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ABSTRACT 

This paper describes briefly the principles of hypothesis 

testing and its associated error types, namely, type I and type II 

errors. The important role that sample size plays in the probability 

of committing either type of error is pointed out. A procedure that 

is easy to read and follow is described for determining the required 

sample size for most experimental purposes. The procedure is out 

lined first for cases in which the probability of obtaining a confidence 

interval less than or equal to a specified length or the probability of 

detecting a false hypothesis is not specified. A similar procedure is 

given for cases in which the probability of not exceeding a specified 

confidence interval length or the probability of detecting a false 

hypothesis is specified. 

Several examples are worked out in detail to clarify the pro 

cedures of sample size estimation. Three tables provide the required 

sample size for a wide range of allowable errors and coefficients of 

variation and for the more commonly used significance levels. It is 

hoped that most researchers in forestry and related fields will find 

the procedures outlined here easier to apply and remember than those 

given in statistical textbooks. 

RESUME 

Les auteurs decrivent brevement les principes du test d'hypo-

these et des erreurs types allant de pair: 1'erreur type I et l'erreur 
type II. Ils insistent sur le role important que joue la grandeur de 

l'echantillon sur la probabilite de faire intervenir l'une ou l'autre 
erreur type. Ils decrivent une methode, facile a lire et a suivre, qui 

pennet de determiner la grandeur de l'echantillon pour la plupart des 

experiences. La methode tient compte d'abord des cas ou la probabil 

ite d'obtenir un intervale de confiance plus petit que ou egal a une 
longueur speciflee ou ou la probabilite de detecter une fausse hypo-
these n'est pas donnee. Les auteurs suggerent une methode semblable 
dans les cas oG la probabilite de ne pas exceder une longueur speci-
fiee d'intervale de confiance ou ou la probabilite de detecter une 
fausse hypothese est specifiee. 

Plusieurs exemples detailles eclairent la methode d'estima-
tion de la grandeur de l'echantillon. Trois tableaux donnent la gran 

deur require d'echantillon pour une large gamme d'erreurs acceptables 
et de coefficients de variation et pour les niveaux les plus commu-
nement utilises de signification. La plupart des scientifiques fores-

tiers et de champs d'activites connexea devraient trouver que les 

methodes decrites ici seront plus faciles a appliquer et m&noriser que 

les methodes fournles dans les manuels de statistique. 
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INTRODUCTION 

Biologists, foresters and other research professionals, when 

carrying out an experiment, are always confronted with the problem of 

determining sample size or the required number of replications. Sample 

size estimation is such a basic problem that it is discussed in almost 

every statistical textbook. Yet in practice many professionals find 

the procedures outlined in these textbooks ambiguous and difficult to 

apply. The purpose of this paper is to provide a procedure for deter 

mining sample size for experimental purposes that is easy to read and 

follow. Formulae for estimating sample size are explained and accom 

panied by detailed examples. 

Two basic purposes of sampling are to estimate population 

parameters and to test assumptions about: them without examining the 

entire population. One could make an intuitive assumption that, as 

sample size increases, the more the sample will resemble the population. 

However, this is true only up to a point, and that point depends on the 

inherent variability of the characteristic being estimated. Sampling 

too many units for a characteristic that varies only slightly throughout 

the population can be wasteful; on the other hand, sampling too few 

units for a highly variable characteristic would likely result in 

incorrect conclusions. 

Sample size plays an important role in determining the prob 

ability of drawing wrong conclusions on the basis of the sample. Thus 

it is desirable first to examine briefly the principles of hypothesis 

testing and the role that sample size plays in it. 

BACKGROUND INFORMATION 

Let us assume that earth is the only planet capable of sus 

taining life, that artificial sweeteners will cause cancer in human 

beings, that Canadians prefer pine to spruce for Christmas trees, 

that fertilization always improves growth of forest stands, or that 

planting methods have no effect on tree survival and growth. These 

assumptions or contentions are usually based on some preliminary obser 

vations of what appear to be facts, but may or may not be true. In 

statistical jargon, the contentions are referred to as hypotheses. The 

test of a hypothesis is the comparison of a contention with newly and 

objectively collected facts, i.e., with a sample. If the sample is 

shown to support the contention, the hypothesis is accepted; if it 

does not, the hypothesis is rejected. 

Since a sample contains only a fraction of the population, 

conclusions drawn from the testing of a hypothesis are not always 

correct. That Is, one of two types of errors may be committed: 

either a hypothesis that is indeed true is rejected, or a hypothesis 



that is in fact false is accepted. The former is termed a type I 

error and the latter a type II error. This may be summarized as 

follows1: 

Note that the two kinds of errors cannot be committed simultan 

eously. If a hypothesis is accepted, only a type II error can be 

committed. If the hypothesis is rejected, only a type I error can be 

committed. (Note that neither type of error will necessarily be 

committed.) Obviously, one would like to minimize these decision 

errors, or at the very least, be aware of the probability of committing 

them in hypothesis testing. Minimizing such decision errors is indeed 

a major problem because, for a given population and a given sample 

size, any attempt to decrease the risk of one error type is likely to 

increase the risk of incurring the other. The only way to decrease 

both is to increase the sample size, and of course this is not always 

possible. 

In hypothesis testing, the probability that a type I error 

will occur is called the significance level and is denoted, here 

after, by the Greek letter alpha (a). In order to minimize bias, 

this probability should be decided upon before any samples are taken. 

