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ABSTRACT

The purpose of this project was to bring together several new technologies
designed to improve the information needed to implement a decision sup-
port system (DSS) for deer yards. The DSS will be used to: (1) predict the
consequences of timber management activities on the supply of deer habitat
and the subsequent population responses, and (2) identify the most profit-
able locations for yard management activities such as browse plot creation
and emergency feeding. This study focused on the combined role that sat-
ellite remote sensing technologies, large scale sampling photos, and geo-
graphic information systems (GIS) can play in supplying needed deer yard
habitat information.

The several data sources were brought togetherona GIS platformaccording
to an optimized design. Several habitat supply models were developed and
tested in a cost/accuracy effectiveness analysis framework. Two existing
models were also tested in the same framework and compared with the new
models. The resulting models located and quantified suitable conifer cover
for browsing and thermal protection in winter. The models were applied to
the 500-km Loring Deer Yard located 50 km southwest of North Bay,
Ontario. Three levels of cover and accessible area were mapped and sum-
marized for three coniferous species groups considered to be of optimal,
suitable, or marginal deer yard habitat potential.

RESUME

Ce projet avait pour objectif de combiner plusieurs techniques nouvelles
afin d’améliorer I"information nécessaire pour appliquer un systeme d’aide
3 la décision (SAD) 2 la gestion des ravages de cerfs. Le SAD doit servir:
(1) a prévoir les répercussions des activités d’aménagement forestier surles
ressources en habitat des cerfs et, subséquemment, leurs populations; (2) a
reconnaitre les lieux les plus propices pour certaines activités de gestiondes
ravages, comme la création d’espaces de broutage et le nourrissage
d’urgence. Cette étude a é1€ axée sur le role que peuvent jouer les techniques
de télédétection satellitaire, les photographies d’échantillonnage a grande
échelle et les systemes d’information géographique (SIG) dans I’obtention
des données requises sur I"habitat des cerfs.




Les données de plusieurs sources ont été intégrées dans un environnement
de SIG suivant un plan optimisé. Plusieurs modeles pour les ressources en
habitat ont été construits et testés dans un cadre d’analyse de I’efficacité
tenant compte du rapport codt/exactitude. Deux moddles existants ont
également été testés dans les mémes conditions et comparés aux nouveaux
modeles. Les modeles mis au point permettent de localiser et de quantifier
lavégétation de conifere pouvant procurer aux cerfs nourriture et protection
contre le froid en hiver. Ils ont été appliqués au ravage de Loring, d’une
superficie de 500km?, situé a 50km au sud-ouest de North Bay (Ontario).

Trois niveaux de végétation et de terrain accessible ont été cartographiés et
résumés pour trois groupes de coniferes considérés comme offrant aux cerfs
un habitat potentiel optimal, suffisant ou marginal.
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INTEGRATION OF NEW TECHNOLOGIES FOR
DEER YARD ASSESSMENT

INTRODUCTION

The joint, long-term management of a deer yard in con-
junction with timber production poses many of the prob-
lems common to developing and implementing a general,
integrated management strategy. The planning procedure
requires models to evaluate long term timber capacity,
deer habitat suitability and supply, and a process to bal-
ance and reconcile conflicts that arise when multiple
demands are placed on a shared resource base. The models
must be able to predict the effects of proposed timber and
deer yard management practices on long-term supply and
sustainability. Considerable informationis needed todrive
the planning models. This project focuses on the collec-
tion of such information—characterization of suitable
deer yard habitat and food supply needed to sustain a
healthy deer population—within the context of timber
management and other developmental activities.

New technologies, such as satellite image dataprocessing,
the use of low-altitude sampling aerial photos, geographic
information systems and associated database systems, and
supply projection models, are rapidly evolving and con-
verging to process information in support of the planning
process. The data gathering systems attempt to take ad-
vantage of the synergistic relationship known to exist in
combining satellite image data, map data, aerial photos,
and field data. Careful design and optimization can yield
better information, greater reliability, and lower cosls.

The deer yard habitat assessment process offers an excel-
lent opportunity to investigate the advantages of these
advances for several reasons: namely, (1) quantitative
information is clearly needed for assessment, monitoring,
modeling, and resource management planning purposcs,
(2) currently available information is lacking or unsatis-
factory, (3) new methods have been found to provide
better information, and (4) optimized, multistage designs
may reduce the cost or increase the reliability of supplied
information.

