a good estimate

of the relationship to be expected in the absence of evaporative shrinkage.

Based on this a model is developed to e>q?ress the relationship obtaining

for the smaller drops where the diameter shrinkage can be no greater than

that permitted by a short term evaporated residual volume fraction limit.

The use of polynomial moctels is questioned. Within limits the simple

exponential model is adequate for volume deposit measurement but not for

drop size spectrum analysis for this moderately volatile formulation.
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RESUME

A l'aide de donnees de l'etalonnage de quatre preparations

huileuses semblables d' insecticides pour la pulverisation sur les

forets, on obtient des equations empiriques qui decrivent le rapport

dimensions des gouttelettes a celles des taches sur papier

Krcnekote^pour huit modeles lineaires, exponentiels, ou polynomiels.

Ifiur fidelite et 1'extrapolation vers le haut et vers le bas sent

conparees. Trois modeles exponentiels corrprennent un terms gui tient

conpte de la reduction des gouttelettes par 1'evaporation. L'un d'eux

semble fournir une bonne estimation du rapport a prevoir en 1'absence

d'Evaporation. II en decoule un raodele exprimant le rapport obtenu

pour les plus petites gouttelettes, pour lesquelles la diminution du

diamStre ne peut exceder celle que permat une lijnite de la fraction du

volrae du residu qui s'evapore a court terme. L1utilisation des poly-

nanes est mise en question. En deca de certaines limites, le siirple

modele exponentiel permet de nesurer le volume des depots, mais ne

permat pas I1analyse du spectre des dimensions des gouttelettes pour

cette preparation insecticide moderenent volatile.



INTRODUCTION

Analysis of deposit sample cards of oil-based aerial sprays

require prior calibration of the drop/stain diameter relationship so

that measured drop traces can be related, through the size and volume of

the drops that made them, to their content of active ingredient. This is

done by producing drops of known sizes and measuring the diameters of the

spots they make when impinged on similar cards. The resulting laboratory

determined relationship, strictly speaking, is applicable to the field

sample cards only for essentially involatile fluids, or for those for

which a predictable canpensation can be made for a known content of very

volatile solvent or diluent. The majority of formulations used in forest

aerial spraying fall into neither class as they usually contain solvents

and diluents with appreciable vapour pressures. Accordingly, falling spray

drops are subject to volume shrinkage at rates governed by their surface

to volume ratios and ambient temperature. A shrunken drop can be expected

to make a smaller spot than its unevaporated counterpart.

A convenient tool for producing drops of theoretically known

emitted volume and diameter is the rotary blade drop generator (Rayner

and Haliburton 1955). Fluid is metered to the feed mechanism by a

gearmotor driven positive displacement syringe. The georetry of the

F
feed head is such that a considerable area of fluid is continuously ex

posed to evaporation so that the delivered drops are 'preshrunk'. These

drops are then equivalent to free falling spray drops which have been

subjected to the same net evaporative loss before being deposited on the

sample card. From nominal emitted diameters and corresponding stain

r



measurements one can derive a drop/stain diameter relationship which should

approach that which would apply under some spray altitude and air tempera

ture combinations giving the same net evaporative effect.

As presently used, the generator produces drops in a logarithmic

series of sizes from 100 urn to 317 pm. Above and below this range we have

to depend on extrapolation of some model of equation that fits the data,

or on another that is logically derivable from it to allow for a predictable

limit for evaporative shrinkage. Reasonable accuracy in this downward

extrapolation is iitportant in the analysis of deposit samples of ULV drift

sprays.

m

Where cards with laboratory-produced stains are to be used to

calibrate an image analysing machine {spot scanner) , the sizes of the

images 'seen' by the machine, which will differ somewhat from ocular measure

ments, should be related to values equivalent to the initial diameters of

drops which would have produced similar stains after being airborne. For

m

the 'scanner' calibration, drops smaller than 100 pm are needed and can be

generated by an air-assisted point emission nozzle (adapted from that of

Buckholtz and McPhail 1960). However, as the liquid feed retention time is

very short, the droplets produced do not evaporate as much as their rotary-

produced counterparts would. Here one must depend on drop diameters estimated

from ocular measures of stain diameter entered into the best available down-

_ ward extrapolation from the data.