For example, if a 5% significance level is used to test a certain 
hypothesis, then there is a 5% chance that, on the basis of the sam 

ple, the hypothesis will be rejected when it is really true; con 

versely, there is a 95% chance that, on the basis of the sample, a 

true hypothesis will be accepted. In practice, 5% and 1% signifi 

cance levels are used most commonly, although in many cases 10% is 
considered adequate. 

For any given sample size, the danger in making a as small as 
possible— which on first glance would seem to be the thing to do-

is that as a is decreased, the chance of committing a type II error 

or not detecting a false hypothesis, is increased. The probability 

of making a type II error is denoted, hereafter, by the Greek letter 
beta (6). 

In general, the power of a test is the probability that it 

will reject a hypothesis which is indeed false. Therefore, the more 

1 After Li (1964). 



powerful the test, the more likely it is that a false hypothesis will 

be refuted. The two types of errors are usually controlled by de 

ciding first on an acceptable significance level and then increasing 

the sample size until the power of the test is acceptable. 

In most statistical textbooks, the section dealing with sam 

pling methods usually includes a statement to the effect that "it is 

assumed that the population follows the normal distribution and the 

sample is taken at random." Such a statement discourages most people 

for two reasons. In the first place, they do not know how the popula 

tion is distributed; in the second place, for various reasons, it is 

simply impractical to take a strictly random sample. Actually, in most 

circumstances this is not a major problem. One of the most powerful 

theorems in statistics, the Central Limit Theorem, makes it possible 

to justify use of the sample mean as an estimate of the population 

mean, no matter how the population is distributed, as long as it has 

a finite variance and the sample size is large enough. Just how large 

is large enough will depend on how close to normally distributed the 

population is. In rare cases the parent distribution may be such 

that the distribution of sample means may not converge to normal at 

all. In other cases, although the Central Limit Theorem will apply, 

sample size estimation based on the normality assumption may not be 

very efficient (Alvo 1977). However, for most natural populations the 

normality assumption will be satisfied for sample sizes of, say, 25 

or larger. This is not to say that a sample size of 25 is large enough 

to satisfy other requirements discussed in the following section. 

Samples should be random to include as much of the variation 

in the population as possible and to eliminate as much bias as pos 

sible. Therefore, if one has some knowledge of the population, one 

can ensure that a sufficient variety of units is included in the sample 

to offer a complete range of values for the measured characteristic 

(Cochran 1963). That is to say, as long as the sample has been made 

as unbiased or as representative of the population as possible, one 

need not worry whether it is strictly random or not. 

SAMPLE SIZE ESTIMATION 

The foregoing discussion should demonstrate the important role 

that sample size plays in the design of experiments. In this section, 

formulae and examples of sample size estimation will be given in three 

parts: first, the most common method in which the probability of 

2 The closer a distribution is to the normal, the faster the rate of 
convergence of the distribution of sample means will be to normality. 



obtaining a confidence interval <_ a specified length is not specified, 

but lies in the neighborhood of .5 or 50% (see Harris et al. 1948 for 

explanation), i.e., this method would give about a 50-50 chance of de 

tecting a false hypothesis; second, a slightly modified version of the 

first formula, and demonstration of a method in which the required 

sample size can be found from a set of tables; and third, formulae 

that incorporate the probability of obtaining a confidence interval j 

a specified length or of detecting a false hypothesis, together with 

examples. 

Part I 

To calculate sample size (n), estimates of the following five 

values are needed: variance, length of confidence interval, signifi 

cance level, degrees of freedom, and a t-value. Although some of these 

values may seem impossible to obtain at first, after some consideration 

reasonable estimates can usually be obtained. 

1, Variance (s2). As indicated earlier, an approximation of 

the variability of the characteristic being estimated is 

necessary for sample size determination. For normal populations this 

can be obtained by one of the following methods: 

a) from knowledge of the variance of this characteristic on 

the same population or on one that is similar 

b) by presampling, i.e., by taking a small random sample of 

the population of size nj, and calculating the variance 

of the sample as: 

where: y = the value of the measured characteristic on an observation 

nj = the number of observations in the sample, 

and using this sample variance as an estimate of the population variance 

If the final sample size (n) calculated on the basis of this estimate 

is less than or equal to nj, then nj is large enough and no additional 

sampling is warranted. However, if n is greater than n:, only (n - nj) 

additional observations will be needed to complete the survey. This 

method is quite reliable, but not always possible. 



c) by using the range. If the population is sufficiently large, 
e.g., if it contains more than 500 elements, and Lf the 

range of values can be estimated easily, then a crude esti 

mate of variance may be calculated as: 

s2 = (range/4)2 

In the case of binomial populations (enumerative - belonging to 

one class or another), any of the above three methods may be used. How 

ever, for the second method, the sample variance would be calculated as: 

.2 _ 
■ p CI-p) 

where: p is an estimate of expected percentage, or proportion, of 
successes in the population. 

A success may be a germinated seed, a dead insect, a stocked 

quadrat, presence of a disease, etc. The closer the estimate of p is 

to either 0% or 100%, the more accurate its estimate should be. In the 
absence of any reasonable estimate, p = .5 or 50£ may be used to obtain 
the largest possible variance, and this will result in the largest pos 
sible sample size. 

