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ABSTRACT 

An inexpensive and simple technique for measuring the average 

wind velocity in the lower 600 ra of the atmosphere is proposed. The 

technique uses 30-g pilot balloons filled with helium. Final position 

of the balloon is measured by a clinometer and a compass—instruments 

which are readily available to forestry personnel. Sources of error 

are discussed and it is concluded that horizontal velocity determined 

by the suggested procedure is probably accurate to within 17 percent. 
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INTRODUCTION 

The relative importance of wind as one of the factors controlling 

forest fire behaviour is well known (Davis 1959). Success of prescribed 

burns and suppression of wildfires are often dependent on an accurate 

assessment of current and forecast wind velocities. Unfortunately wind 

velocities are highly variable, especially over forested terrain. The 

extrapolation from one location to other locations of a measured wind 

velocity often assumes homogeneity in the wind field which does not 

exist. Accurate forecasting of wind at specific locations is difficult 

to achieve owing to the general paucity of observations as well as to 

the complex nature of the fluid dynamic problem. Final recourse is 

usually made to empirical relationships in order to reduce the average 

forecast error. Although empirical techniques can improve standing on 

forecast skill-score tests, specific cases may still be handled rather 

poorly; hence, a mix of statistical and physical reasoning is the best 

approach to the forecasting problem. The net result of this dual prob 

lem of observing and forecasting winds is that there is no suitable 

substitute for on-site observations of wind velocity in those situa 

tions where accuracy is required. It is for this reason that fire 

researchers have recommended that a portable weather-observing station 

be designed (Nikleva et at. unpubl. rep.)- Such a station was envisaged 

as having equipment for measuring both surface winds and winds aloft. 

There are many techniques now available for measuring upper-air 

winds, but a time-honoured technique still often used consists of opti 

cal theodolites tracking a small free balloon ascending at a more or 

less uniform rate. This technique has the advantages of reasonable 

cost, reliable instrumentation and simplicity of data reduction. It 

suffers from poor spatial resolution of the wind field and from being 

restricted to reasonably fair weather. For special studies two or 

three theodolites are employed and simultaneous observations of balloon 

position obtained. The number of theodolites and observers required 

can be reduced so that for routine observations or when reduced accu 

racy is acceptable, a single theodolite is feasible. 

Even though the single-theodolite technique is quite straight 

forward and relatively inexpensive in comparison with other techniques 

in vogue it is still not cheap or simple enough for use by untrained 

personnel. Theodolites cost between $1500 and $2000 each, and a rapid 

reduction of pibal flights requires the use of special plotting boards. 

Fortunately, for many forestry applications wind information is not 

required to very great heights. Within the friction layer (< 1000 m) 

an ascending pilot balloon is visible to the unaided eye and conse 

quently the magnification provided by a theodolite is not necessary. 

This paper proposes that a clinometer and a compass such as those used 

by forestry personnel in cruising may be substituted for the single 

theodolite with the result that a simple and practical technique is 

available for measuring the average wind velocity through the lower 

atmosphere. 



Geometry 

THEORETICAL CONSIDERATIONS 

Figure 1 depicts the geometry for the analysis which follows. 

The balloon is released by an observer at point 0 and after a time, t, 

a sighting is made on the balloon which is then at position B. This 

sighting consists of the angles <j> and a, where $ is the elevation angle 

and o. is the azimuth from B to 0. Thus, a is the direction from which 

the wind is blowing. 

B 

Figure I. Geometry for calculating balloon displacement. 

The balloon is assumed to rise at a constant rate, w, so that 

after a time, t, the balloon is at height, h - wt. If we let v be the 
average horizontal velocity over t, the horizontal projection of the slant 
distance OB is given by r = vt. From Figure 1 It follows that r = hcot* 

and, substituting, we have vt - wtcot<}>, which simplifies to 

V = WC0t<> . (1) 

Note chat equation (1) does not contain t as a variable. The quantity t 

will enter only insofar as it determines the depth of the layer over 

which the average horizontal velocity is being measured. 

Many clinometers measure the slope, s, in percent rather than or 

in addition to $. Now, 

100 can ? ' s, and therefore 

cot <? = 1 - 100-

tan <j> s 



Hence, equation (1) may also be written as 

v = 100 w. (2) 

s 

Error analysis 

a) Theory 

If differentials of equation (1) are taken, the relative error 

in determining the horizontal velocity is given by 

dv = dw_ - csc2i} 
v w 

which simplifies to 

dv = dw - 2diji . (3) 

v w sin2<[) 

Assuming that the elevation angle can be determined to better 

than 0.5 degrees, the second term on the right-hand side of equation 

(3) remains less than 5% for £ greater than 10.2 degrees. For a stand 

ard rate of rise of 3.1 m sec"1 (10.17 ft per min) (Berry et aJ.1945) 
this implies from equation (1) that the error in estimating v is less 

than 5% for v less than 17.2 m sec"1 (38.6 miles per hour). However, 
the relative error contributed fay errors in measuring $ is generally 

much less than errors resulting from the assumption that the rate of 

rise of the balloon is a constant. 