In this study, several models for empirical equations, linear,

exponential and polynomial are compared using data from a series of calibrations

of field spray fluids.
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MODELS

The relationship between the size of an oil drop and its

stain on Krcmekote paper has been said to be typically described by a

polynomial equation of the form:-

y = a + bx + ex2

in which y is drop diamater and x is stain diameter (Dumbauld and Rafferty

1977). The special case in which a and c have zero values (i.e. y = bx)

applies to the uniform spread ratios of non-volatile drops which assume

lenticular form when deposited on a perfectly smooth non-absorbent surface.

A second case where c equals zero (i.e. y = a + bx)* applies to many

dyed water-based sprays on absorbent surfaces. Use of the full polynomial

requires estimation of parameters a, b, and c appropriate for fitting such

a curve to the data. This is mathematically difficult (tedious) unless

one has access to a suitable computer program. A more simple model may
i

be adequate.

The stain/drop diameter relationship of unevaporated or involatile

droplets of oily fluids deposited on Kromekote paper can be well described

by exponential equations of the form:-

u n
y = bx

where x is stain diameter, y is the drop diameter, and b and n are para

meters peculiar to both the fluid and the particular lot of paper used.

The log log plot of such an exponential curve is a straight line. However,

most oil-based aerial spray formulations contain some surprisingly volatile

* Note that this is a special case of y = a + bx , where n = 1, which

model will be considered later in this section.
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ccrnponents whose loss during free-fall results in reduced stain size

and altered spreading behaviour on the sampling surface.

Plots of drop over stain diameter calibration data of such

fluids on log coordinates are usually somewhat curvilinear. The degree

of flexure seems to vary with the volatility of the solvent system and

indicates the amount of departure from the basic exponential relationship

represented by a straight line. The curvature can be described approximately

r
by adding a constant to the drop diameter (y ) values, corresponding to a

series of stain diameters (x), derived from an appropriate exponential

line and plotting them against those stain values. The straight line

equation: log ye = log b + n log x where ye = y - a is equivalent to

the exponential equation:-

Ye = bx11 whence y = a + bx

Another approximation can be made by graphically estimating a constant,

which when added to the observed stain diameters (x) will give X-, values

such that:-

log y * log b + n log Xg

m

Substituting x + k for Xg in the expontial form yields:-

y = b(x + k)n

The first case amounts to increasing the calculated diameter

of a deposited drop by the added constant to estimate the diameter it might

have been before any evaporation took place. In the second case the stain

diameter is in effect increased by a constant to what it might have been

had it been made by the unevaporated original drop. A modification of this

concept consists in making the transformation term an inverse function of x,
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which increases the size of the term as the stain size is decreased. Such

a model was developed for use with a relatively volatile mix of aminocarb and

nonylphenol in a special light petroleum diluent:-

y = b(x 4 k/xl/3)n

This model can corpensate better for the greater percentage volume loss from

the smaller drops with their higher surface to volume ratios and longer air

borne times.

PROCEDURES

It is useful to examine the data graphically. Plot nominal

emitted drop diameters against estimated (measured) mean stain diameters

accurately on log log paper. It is assumed that several samples of spots

of each size have been measured to ensure that short term fluctuations

in the size of emitted drops have been averaged out to produce a consistent

set of data, rather than a scatter diagram. Examine the plot for apparent

curvature. A fine straight line scribed on a strip of transparent plastic

is a convenient tool for doing this.

Trial values of parameters a and k can be selected by inspection

by trial and error positioning of the scribed line such that when a is sub

tracted from y the resulting points fall along it; similarly a slightly

different line can be selected to fit x + k. Selection of K involves trial

calculation of tables of K/x1/3 values f°r the measured stain diameters.