2. Confidence interval (±d). As mentioned earlier, one must be 

willing to accept some margin of error in the sample esti 

mate. In scientific research, this margin is usually somewhat arbi 

trary, but careful consideration should be given to the way in which 

the results of the experiment are to be used and the possible conse 
quences of a sizeable error. The interval in which the sample esti 

mate is expected to be is the value of the population parameter plus 

or minus d. For example, if a confidence interval within 10% of the 
estimate appears reasonable, and the population parameter is estimated 
at 50, the confidence interval would be 50 ± 10%, or between 45 and 55, 
and d would be equal to 5. 

3. Significance level (a). The significance level, a, is the 

risk one is willing to incur that the sample estimate will 

be outside the confidence interval. This is the probability of com 
mitting the type I error discussed earlier. It was also mentioned that 
a-values of 5% and 1% are most common. 

*" Degrees of freedom (df)■ Degrees of freedom can be defined 
as the number of linearly independent comparisons that can 

be made from a set of observations. For most purposes, this is the sam 
ple size less the number of parameters being estimated. For the simple 
t-test, however, this is one less than the sample size. This value is 

used only to locate the t-value from the t-distribution table, and is 
critical only for small samples (fewer than 20 observations), or for 
confidence levels of less than 2%. Otherwise, it is sufficient to use 
n = df = <■>. 



5. t - Value (t, ,..). This value is found in a table of 
(ot,df) 

t - values (Appendix A). Each column of this table is for 

a given significance level. The rows correspond to different degrees 

of freedom. Note that if df is greater than 20 and a = 5%, then 

^(.05, «>) = 2.0. In practice, this value can be used without changing 

the sample size appreciably. 

Now, with the estimates above, the following formula can be 

used to estimate the required sample size. Note that the standard 

deviation and confidence interval must be based on the same units, 

(i.e., metres, feet, proportions, percentages, etc.) : 

t2 S2 
(a, df) 

n = ■ (1) 

d2 

There are four common cases in which the above may not give the 

best estimate of the required sample size: 

a) If the size of the population is relatively small (finite) 

and the calculated sample size n exceeds 10% of the population size N, 

then a finite population correction factor is applied to provide the 

final sample size estimate as: 

N 

b) If the calculated sample size is small (less than 20), then, 

as stated earlier, it is necessary to estimate degrees of freedom to ob 

tain a t-value. Because this is only an estimate, it may be best to re 

calculate the formula, using (n-1) degrees of freedom for the t-value. 

The iterative procedure (changing n and t-value) is continued until the 

n-values converge, i.e., until the formula approaches equality. This 

is necessary, because t-values change rapidly for small sample sizes. 

The number of iterations necessary will depend entirely on the close 

ness of the initial estimate to the required sample size. 

c) If the population is highly heterogeneous, or if some por 

tions of it are more costly to sample than others, it may be necessary 

to u9e stratified sampling. Then it is necessary to decide on the size 

of sample to be taken from each stratum. This is usually done in one 

of three ways: 1) samples of equal size may be taken from each stra 

tum, 2) sample size may be made proportional to the size of each 

stratum (proportional allocation), or 3) larger sample size may be 

taken in a stratum if: i) the stratum is larger, ii) the stratum is 

more heterogeneous internally, and/or iii) sampling is cheaper in that 

stratum (optimum allocation). For further discussion on sampling alloca 

tion see Snedecor (1966, p. 504-512) and Cochran (1963, p. 90-98). 



For most purposes, it is sufficient to solve the sample size formula (J) 
for each stratum. 

d) In most surveys, estimation of more than one characteristic 
is considered. In such cases, the sample size may be calculated for 
the most important and most heterogeneous characteristics. If the two 
sample sizes do not differ greatly, the larger one can be used. If they 

do differ considerably, it may be possible to take the larger sample and 
measure the less heterogeneous characteristic(s) on a sub-sample only. 

If this is not possible, then the experiment may be broken up into 
separate surveys. 

If, because of limited resources, the sample size may not exceed 
a maximum value, it is recommended that the length of the confidence in 
terval be calculated from such a sample size as: 

d = 

t2 s2l 5 
(«, df) 

n 

(3) 

If d is too large for the experimental needs, then either a 
larger sample should be taken or the experiment should be discarded. 

The following examples are given to clarify sample size esti 
mation. 

Example 1: A pulp and paper company has applied for a cutting 
license and an operational cruise must be conducted on the 100 hectare 
site to determine the merchantable volume/hectare of jack pine. The 
company needs to know how many plots (strips of 10 m wide and 40 m long, 

i.e., .04 ha) must be cruised to obtain a reasonable volume estimate for 
the entire site. Obviously, it is necessary to solve the sample size 

t2s2 
formula (n = ) for n. 

The first problem is to estimate the variability of volume 
throughout the entire area. A forester recalls conducting a similar 
cruise on a similar jack pine stand several years earlier in which 200 
plots (.04 ha) were taken. On that cruise, the plot volumes ranged 

from 6m to 24 md and averaged close to 16 m3. From this information, 
a rough estimate of plot variance would be: s2=(R/4)2=(18/4)2=20.25. 