Factors leading to a variability in the rate of rise are con 

sidered in the Appendix. It is concluded that variation in a pilot 

balloon's rate of rise occurs both during flight and from one occasion 

to another, primarily as a direct result of variations In resistance 

to the motion of the balloon through the air. These variations depend 

upon ambient turbulence levels as well as other factors, but are essen 

tially stochastic in nature. Hence, rates of rise need to be determined 

by actual measurements. Statistical inferences can be drawn from the 

results. 

(b) Measured values 

During July, 1973 double theodolite observations of pilot bal 

loon flights were made over a predominantly jack pine (Pinus banksiana 

Lamb.) forest near Peshu Lake Ontario (46.8 N 83.3 W). A total of 33 

usable flights were obtained. Data were processed on a remote computer 

terminal using a program written in APL360. Procedures were essen-



tially the same as those given by Thyer (1962) . 

Figures 2a to 2c are frequency distributions of vertical ve 

locity results for the layers 0 to 300, 300 Co 600 and 0 to 600 m. 

Notice that the distributions are markedly skew. Although a x2 test 

accepts these distributions as normal at the 5% level, a skewness test 

rejects them as normal at the 5% level. (Figures 3a to 3c show the 

same results assuming a logarithmic distribution (i.e., log10 w versus 

frequency). These distributions are acceptable as normal at the 5% 

level by both the x2 and skewness tests. Thus, measured values for the 
rate of rise of pilot balloons form a log-normal distribution. 

For the surface-to-600-m layer the mean value for logjQ w was 

found to be 0.528 with an estimated population variance of 0.00633. 

Thus, 50% confidence limits (Spiegel 1961, p. 159) are given by 

log10 w ■ 0.528 + 0.6745/0.00633 

= 0.528 + 0.054 

Taking anti-logarithms of these confidence limits yields a mean rate of 

rise of 3.4 m sec"1 (11.15 ft per min) with a probable error in the 
order of 12%. If the elevation angle 6 is assumed to be determined to 

within 0.5 degrees, it follows from equation (A2) that the total prob 

able error in w is in the order of 17%, 

SUGGESTED PRACTICAL PROCEDURE 

The following steps are suggested as a practical routine for 

obtaining winds in the lower 600 m: 

(a) Fill the pilot balloon with helium using a standard filling 

mechanism {for example, Atmospheric Environment Service of 

Canada, Cat. No. 0026-0422 Type B). 

(b) Release the balloon from a location with a reasonably 

unobstructed view of the sky. 

(c) After 1-3 minutes have elapsed measure the vertical angle $ 

in terms of the slope, s, in percent by means of the clino 

meter. If s exceeds 150% or if the clinometer does not have 

a slope scale, the angle $ will have to be read in degrees and 

cot <? determined from a table. (A small table of values of 

For times shorter than 1 minute estimated values of the horizontal 

velocity of the balloon may be somewhat low owing to strong vertical 

shear which normally exists over forested terrain. A longer time 

interval results in a better estimate of winds aloft but the balloon 

may be readily lost to the unaided eye if a period of much more than 

3 minutes has elapsed. 



10 

u 

1= 

s-

w \ m sec 

10-

u 

c 

0) 

cr 

01 

w ̂ m sec -o 

10-

LTI 

m sec1 

Figure 2. Frequency distributions for pilot balloon rates of rise 

at Peshu Lake, July, 1973 for the layers (a) surface - 300 m, 

(b) 300 - 600 m, and (c) surface - 600 m. 
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Figure 3. Frequency distributions of the logarithms of pilot balloon 

rates of rise for Che same data as in Figure 2, 



cot <■> for selected values of $ may be taped to the inside of 

the clinometer case to assist in this calculation.) 

(d) Immediately sight on the balloon with the compass and take a 

reading, a, which is equivalent to the back bearing from the 

balloon to the observer. This may be accomplished by aligning 

the orienting arrow with the south end of the compass needle. 

The angle a is the average direction from which the wind is 

blowing. 

(e) If the angle <j> has been measured in terms of the slope, s, 
use Che formula 

v[m sec"1] = 340/s (4) 

or v[miles per hour] = 760/s (5) 

to obtain the average horizontal wind velocity. 

If $ has been read in degrees, use 

v[m sec ] - 3.4 coti}> (6) 

or v[miles per hour] = 7.6 cot$>. (7) 

CONCLUSIONS 

An inexpensive and simple technique is available for measuring 

the average horizontal wind velocity in the lower 600 m of the atmos 

phere. The technique uses 30-g pilot balloons filled with helium. 

Final position of the balloon is measured by a clinometer and a compass-

instruments which are readily available to most forestry personnel. 