The value of K which gives points that seem to plot on or about a straight

line is then a good estimate of the parameter. The slope of the line,

which is equivalent to the power n in the exponential equation y = bx11 can

■
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be estimated fron the coordinates of two points read £rcm the straight

line fitted by inspection, x, y, and x2 y2 thus:-

n = log v. - log y?

log x, - log x2

The parameter b is estimated thus:-

b = XX

The equation should be tested by verifying that

bx2n - y2

If there is no apparent 'curvature' or imbalance in the deviations of

observed us. expected drop diameters (residuals) and they suntnate to near

zero, the values of b and n are probably reasonable estimates. Examples of

this systematic curvature are evident in opposite senses in columns 1 and 2

in Table 1. For the graphically estimated values of a k or k estimates

of b and n can also be obtained by fitting a least squares regression line

to log (y-a) OS. log x (or log y vs. log {x + k) or log (x + 'xi/3). The

program for this procedure is built into some small desk and advanced hand

held calculators.* Other estimates of b and n should be derived for adjacent

values of a (or k etc.) to see if they yield a better fit to the data (i.e.

lender sum of squares of residuals, and/or higher coefficient of determination).

If one data point seems to affect the slope, level or shape of the line unduly

and it is not convenient to further replicate it, try deleting it and re-

-

calculate to see if a much better fit to the remaining data results. How

do these models compare with the linear, log linear (exponential) and poly

nomial forms for calibrating the spread of oil-based spray drops on Kromekote

m

cards?

Data fron calibrations of four phosphamidon-in-oil spray

* i.e. Monroe Model 1930 & Texas Instruments SR 51 II.
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formulations with the same nominal oonposition but made up with

allegedly equivalent components from different suppliers were pooled and

used to derive the parameters for eight equation models (see Table 1) .

The formulation consisted of phosphamidon (92% AI) 14.86%, Arotex 3470

(a wide boiling range aromatic solvent) 50%, #2 fuel oil 3.8%, #4 fuel

oil 31.34%. The calibrations were run on the back or screen face of

8.7 mil Krcmekote paper, finished on both sides, from the same lot as

that used for monitoring the 1977 forest spray operations in Quebec.

Two samples (cards) of stains for each available drop size were measured

for each fluid using a Cooke AEI image splitting ocular micrometer @ 16X.

Plots of nominal emitted drop size vs. estimated mean stain diameter and

the graphically estimated parameters indicated considerable systematic

variation in spreading behaviour among the four fluid samples as well as

marked differences from parallel runs on 7.5 mil Kromekote stock. The data

from the six sets of eight cards were pooled for ease in plotting and

calculation by deriving mean log equivalent stain diameters for each

nominal output drop diameter, assuming random fluctuations in emitted drop

size to have been averaged out.

RESULTS

Derived forms of six model equations:-

y - a + bx 1

y = bxn 2

y = a + bx 3

y = b(x + k)n 4

y = b(x + k/xV3)n 5
y = a + bx + ex2 6

plus two polynomial variants appear in Table II with their coefficients



of determination (R2) and sums of squares of residuals. Calculated

equivalent drop diameter values for stain diameters from 0 to 3000 urn,

including the data points are listed in Table I. Deviations of the

calculated values from nominal means (residuals) are also listed. The

sums of their squares and the R2 values serve as indices of apparent

"goodness of fit" of the data to the curves. The two equations (3 and 4)

involving transformation constants (a or k) were derived graphically and

arbitrarily calculated to pass their lines through the underlined co~

orainate points. Dog linear regression analyses using the same constants

(3a and 4a) appeared to give somewhat better fits (lower sums of squares).

Further analyses using slightly smaller constants resulted in more ixtprove-

rrent (3a and 4b) . The differential adjustment of the stain diameter trans

formation term by the inverse cube root of x (#5) seems to give a still

better fit. (see Table II).