More specifically, the objective of the project was to bring
together several new technologies Lo improve the infor-
mation needed to implement a decision support system
(DSS) for deer yards that integrates dynamic habitat
supply and population simulation models. The DSS will
be used to: (1) predictthe consequences of timber manage-
ment activities on the supply of deer habitat and the
subsequent population responses, and (2) identify the
most profitable locations for yard management activities
such as browse plot creation and emergency feeding. The

key habitat requirements of deer have been established as
thermal cover in winter and access to browse. Coniferous
forest cover, especially by that of some preferred species,
and nearby openings for browsing are used to express the
habitat needs (Voigt 1992).

This study focused on the combined role that satellite re-
mote sensing technologies, large-scale sampling photos
(LSP), geographic information systems, linked databases,
and global positioning systems (GPS) can play in supply-
ing deer yard habitat information.

THE DEER YARD MANAGEMENT
PROBLEM

The white-tailed deer (Odocoileus virginianus) is a fea-
tured species by policy throughout Ontario (Bellhouse
1993). The Ontario Ministry of Natural Resources (OMNR)
has recently developed a population simulation model
(Broadfoot and Voigt 1992) that is used by biologists to
define harvest levels to meet public demand and maintain
deer at densities consistent with the carrying capacity of
the habitat (i.e., the number of deer a habitat can support
on a sustained basis). Winter carrying capacity, a critical
driver of the population simulation, is currently assessed
by measuring browse supply in the ficld, This process is
expensive and provides only a snapshot of browse supply
at a specific time. Models that provide inexpensive esti-
mates of browse supply across a yard, and which can be
projected through time and account for changes in habitat
conditions related to forest succession and human activi-
ties (e.g., timber harvest), are needed. One such model,
developed and described by Broadfoot et al. (1994),
estimates browse supply using the OMNR'’s Forest Re-
source Inventory (FRI) attribute data and associated bio-
mass estimates.

Carrying capacity is a function of the biomass of browse
per hectare andits related accessibility todeer. Accessibil-
ity is primarily governed by snow sinking depth. The
amount and dispersion of conifer cover provides thermal
protection and intercepts snow, which, in turn, facilitates
access 10 browse along the borders of stands and escape
from predators. Users currently depend on FRI maps for
their deer yard habitat data. The information, however,
has been found unsatisfactory in several important re-
spects: (1) the methodology was not designed for stand-
level assessment and thus may be inaccurate for this
purpose, (2) the FRI does not characterize the quantity of
conifer cover in the understorey, (3) the FRI provides no
direct measure of browse data or the dispersion or spatial




distribution of conifer cover within the stand, and (4) the
FRI data can be 10 to 15 years out-of-date.

The model mentioned above and described by Broadfoot
ctal. (1994) is currently used to estimate carrying capac-
ity, but, because of its reliance on the FRI, has some
shortcomings. First, the model is nonspatial, which means
the user must rely on FRI stand-level averages; a break-
down of conifer clusters or spaces within the FRI polygon
is lacking. In order to apply the model, the user is forced
to make some general assumptions about browse accessi-
bility based on percent conifer cover, and about the
distribution of the conifer cover in the stand. The current
model has assumed uniform, random, and clustered distri-
butions that yield widely divergent results. Second, the
conifer species and their proportions may be inaccurate or
missing. This makes it difficult to evaluate the quality of
the cover and the amount of browse.

A project, completed in 1991 for the Central Region
Science and Technology by Dendron Resource Surveys
Inc., evaluated the role of large scale acrial photos, photo
interpretation of conifer cover, and mapping in a GIS
environment to produce information on deer yard conifer
cover, browse, and accessible areas (Dendron Resource
Surveys Inc. 1991). The methodology provided excellent
deer yard information, particularly through its ability to
detect conifer cover beneath the main canopy and to
characterize the spatial distribution of the cover within the
stand (Fig. 1). However, in the limited test, the method
was found 1o be expensive. The cost advantages of larger
projects and the use of a sampling approach that focuses
on the most promising stands were not explored in the
1991 investigation. The least expensive current alterna-
tive would be to reinterpret existing FRI photos according
to species composition and crown cover density criteria
mostrelevant to deer yards. Alternatively, existing data in
the FRI database may be used to estimate crown cover
density, as was recently investigated in a related project
(Dendron Resource Surveys Inc. 1995). Although an
improvement over existing FRI data, the approach will
still not provide all the information required, especially in
relation to the spatial distribution of conifer cover and
understorey vegetation. Satellite data, shown to be effec-
tive in detecting conifer cover, may provide both the
needed update and some spatial distribution data.