The next step is to decide on a confidence interval. Because 
the volume estimate should be very close to what the company will ac 
tually harvest, it is decided that to be off by more than ± 10% of the 
mean volume in the final estimate, i.e., d = .10 x 16 = 1 6 m3 is un 

acceptable. With a 5% significance level and a sample size greater 

than 20; t will be approximately equal to 4. After these values have 



been substituted, the formula becomes: 

4 x 20.25 

n = = 31.64 

(1.6)2 

From this, it is concluded that 32 plots (-04 ha) should be cruised for 

a reliable volume estimate. Because the total area to be sampled is 

far less than 10^ of the stand, there is no need to apply the popula 

tion correction factor. 

Example 2. An entomologist needs to determine the spruce bud-

worm density in a specified area. The standard sampling unit is a 45 

cm branch tip taken from half way down the tree. The question is, how 

many branch tips should be taken to obtain a reliable density estimate 

for this area? The budworm density of a similar area was found to be 

30 larvae/branch tip with a sample variance of 400. 

Because of inherent variability and other factors affecting 

population density, it was decided that an error of ± 3 insects/branch 

tip would be quite acceptable at the 5% significance level. Since the 

sample size is expected to be greater than 20 branch tips, t2 will be 
equal to 4. The required sample size will be: 

t2s2 4 x 400 
n = = — ■ • 178. 

d2 9 

However, owing to recent budget constraints, it is known that no more 

than 50 branch tips nay be sampled in each area. Then, using this sam 

ple size for n, the formula is solved for d as: 

4 x 400 

50 = or d2 - 32 or d = ± 5.7 = 6. 
d2 

Because a confidence interval of 24-36 insects/branch tip is still ac 

ceptable under the circumstances, the project is continued. 

Example 3: A forest pathologist has been assigned to study the 

impact of volume loss due to root rot in the mixedwood forests of 

northwestern Ontario. Several recent articles have indicated volume 

and growth loss of up to 30% in similar areas. Intensive sampling for 

root diseases is quite expensive since it involves root excavation, 

washing, cutting, transportation and laboratory analysis. Previous 

studies in this area have involved sampling of hundreds of trees. Be 

cause of resource limitations, the present researcher would like to 

take as small a sample as possible, yet be able to evaluate the loss 

due to root rot with a reasonable confidence. Because he is at a loss 

to where to begin, he consults a biometrician. 



It is suggested that the researcher plan his work in several 

stages, concentrating first on the most vulnerable species and on trees 

of commercial size. On this basis he decides to work first on balsam 
fir trees >_ 20 cm in diameter. Having defined his population of in 
terest, he is asked if he has any idea what the intensity of root rot 
might be in merchantable-sized balsam fir trees. He states that he 

would not be surprised if up to 90% of the trees were affected by root 
rot. He claims he would be satisfied if he could estimate the percen 
tage of infected trees within ± 5% and with 95% confidence. 

To be on the safe side, we will assume that the intensity of 

infection is 50% or p = .5. As stated earlier this will result in 
maximum variance for a binomial population as: 

s2 = P (1-p) * .5 x (1-.5) - .25. 

Then the maximum sample size required may be calculated as: 

22 x .25 1 
n - - = A00 

(.05)2 .0025 

However, owing to the high cost of sampling it is suggested that the 
researcher first take a presample of perhaps 50 trees and then re 

calculate his required sample size. Suppose that 35 of the 50 trees 
were classified as severely infected by root rot, i.e., p ^ 35 f 50 

; .7 and s = .7 x (1-.7) - .21. In the meantime, the researcher 
discovers that his criterion for classifying the extent of root rot 
is somewhat subjective so he decides that the confidence interval of 
± 5% is perhaps too rigid for such a criterion. Therefore, he raises 
his confidence interval to i 10%. Now he can recalculate the required 
sample size as: 

4 x .21 

n ■ = 84. 

CD2 

Since he has already taken a sample of 50 trees, he needs to take only 
34 more. For other tree species in the stand that are less vulnerable 
to root rot, or for which the incidence is less frequent but more uni 
form, a smaller sample size is required, and this may be calculated in 
a similar manner. 

Example 4: Two years ago, a cut-over area of 50 hectares was 
planted with 100,000 white spruce seedlings. Half of the site was 
scarified, and the seedlings were spot fertilized at planting with the 
equivalent of 100 kg/ha NPK. The other half of the site was used as 
a control area. The purpose of the experiment was to evaluate the 
effects of scarification and fertilization on the early growth of a 
white spruce plantation. 
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The researcher has no idea of the magnitude and the variability 

of growth differences between the Created and untreated plantations but 

does feel that growth should be higher in the fertilized area. Never 

theless, he would like to examine a sample large enough to detect a 

difference in growth as low as .2 g oven-dry weight of current foliage 

with 99% confidence. 

Translating his requirement into the language of hypothesis 

testing, we say that he would like to test the hypothesis, "there is 

no difference in growth of trees between the fertilized and the control 

areas". He will accept this hypothesis if the sample difference is 

less than .2 g. Because his conclusion depends on this one sample, he 

wants to be 99% sure that he accepts the hypothesis if it is in fact 

true. Therefore, he chooses the significance level, a, or the probabi 

lity of making a type I error of 1%. In this example, he does not 

specify the probability that the resulting confidence interval will be 

< .2 g, or the probability of detecting a false hypothesis; therefore, 

he takes about a 50-50 chance of accepting the hypothesis when it is 

in fact false (see Harris et al. (1948) for explanation). 