The polynomial model (#6) fits the data points well but the

extrapolations, both downward and upward, seem to be out of line. A four

term polynomial model including x3 (#7) resulted in a closer fit of the

line to the data points, but the extrapolations were even more out of line.

Statistical tests indicated that only the parameters b of the x term in the

two equations was significantly different from zero. In a trial eouation

r
with the x2 term deleted (#8) both the x and x3 parameters were statistically

significant, and the residual sum of squares value indicated a superior fit.

However, the downward and upward extrapolations were also widely divergent.

■
-
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DISCUSSION AND CONCLUSIONS

The graphical approximations of the two modified exponential

equations (3 and 4) seem to indicate that these models would be adequate
am

for practical purposes. Refinement of the parameters by log linear

^ regression analysis and trial adjustment of the included transformation

constants indicate that there is little to choose between them, the

y = b (x + k) model being perhaps superior {higher coefficient of

determination and laser sum of squares of residuals). It is perhaps

P

more logical to have the constant included in the term affected by the

exponent. These models are consistent with a visualizable physical

system in which the deposited stain size diverges at a smoothly

increasing percentage rate with decrease in drop size from the predicted

from an unevaporated drop of the same original size.

Examination of the downward extrapolations indicates drop

diameter estimates that seem unreal as zero stain diameter is approached.

However, the evaporative decay rate of a drop varies as the inverse of

its diarreter, and the smaller the drop, the longer it remains airborne

and evaporating! It is therefore conceivable that a drop of appreciable

original diameter could be reduced to a bit of dross that would fail to

mark the surface, or, more likely, fail to impinge at all. Therefore

the effect should be qualitatively real, at least for fluids containing

very little non-volatile material. For fluids with appreciable non- or

lew-volatile content the stains made by very small drops will be more

like those made by proportionately smaller drops of the non-volatile
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components. For example a 'dried out1 drop, originally 50 urn (Hamster

with a residual non-volatile volume of 12.5% should make a stain the same

size as a drop 25 pm diameter (i.e. 503.125) of the involatile fluid.

Therefore the extrapolated line may be valid only until it approaches the

simple exponential line characteristic of that involatile ingredient, dis

placed by the appropriate cube root factor.

Within the range of the primary data the polynomial equations

appear to provide superior fitting lines. However, it seems that, as the

number of terms in the polynomial is increased, the more the line is

warped to fit the data points such that, in the limit, it may be forced

through all of them without regard for how they may be randomly disposed

about the 'physical' model, particularly when their number is small.

This, along with the weakness of the extrapolations puts unto question

the applicability of these models. They should be used only when the cali

bration data points encompass the full range of stain sizes found on the

field sample cards.

For practical purposes there is not much to choose between

the three modified exponential equations (No's 3b, 4b, 5 of Table II).

However, equation 5 of which the model seemed to provide the best fit when

used for a much more volatile formulation, and having the smallest sum

of squares of residuals, probably gives the best estimate of the zero

evaporation relationship. The equation for this line would have the sane

ft

parameters as No. 5, but would lack the 'transformation' term:-

.8761005

y = .450158 x

Fran this we can postulate equations to match drops with any given residual
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volume fraction (Vj by dividing parameter b by V Vs. In this case,

vr is estimated to be about 0.75, whence:-

.8761086

yr = .495463xr

This line meets the line of the x:y plot from equation" 5 at a point,

where there is an abrupt change in slope. To provide a gradual transition

to the Vr = .75 relationship an arbitrary negative term of the form xmA can

be put into the equation such that the plotted line diverges from the x ■ v
r Jr

line and is tangent to the x:y line near the lower end of the primary data

range. A suitable term was derived by trial and error to yield the equation:-

4/ 9 .8751086

y m .495463 (x - x/4.11 x 10 ) 5a

The line is tangent to the upper curve at 500 \im stain diameter and becomes

asymtopic to the x^ i y line as the stain diameter is decreased. Accordingly,

equation 5 should be used for stain sizes down to the point of tangency and

equation 5a for stains below that point. The transition is scarcely evident

in Figure I, but the need for it can be seen as the residual volume fraction

decreases with increased volatility.