General coverage photo interpretation and satellite data
options alone are not viable because of data limitations.
Similarly, the large scale photo option, if applied to large
areas, may not be feasible because of its high cost. How-
ever, an optimized, multistage sampling design that used
combined coverage by existing FRI data and updates from
Landsat TM or SPOT, and targeted the most promising
portions of deer yards for large-scale photo sampling, can

[§]

be expected to supply the required data and to relieve cost
problems currently associated with the large-scale photos.
Field subsampling, using aids such as GPS, can be used to
check the LSP work and to supplement data on browse
supply and carrying capacity.

APPROACH

The following discussion outlines the methodology used
in the project. The study area, detailed procedures used,
and results are described under subsequent headings.

The data collection and analysis work was organized
around two main stages: namely, (1) the mapping of con-
ifer cover, including the species composition and the area
of the yard accessible by deer, and (2) the quantification of
browse supply. The accessible area is defined by the con-
ifercoverand asurrounding border or buffer forbrowsing.
The two stages are later combined 1o provide an overall
picture of browse supply.

Mapping Conifer Cover

A GIS loaded with existing FRI map data provided a
polygon (stand) framework for data—spectral image data
classification supported by aerial photo and field data
were the primary inputs; the GIS and associated databases
provided the platform formerging the dataand subsequent
analysis. By using terrain corrected and geographically
referenced satellite information, the FRI data and image
data were merged. Both sources, supporting one another,
and local knowledge of the deer yard were used to identify
areas of promising deer habitat and to set priorities for
more concentrated sampling.

Selected sites were photographed with LSP at a scale of
1:5 000. The temporary lack of digital FRI coverage for
part of the area skewed the selection process o some
extent. The LSP samples were used to interpret and
quantify features or indices related to such characteristics
as winter cover, accessible area, and potential food sup-
ply. Analyzed stand information from the sampling pho-
tos was then used: (1) to calibrate data derived from FRI
and to “train” and “test” the satellite image data classifiers
according to deer cover criteria, and (2) to quantify key
deer yard characteristics. Available field data not col-
lected specifically for this project were used to provide
more detailed information on the quality and quantity of
coverand food supply. GPS positioning data were used to
link the field observations into the geographic base,

Quantifying Browse Supply

For important FRI working groups and site classes, mod-
els have been developed that relate stand age and over-
story density to the biomass of browse per hectare
(Broadfoot et al. 1994). These models were developed



586

Figure 1. Enlarged portion of an FRI stand map showing the location of conifer clusters (below, shaded) mapped

from interpreted 1:5 000 aerial photos (above).



from browse survey databases that currently exist in the
region, and supplemented with available field data (not
collected specifically for this study) using standard browse
survey procedures developed by the OMNR. The GIS
provided the platform for analysis, mapping, and linkage
of supply information to supply analysis and simulation
models.

METHODOLOGY

The methodology and procedures were developed and
tested within the above framework. The procedures are
outlined as follows:

Definition of Key Conifer Cover Characteristics

The relative value of conifer cover is a function of species
composition of tree cluster polygons. The predominance
of certain species or species combinations is important in
that they provide different degrees of thermal protection.
Table 1 indicates the relative importance of the cover and
degree of snow interception. A predominant species or
species group is one where the crown cover of the species
or group exceeds that of any other conifer species in the
cluster. To provide adequate cover, a cluster of conifer
crowns was required to be at least 50 m? in area.

Table 1. Conifer species cover priorities.

Species or species groups Priority

Hemlock or cedar Optimal cover
White spruce, balsam fir, or white pine Suitable cover

Red pine, jack pine, or black spruce Marginal cover

Combined with the thermal cover, suitable deer habitat
should also have openings. According to Voigt (1992) and
Broadfoot et al. (1994), sites accessible to deer should be
represented by the area of the conifer cover plus a 30-m
buffer around the cluster. Biologists refer to the conifer
coveras the effective area, the buffer as the browse area,
and the combination as the accessible area. The remain-
deris called the inaccessible area. These are illustrated in
Figure 2.