Under the conditions cited above he decides to take a presample 

of 25 seedlings, 10 from the control area and 15 from the treated 

area. The current foliage from the two sets of seedlings was clipped 

and oven-dried. The preliminary analysis showing the calculation of 

sample mean difference and an estimate of pooled variance is given in 

Table 1. The t-value for the 1% significance level and 23 degrees of 

freedom is 2.807. Therefore, the sample size formula becomes: 

(2.807)2 x .351 
n = ■ 70. 

(.2)2 

Since 10 and 15 seedlings were presampled from the control and treated 

areas, 60 and 55 more seedlings need to be sampled from each respective 

area. 

Part II 

The formula for calculating sample size used in the examples 

above may be expressed in a slightly different form as follows: 

n = 

CAE) 

/s2 
where: CV = coefficient of variation in percent = ( ) x 100 

mean 
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Table 1, Preliminary analysis of a sample of oven-dry weight of foliage from 10 and 15 

vhite spruce seedlings ln a control and a treated area, respectively. 

Seedlings 

Current yield, oven-dry weight (g) Combination Explanation 

Treated 

Control (y . area (y 

-1.29 
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AE = allowable error or confidence Interval 

d 
as percent of the mean = ( ) x 100 

mean 

and other symbols as defined earlier. 

The main difference between the formula above and the previous 

one (equation 1) is that an estimate of the mean as well as the vari 

ance Is required to calculate the coefficient of variation or relative 

variability. An estimate of the mean may be obtained in a manner 

similar to that in which the variance estimate is obtained, i.e., 

either from knowledge of previous surveys on the same or similar popu 

lations or by presampling. The main advantage of equation 4, however, 

is that the required sample size may be tabulated for a wide range of 

relative variabilities (coefficients of variation) and allowable errors 

for each of the common significance levels. Three such tables were 

constructed and are given in Appendix B. These tables provide the re 

quired sample size for significance levels of 1%, 5% and 10%, respec 

tively. 

In addition to providing a required sample size, these tables 

might also be used to examine the effect of changes in sample size on 

the allowable error and vice versa for any given situation. If inter 

polation between table values is necessary, remember that the relation 

ship between sample size and coefficient of variation and allowable 

error is not linear. 

To demonstrate the use of equation A it is best to rework two 

of the foregoing examples. In example 1, the estimates for plot mean 

and variance were 16 m3 and 20.25 respectively. The coefficient of 

variation is calculated as /20.25 x 100 or 28,13%. Using Table B2 for 

16 

the 5% significance level, we locate the required sample size for 10% 

allowable error and 25% and 30% coefficient of variation, as 27 and 37, 

respectively. The required sample size for CV% of 28.13% will be 

roughly half way between these two values, or 32, as was calculated 

before. If an allowable error as large as ± 20% is acceptable, Table 

B2 indicates that the required sample will be between 9 and 11, or 

about 10. On the other hand, if the allowable error may not exceed 

± 5%, then the required sample size will fall between 98 and 138, say 

120. If the significance level is changed to 1%, Table Bl indicates 

that the required sample size for ± 10% allowable error falls between 

46 and 64, or about 56, and for 15% allowable error, it will be be 

tween 22 and 30, or about 26, Thus, once an estimate of CV% is calcu 

lated, the required sample size for a range of allowable errors and/or 

significance levels may be found in the tables in Appendix B; or con 

versely, the effects that change in sample size will have on allowable 

error and/or significance level may be examined. 

For example 2, the estimate for mean number of insects/branch 

was 30 with a variance of A00. The confidence interval was specified 
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as. ± 3 insects for a significance level of 5%, We may calculate CV% as 

A'OO x 100 or 66.67% and M.% as ±_3 x 100 or ± 10%. Table B2 eives 
30 30 

sample sizes of 138 and 188 for 60% and 70% coefficients of variation, 

for 5% significance level. By interpolation, we obtain the required 
sample size of 178 as before. If we reduce the sample size to 50, 

Table B2 indicates that the allowable error will be 20% as calculated 

earlier. Now, if we assume that even an allowable error of 20% is suf 

ficient at a 10% significance level, then Table B3 indicates that the 

required sample size will be between 26 and 35, i.e., 30 branch tips/area 

The two examples above should indicate clearly the usefulness of equa 
tion 4 and Tables Bl-3. 

Part III 

The procedures and formulae for estimating sample size described 
so far do not specify the probability of obtaining a confidence interval 
< a specified length or the probability of detecting a false hypothesis. 
For instance, in example 4, the calculated sample size of 70 trees would 
be large enough to detect a true difference of > .2 g if it had existed 
approximately 50% of the time, and would detect no difference, if there 

was indeed no true difference, 99% of the time. Many times, however, 

the experimenter needs much stronger assurance that he will find a dif 
ference in his sample if it does exist in the population, and he is 
willing to take a much larger sample to get it. Three general cases 
for doing so are given below: 

1. Single population: The formula (Li 1964) for determining 
sample size required to estimate s single population parameter by a con 
fidence interval no greater than a specified length is: 

4 a2 

FB(n-l,v) (5) 

where: s2 and d2 are as defined earlier; Fa is the F-value found in 
Appendix C for a significance level, 1 degree of freedom for numerator, 
and (n-1) degrees of freedom for denominator; and FB is the F-value 
found in Appendix C for 6 significance level, (n-1) degrees of freedom 
for numerator, and y degrees of freedom for denominator, where v = the 
degrees of freedom for the variance estimate. As stated earlier a is 
the required level of significance, and g is the probability or the re 
quired degree of assurance that the length of confidence interval will 
not be exceeded. This formula is not as formidable as it looks To 
illustrate this, we will use it in reworking example 1. 