In theory, this extrapolation seems valid, but its accuracy de

pends on the correctness of the zero evaporation equation and our estimate

of the short term residual volume fraction. This should match the maximum

voluma loss from spray drops falling from spray emission altitute at average

ambient temperature. Comparing this estimated extrapolation line with the

downward extensions of the six models (see Table III for comparison values) ,

it is obvious that all except the simple exponential model (#2) grossly

overestimate the sizes of the small drops. Bear in mind that the volume

differential between two diameter valuss is equal to the cube of the ratio

-
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of those diameters. Accordingly, they should not be used for drop size

estimation below the range of the primary calibration data. The upward

extrapolations of the three modified exponential models (3, 4 and 5) are

fairly consistent. The linear model #1 overestimates the large drops

whereas the exponential {direct log linear) model (#2) underestimates them.

If the large drops do not constitute a significant portion of the drop

deposit spectrum, and one is prepared to accept the relatively small plus

and minus errors within the calibration range and the moderate overestimation

inherent in the downward extrapolation; it seems reasonable to use the

latter for general deposit volume analysis of spray sample cards, though

not for drop size spectrum analysis. The discrepancies become larger with

increased volatility of the spray formulation.

It should be pointed out that the size of the transformation

or "evaporation conpensation" terms in these equations is a function of the

evaporative loss from the free surface of the fluid on the feed head of

the drop generator. This is essentially inversely proportional to the

fluid feed rate, as the surface area remains relatively constant. This is

then honologous with the free surface to volume ratios of the drop produced

at the various feed rates, each one being |x or 2x the adjacent one. Loss

by evaporation would be proportional to surface to volume ratio, which is also

inversely proportional to the diameter of the free drop. The ratios on the

feed mechanism are very high but the exposure time is short, whereas those
m

of equivalent spray drops would be much lower but the exposure tiroes much

longer!

The effect of terperature on evaporation rates {via vapour pressure)
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is such that a calibration curve (equation) appropriate for a given

ambient temperature may give erroneous deposit estimates at higher or

lower temperatures, particularly when the formulation contains a high

percentage of more volatile components. At best the compensation for

evaporative shrinkage can be only approximate.

Acknowledgements are due to Mr. A. Moore for useful dis-

cussions and computation of the parameters for the polynomial equations,

and to Dr. A. M. Drumrond for constructive criticisms.

'

r

r

r

REFERENCES

BUCKHOLTZ, E. E. and M. K. IYCPHAIL 1960. Apparatus for applying liquids

in small drops to animals. Bev. Sci, Xnstrm, 31 (2): 132-136.

DUMBftULD, R. K. & J. E. RAFFERTY 1977. Field manual for characterizing

spray from small aircraft. Report TR 76-13-02. Prepared for

Forest Serv. USDA Equipment Development Centre, Missoula, Mont,

and Methods Application Group, Davis, Calif., Contract No.26-3694,

March 1977 <H. E. Cramer Co. Inc., Salt Lake City, Utah, 84103).

HAUBUFTON, W. 1978. Calibration of spread of Matacil "Ready to Use"

oil formulation on 10 mil Kromekote cards. File Rpt. No. 98,

Forest Pest Mgmt. Inst., Ottawa. 5 p p Xerox. June 1978.

RAYNER, A. C. and VH. HALIBURTON 1955. Rotary device for producing a

stream of uniform drops. Rev. Set. Instrim. 26 (12): 1124-1127.



Nominal

mean vol.

diam.

2 77

Q 91.9
® 99.8

<£" 125,8
® 158.5

(f! 199.7

C^ 251.5

8 316.9

Stairi

diam.