The time interval over which the observation is taken need not be 

determined accurately except insofar as it determines the depth of 

the atmosphere to which the resultant average wind velocity pertains. 

Overall accuracy of the technique is probably in the order of 17%. 

Within the lower 600 m of the atmosphere the technique is only 

slightly less accurate than the single theodolite technique, with both 

procedures suffering from the same major source of error. This major 

source of error is the assumption that the rate of use of the balloon 

is a constant. In fact, the rate of ascent of pilot balloons is quite 

variable, both during flight and from one flight to another. This 

variability in rate of ascent is caused by a non-constant drag coeffi 
cient. 

Results from pilot balloon flights made during July, 1973 over 

a jack pine forest suggest that the rates of rise of pilot balloons 



within the surface-to-600-m layer of the atmosphere from one occasion 

to another are distributed in a log-normal fashion with a mean of 

3.4 m sec 1 and a probable error in the order of 12%. 

Because the procedure proposed in this paper is suggested as a 

practical approach, the author would appreciate feedback on impressions 

of the usefulness of the technique from any districts that test the 

procedure in the field. 
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APPENDIX 

From principles of dynamic similarity it can be shown (Middleton 

and Spilhaus 1953, p. 170) that the rate of rise of a balloon is given 

by a formula of the form 

w = bL" , (Al) 

(L + B)1/3 

where B is the weight of the balloon plus load (if any) and L is the 

so-called free lift (i.e., the weight that the inflated balloon and load 

will just support without sinking or rising). Values for the constants 

b and n must be determined by experiment. For pilot balloons n— 0.5 

and b •■ 1.46 when w is in units of m sec"1 and helium is used as the 

inflating gas. In actual fact the complete equations describing a bal 

loon's response are quite complex (Fichtl 1972), but for averaged 
velocities over an appreciable depth of the atmosphere, the simplified 

reasoning resulting in equation (Al) is acceptable. 

By taking differentials of equation (Al) the relative error in 

rate of rise resulting from filling procedures and balloon weight varia 
bility is given by 

dw = dL ( \_ - 1 \ - dB (A2) 

w ^ 2L 3(L + B) J 3(L + B) 

where n^is assumed equal to 0.5. For latex pilot balloons typical values 
are B - 32 g, L : : 144 g, and maximum likely values are dL ^ 5 g, 

dB — 1 g. Substitution into equation (A2) yields |dw -"^ 0.01; that 

w 

is to say, normal filling procedures and variability in balloon weight 

will not likely contribute more than 1% to the variability in the assumed 
rate of rise. 

Changes in ambient air density with height and differences between 
balloon temperature and ambient air temperature will also result in 

variations in the rate of rise. However, such variations will generally 
be less than 1 or 2% in the lower 600 m of the atmosphere (Middleton 
and Spilhaus 1953, p. 172). 

In the derivation of equation (1) it was assumed that the drag 

coefficient is constant both with altitude and from one occasion to 
another. The drag coefficient, C , is defined by 

Fd =ip v2' 



where Fd is the drag force on the balloon and p is the density of the 
air. However, the drag coefficient is a function of the Reynolds 
number, Re, defined by 

Re = 

where D is the diameter of the balloon <D = 0.68 m) and v is the 
kinematic viscosity of air (v - 1.5 x 10"5 m2 sec"1). If one plots 
Cd versus Re, then for spheres placed in wind tunnels, Cd is relatively 
constant below some critical value (Re)c and drops abruptly as Re 

increases beyond (Re)c. For smooth balloons in the atmosphere the 

transition is not quite so abrupt at (Re)c and cd is not so constant 
as (Re)c is approached (Scoggins 1965). For balloons with D < lm 
(Re c -2 to 3 x 10\ Furthermore, (Re)c depends to some extent upon 
ambient turbulence levels. MacCready (1965) found that small balloons 
(D < 1 m) tend to have a relatively constant Cd. However, substituting 
typical values in equation (A4) gives a Reynolds number of 1.4 x 105 
a figure which is uncomfortably close to the critical Reynolds number 
for smooth balloons. One concludes, therefore, that variation in a 
Pilot balloon s rate of rise occurs both during flight and from one 
occasion to another primarily as a direct result of variations in the 
drag coefficient. 

Aerodynamically induced lift forces result in horizontal oscil-
",7S superimposed on the average path of the balloon (Fichtl et at. 
1972). These oscillations affect only the fine scale resolution of the 
wind rield, however, and are not significant for wind velocity deter 
minations over intervals of time greater than 20 seconds (Johnson 
196s Barnett and Clarkson 1965). 

A final source of variation in the rate of rise of a balloon is 
the presence of vertical motions of the air itself. In general sink 
ing motions are negligible, except in the vicinity of obstacles' ' 
updraits are a more serious problem and if a balloon is observed 
entering the base of a cumulus cloud, then data from the flight are 
suspect. Two or three flights with consistent determinations should 
be used to confirm results if the presence of vertical air currents 
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