As in the case of equation 1 for small values of n, an iterative 
process is required to solve equation 5 because both Fa and Fft are de 

pendent on a value for n. You will recall that the objective1was to de 
termine the number of plots required to estimate the merchantable volume 
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of jack pine with i 10% accuracy and 95% confidence (i.e., a = ,05). 

Assume further that the company now wants to guarantee with fairly good 

assurance, say in three out of four chances or 75%, that the volume es 

timate does not exceed the specified interval of ± 10% (i.e., 6 - -25). 

You will recall also that the variance estimate of 20.25 was obtained 

from a similar cruise based on 200 plots. Therefore, \>, or degrees of 

freedom for the variance estimate s , is (200-1) or 199. This infor 

mation can be substituted in equation 5 as follows: 

4 x 20.25 

n = (.Ixl6)z F.05(l,n-l) F.25(n-l,199) 

or n = 31.64 x F^^^j * F.25(n-1,199) 

Note that 31.64 was the required number of plots calculated 

using equation 1, when the probability of obtaining a confidence in 

terval < a desired length was not specified. Because the company 

requires stronger assurances that the desired interval will not be 

exceeded, it will have to take a larger sample; in fact, it will have 

to increase its sample size by the product of Che two tabulated F-

values. 

To solve equation 5, we require a rough estimate for n, for 

example, 61. Now, the required F-values can be found in Appendix C. 

The F-value at the .05 significance level, and 1 and 60 degrees of 

freedom, is 4.0; the F-value at the .25 significance level, and 60 

and 199 degrees of freedom, is approximately 1.14. When we solve for 

a new n-value, the equation becomes: 

n - 31.64 x 4.0 x 1.14 a 144. 

The estimate was too small (the estimate and calculated value 

for n should be approximately equal); consequently, the same proce 

dure is followed using a new estimate closer to 144, say 141. If we 

use n = 141, the required F-values are F „,,. -.,„.. = 3.9 and 

F.25(140,199) * l<1> 

When we solve again for n, the new calculated value becomes: 

n - 31.64 x 3.9 x 1.1 - 136. 

This time the estimate was slightly high; chat is, the correct sample 

size will be between 136 and 141. However, as the F-tables indicate 

that F-values for degrees of freedom between 120 and » change only 

slightly, a sample size of 138 can be used and another iteration is 

not necessary. 
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2. Two populations: The formula Li (1964) for determining the 

sample size n for the confidence interval of the difference between two 

population means is: 

8 s2 

n " F H ?r, 9t F*(7v 2 «1 (6) ,2 0 (.1, 2n-z) p (,Zn-z, vj 

All variables have the same interpretation as was given in the case of 

a single population. The application of this formula will be demon 

strated by reworking example 4. 

In addition Co the requirements seated earlier, suppose that the 

researcher in example 4 also wants to be quite sure, with a probability 

of perhaps .95 or 19 out of 20 times, chat his sample size will be large 

enough to detect a true difference of greater than .2 g if it does Indeed 

exist. Because the presample was based on 25 seedlings from two differ 

ent areas, v will be (25-2) or 23. Therefore, for this example, 

S2 = .351 d2 = .04 a - .01 

B = .05 v = 23 

8 x .351 

which must be solved by trial and error. If n = 121 is used for the 

first trial, then (2n-2) is 240, and from the appropriate F-tables, 

F.01(l,240) ■ 6'79 and F.05(240,23) ' ^ 

and n = 70.2 x 6.79 x 1.79 * 853. 

Note that the first portion of the above equation, i.e., excluding the 

F-values, results in n = 70, the same sample size as determined earlier. 

However, when the probability of obtaining a confidence interval £ .2 or 

the probability of detecting a false hypothesis is specified at 95% 

(g = .05), a sample size approximately 12 times (the product of the two 

F-values, or 1.8 x 6.8 = 12.24) larger than before is required. 

The calculation above indicates that the first estimate for 

n = 121 was too low. Since the F-values between 120 and « degrees of 

freedom decrease only slightly, n = « may be used as the second esti 

mate, and this results in the minimum sample size required. The F-values 

for F „, -, , = 6.635 and F -_ , „-. = 1.753 are obtained from the 
.01 (1,») .05 (°=^3) 

F-tables and the equation becomes: 

n - 70.2 x 6.635 x 1.753 - 818. 
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Therefore, the required sample size lies between 818 to 853, 

but closer to the latter, say n = 850. That is, a random sample of 

850 seedlings must be taken from each of the control and treated areas 

to meet the researcher's strict requirements. 

If the researcher feels that he cannot afford to take samples 

as large as 850, he will have to lower his requirements by accepting a 

wider confidence interval, a lower significance level, a lower probabil 

ity for detecting a difference within the specified limits, or finally 

a combination of all three. To illustrate this, we will assume for the 

example above that the confidence interval is increased to t .4 g, the 

significance level a increased to .05, and the probability of detecting 

a difference greater than .4 g lowered to 90%, I.e., 6 = .10. Equa 

tion 6, when solved with the original estimate of 121, becomes: 

8 x .351 

~2 F.O5 (1,240) F.10 (240,23) 

or n = 17.55 x 3.89 x 1.58 

or n ~ 108. 