0

20

40

80

160

305

389

432.3

500

581.3

771

900

1015.6

1200

1339.5

1500

1733,4*

1752

2000

2500

3000

Sum of Squares

of Residuals

Equation

No: 1

27.51

30.87

34.24

40.97

54.43

78.83

92.97+1

100.25 +

111.65

125.41 -

157.25-1

178.96

198.41-1

229.44

252.91+1

279.92

319.20

322.33

364.06

448.20

532.33

6

H

I
a

,07
,45

.39

.25

.29

.41

.7142

2

0

8.15

14.33

25-20

44.31

74.94

91.36 -

99.56 -

112.09

126.71+1

159.49 +

180.91

199.62 -

228.68

250.11-1

274.26

308.54

311.24

346.67

415.77

482.33

4

Table

?\

1
a
1/

a

.54

.24

.01

.99

.08

+ 39

.2879

1

Estimated

15

20.

24.

33.

49.

76.

92.

99.

111.

126.

158.

180.

199.

229.

251.

277.

314.

317.

355.

432.

507.

3

21

77

34

40

79

06

81

78

05

39

00

13

24

73

34

14

05

62

10

06

equivalent drop

'j'i

1

+ .16

+ .01

+ .25

-.11

-.57

+ .23

.4781

4

17.05

21.36

25.57

33.77

49.55

76.80

92.06 +

99.81 +

111.79

126.07 +

158.44 -

180.07

199.19 -

229.28

251.73 +

277.23

313.98

316.88

355.30

431.36

505.89

diameters y

m
i-H
(Z

*Fj
•i-i
en

.16

.01

.27

.06

.51

.23

.415;

5

34.1

33.1

37.44

50.74

76.88

91.97 +.

99.69 +.

111.65

125.96 +.

158.42 -.

180.13

199.29 -.

229.43

251.88 +.

277.40

313,97

316.86

355.06

430.48

504.13

j

HI
r-l

1
■H

h

07

11

16

08

41

38

3615

G

20.65

24.40

28.14

35.60

50.41

76.84

91.95

99.67

111.65

126.00

158.58

180.33

199.50

229.44

251.57

276,48

311.65

314.40

350.31

418.41

480.79

CO

H
to

■-

1Oh
+ .05

-.13

+ .20

+ .09

-.20

+ .07

.1107

i

i-
,1a.

1
i

0 Data base for the above equations, number = no. of cards measured for maan log diam.

* Possible bias in stain diameter measurement as nest stains were irregular, and the more nearly

circular ones selected for measurement probably averaged smller than the true mean.

+ Estimate of more probable mean diameter.



Table II: Comparison of derived equations: coefficients of

determination, and sums of squares of residuals.

r

■

Number

i

2

3

3a

3b

4

4a

4b

5

6

7

8

Equation

y - 27.508 + 168276x

y = .71005x .Bi'tte

y - 15 + .3435x -9077

f m 15 + .3392x .90959

y = 14 + .3382x -9025

y - .3780 (x ♦ 70) -89G&

y = .37368 (x + 70} -89828

y - .391145 (x + 65) -B92355

y = .450158 {x + ***/&/*) -076!OG

v - 20.6528 + .1872224x

- .0000114895x2

Coefficient of

Determination R2

.9996497

.9998996

-

.9999838

.9999854

-

.9999848

.9999859

.999987

.9999943

y - 23.4114 + .175932X + .0000035869x2
- .0000000058267x3 .9999985

y = 22.7427 + .178768x

-00000000446557x3 .9999983

Sum of Squares

of Residuals

6.7142

4.2879

.4781

.7691

.3498

.4152

.4384

.3335

.3615

.1107

.0289

.0418

Table III: Transformed stain diameters and equivalent drop

diameters calculated from the equation:-

y = .495463 (x - X /4.11 X 109) .3761086

for comparison with the downward extrapolations

of the equations in Table I.

r

■

r

r

Stain diam.

0

20

40

80

160

305

389

500

Transformed diam. Calculated diam.

0

19.99996

39.999

79.990

159.84

302.89

383.43

484.79

0

6.84

12.55

23.03

42.24

73.94

90.91

111.65
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