This indicates that the initial value of 121 was large. If n = 111 

is used as the second estimate, the solution of equation 6 for n 

gives: 

n « 17.55 x 3.91 x 1.59 = 110. 

Therefore, the final estimate for n will fall between 110 and 111, and 

will be rounded off to 110. Since 10 and 15 seedlings were already 

sampled from the control and treated areas, respectively, 100 and 95 

more seedlings will be needed from each respective area. 

3. Several populations: For experiments Involving more than 

two populations (treatments), the sample size formula is: 

n = (7) 

where a is the number of treatments requiring a sample size of n, f = 

the degrees of freedom for the error mean square in the planned exper-

ment; F_ ,c . is obtained from the F-tables as before: and 0 
p Ui\>; la (a,f) 

is obtained from the Q-tables given in Appendix D. Other terms are as 

defined earlier. Note that if the planned experiment is a completely 

randomized design, f = a (n-1); if the planned experiment is a random 

ized block design, f = (a-1) (n-1). 
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To illustrate the application of this formula, example 4 will 

be expanded still further. Assume that the researcher is planning an 

experiment to determine the effects of four levels of NPK fertilizer 

(0, 100, 200, and 500 kg/ha) on the early growth of white spruce plan 

tations in a completely randomized design. He would like to be able 

to detect growth differences, among the four treatments, of as low as 

.4 g (in oven-dry weight of current foliage) with .9 probability (6 = 

.10) and at the 5% significance level (a » .05). He believes that the 

growth variation for the four treatments should not be much greater 

than that for the two treatments he had sampled previously, so he as 

sumes that s2 = .4 will be a reasonable variance estimate to use. The 

information on hand is then 

s2 = .4 d = .4 v = 23 a = 4 

f - 4n-4 a = .05 B = .10 

If we use 31 as a first estimate for n, we obtain the values F infi20 23") 

■ 1.59 and Q .,.,, 1201 = 3.69 from the F and Q tables, respectively. 

Equation 7 now becomes: 

■4 x (3.69)2 x 1.59 , 
n = ^g - "-

This indicates that the first estimate was too low, and n = 51 is used 

for the second trial. Again, after we have obtained F . ,„- 2^, 

= 1.575 and 0 „- ,, ■*„„-, - 3.67 from the respective tables, and have 
.05 (4,200) 

substituted in the formula, equation 7 becomes: 

.4 x (3.67)2 x 1.575 „ 

The second estimate was quite close, i.e., the required sample size is 

between 51 and 53, but closer to 53. Therefore, 53 seedlings should be 

sampled from each of the four treated areas. With 53 replications, the 

researcher will have a 90% chance of detecting a growth difference as 

low as .4 g among the four treatments at the 5% significance level, if 

such a difference does indeed exist. 

Exercise: Suppose that the researcher in example 4 is planning 

to expand his fertilization experiment further on a white spruce plan 

tation. He would like to examine the effects of N, P, and K fertilizers 

on the early growth of seedlings measured in terms of oven-dry weight 

of current foliage as before. He is planning to use a completely ran 

domized 3-factor factorial design with 4 levels of N (0, 250, 500 and 

1000 kg/ha), 3 levels of P (0, 100, and 300 kg/ha), and 2 levels of K 

(100 and 200 kg/ha). He is interested in testing for the main effects 
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and 2-way interactions, but not for the 3-way interaction at this time. 

Several recent papers on similar studies indicate that .6 will be a 

reasonable pooled variance estimate with perhaps 50 degrees of freedom, 

i.e., s2 = .6 and v = 50. He would like to be able to detect differences 
in growth (due to the effects and interactions of fertilizers) of .5 g 
or greater (oven-dry weight) with 75% or three out of four times 

assurance, i.e., B = 1-.75 = .25. He is satisfied to use the 5% sig 

nificance level as before. How many replications/fertilizer combinations 

does he need to satisfy his requirements for this experiment? If the 

researcher's resources are limited to a maximum of 20 replications 

(trees)/fertilizer combinations, what magnitude of growth differences 

will he be able to detect? The answers to these questions are given in 
Appendix E. 

SUMMARY 

For determining sample size or the number of replications 

required for a given experiment, the researcher must approximate the 

variability of the population(s) being studied. He may do this by using 

his knowledge of, or experience with, similar populations, or by pre-

sampling. The researcher must also decide on a confidence interval, 

usually expressed as a percentage of the parameter being estimated. 

Once a significance level is decided upon, it is possible to obtain 

an estimate for the required sample size. This method provides modest 

assurance or about one out of two chances of detecting a false hypoth 

esis. If greater assurance is required, It must also be specified. 

However, one roust pay for this extra assurance with a much larger 

sample size. Formulae that incorporate the probability of obtaining 

a confidence interval less than or equal to a specified length or the 

probability of detecting a fale hypothesis are given for three general 

cases: a) a single population, b) two populations, and c) several 

populations. 

If an experiment requires modest assurance for detecting a 

false hypothesis and if the variance and confidence intervals are ex 

pressed as percentages of the mean, then tables may be used to deter 

mine the sample size. These tables may also be used to examine the 

effects of change In confidence interval or significance level on the 
sample size and vice versa. If the calculated sample size is larger 

than can be accommodated, the formulae and tables may also be used to 

determine the confidence interval of a sample size that can be accommo 

dated. However, if this confidence interval is not acceptable, the 

experiment should be postponed until more resources can be found. 

Regardless of the formula used to determine sample size, it is 

essential that the population(s) or experimental materials be as homo 

geneous as possible (by stratification and laboratory techniques), and 

that as much bias as possible be eliminated. It is also wise to keep 

in mind that 5% chances really do occur—about 5 times in every 100. 
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APPENDICES 



APPENDIX A 

Table Al. Percentage points of the t-distribution 
a 

a 
This table is reproduced, with the permission of Professor D. R. Cox, from 

Biometrika, vol. 32, p. 311. 



APPENDIX B 

Table Bl. Required sample size for a range of allowable errors and coefficients 

level of XX. 

of variation for a significance 

''Note that the minimum size required is 2 to provide at least one of freedom for statistical analysts. 

(Continued) 



APPENDIX B (Cont'd.) 

Table B2. Required sample size for a range of allowable errors ilnd coefficients of variation for a significance 

level of 5%. 



APPENDIX B (Concluded) 

Table B3. Required sample size for a range of allowable error and coefficients of variation for a confidence 

limit of 10%. 



APPENDIX C 

Table Cl. 
251, 101, 51, 2.51, II and 0.51 points for th« distribution of F 

Huacrotor df 

(cont'd) 



APPENDIX C (cout'd) 

F - cable 

C&Snt' 



' d) 



APPENDIX C (conc'd) 

F - table3 



Table Cl. 

APPENDIX C Cconc'd) 

F - table*1 

251, IOX, 5Z, 2,51, II and 0.53 peinte for the distribution of F 

Reproduced from "Tables of percentage points of the invented beta (7) distribution" by H. 

of the authors and. the editor. 

C. Thompson, Blonetrlka, 33:77 (1943) by 



APPENDIX D 

q - table*1 

(cant'd) 



APPENDIX D (concl'd) 

Q - table" 

4.65 4.79 4.92 5.04 5.14 5.23 5.32 5.39 5.46 5.53 5.59 5.65 5.70 

5.73 5.39 6.02 6.14 6.25 6.34 5.43 6.51 6)58 6.64 6-72 6.79 6.84 

4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 

5.69 5.94 5.97 6.f>9 6.19 6.2? 6.37 6.45 6.52 

4.54 4.68 4.81 4.92 5.01 5.10 5,18 5.25 5.32 

5.54 5.69 5.B1 5.92 6.02 6.11 6.19 6.26 6.33 

5.49 5.55 5.61 5.66 

6.59 6.64 6.71 6.76 

5-38 5.44 5-50 5.54 

6.39 6.45 6.51 6.56 

4.46 4.60 4.72 4.83 4.92 5.00 5.03 5.15 5.21 5.27 5.33 5.38 5.43 

5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6*36 

4.39 4.52 4.63 4.74 4.32 

5-27 5.39 5.50 5-60 5-69 

4.91 4.98 5.05 5.11 5.16 5.22 5.27 

5-77 5-84 5.90 5.96 6.02 6.07 6.12 6.17 

4.31 4.44 4,55 4.65 4,73 4.81 4.68 4.94 5.00 5.06 5.11 5.16 5.20 

5.13 5.25 5.36 5.45 5.53 5.60 5.67 5.73 5.79 5.84 5.89 5.93 5.98 

4.24 4.36 4.48 £.56 4.64 4.72 4.78 4,84 4.90 4.95 5.00 5.05 5.09 

5.01 5.12 5-21 5.30 5.38 5.44 5.51 5.56 5.61 5.66 5.71 5.75 5.79 

4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 4.84 4.89 4.93 4.97 

4.83 4.99 5-08 5.16 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 

a Feproduced from "Tables for Statisticians", Biometrika Vol. 1, 1954 with permission oE the editors, and original author, J.H. May. 



APPENDIX E 

Solution to the exercise: As in the last example, the sample 

size formula for several populations should be solved for n by trial 

and error. The information given may be summarized as: 

s2 - .6 d «■ .5 y = 50 

a = .05 B - .25 a = ? / = ? 

As stated earlier, a is the number of treatments to be com 

pared. In this case it will be equal to the product of the number 

of levels in each of the three factors, i.e., 4x3x2= 24. The 

value of / will be the degree of the error term of the analysis of 

variance. Using an initial estimate of, say, n = 5 replicates/ 

treatment, the value of / may be found by subtraction in the anal 

ysis of variance table as follows: 

i) degrees of freedom for total SS =4x3x2x5-1= 119 

ii) degrees of freedom for the main effect and the two-way 

interactions =3+2+1+6+3+2= 17. 

iii) / = error degrees of freedom = 119 - 17 = 102 

The sample size formula then becomes: 

.6 x Q .05 (24,102) F.25 (102,50) 
n = 

.25 

The equation above can be solved by substituting Q (24,102) -

5.15 and F „ (102,50) - 1,18 obtained from appropriate tables: 

.6 x (5.15)2 x 1.18 
n = - 75 

.25 

Obviously, the first estimate for n was too small. However, since both 

values of Q and F degrees of freedom larger than 120 decrease only 

slightly, no further iteration is necessary and the final estimate will 

be 75 replications (trees)/treatment combination. 

To answer the second question, n is set to 20 and the equation 

above is solved for d as: 

.5 

= + .96 g. 

That is, with 20 replications/treatment combination, only a difference 

of - 96 g or larger between treatment means may be detected with .75 pro 

bability and at the 5% significance level. 
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