Study Area

The study area chosen for this project surrounds the
Loring Deer Yard. The area in Figure 3 is 700 km? in size
and located approximately 50 km southwest of North Bay,
Ontario. The deer yard itself is 525 km? (Broadfoot et al.
1994). The area was excellent for the study because of its
stature as a managed deer yard, its large size, and the wide
range of forest cover conditions represented. Since timber
management is also taking place on the deer yard, it offers

a good proving ground for integrated resource manage-
ment for wildlife and timber production. The study should
contribute information needed for other deer habitat man-
agement studies, particularly those developing habitat
supply models and/or assessing carrying capacity.

Multistage Design

The following data sources were drawn on for this project:

* Ontario base maps of the target area at a scale of
1:20 000;

FRIdigital maps of stand polygons and the associated
polygon attribute database;

Landsat Thematic Mapper (TM) satellite coverage
of the area;

* SPOT multispectral coverage of part of the area:
* large scale (1:5 000) photo samples;
* field survey data; and

* dataon browse supply relationships (Broadfoot et al.
1994).
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A multistage design for the collection of resource infor-
mation is one that takes advantage of existing data, sources
of general information (suchas provided by satellite image
data or small scale, general coverage acrial photos), and
detailed data sampled at specific sites (such as by large-
scale sampling photos or field survey). The design at-
tempts to combine the relatively inexpensive generic
information with specific and expensive sampled data. A
good design takes advantage of the strong points of both
sources in some form of optimized structure. The generic
information is normally used to focus the sampling on the
most important conditions and thereby limit or avoid un-
necessary coverage of the least important features. More
formal optimization is usually based on meeting given
information requirements and reliability levels for the
least cost.

An important component of the design in this project was
to have a common platform for combining, processing,

analyzing, and producing the required information. A
GIS and linked database served this role. The foundation
was the Ontario base maps in digital format at a scale of
1:20 000. The FRI forest stand polygons were registered
to this base, as were the Landsat TM and SPOT image
data sets, maps of conifer clusters produced from the
LSP, and some field data tied in by GPS coordinates.

The design employed the following steps in approxi-
mately chronological order:

1. Obtain OBM and FRI digital map coverage of the
target area.

2. Obtain LSP coverage of stands selected to focus on
sites with significant cover and browse potential.
The specifications and procedures for acquiring and
using the LSP are described later.

3. Order cloud-free Landsat TM scenes of the target
area and SPOT coverage of a portion of the area.
Recent, suitable TM coverage was available; SPOT
data was not available but a “programming” request
was issued to obtain the coverage in early 1995. The
satellite data specifications and the training and
testing of the image data classifier are described in a
later section.

4. Use the satellite data to update the FRI maps to
account for any changes since the FRI photo
interpretation and to provide supplementary
information on the dispersion of conifer cover within
the FRI polygon.

5. Use the LSP data to provide detailed information on
effective cover, browse areas, and accessible areas
summarized for FRI polygons where LSP coverage
allows.

6. Enterthe fieldtocheck the accuracy of the LSP photo
interpretation.

7. Use the LSP data to test the accuracy of the FRI
derived species groups, to train and test the satellite
image dataclassifier, and to develop predictive models
for estimating accessible area from FRIattribute data
and the satellite image data classifier.

8. Use the accessible area prediction model to map and
make estimates of suitable habitat and browse
quantities.

Forest Resource Inventory Data

The Loring Deer Yard was rephotographed in 1992 at a
scale of 1:20 000 by the OMNR’s Forest Resource Inven-
tory (FRI). The photo interpretation to FRI standards had
been completed in time for this project, but stand mapping
in digital format was available for just four of the ten map
sheets. Accordingly, the LSP coverage and the training
and testing of the Landsat TM and SPOT classifiers had to
be confined to the available maps, thus limiting the scope
to some extent. However, the remaining six maps were
delivered near the end of this project in time for the final
extrapolation of results.

The FRI stand polygons were mapped digitally on the
OBM base. The linked database, which describes the
polygons, included the FRI working group, species com-
position, age, average stand height, stocking, and site
class.

Large-Scale Photo Sampling
Objective

The primary role of the large-scale photos was to provide
more precise information on the species composition, size
of trees, understory, and spatial distribution of the conifer
cover within FRI polygons. The delineation of the clus-
ters, together with their species composition and size, was
used to map and characterize the effective area. A buffer,
bordering the effective cover, was used to determine
browse and accessible areas. The amount and dispersion
of conifer cover, key features of deer habitat, were not well
expressed in the FRI database.

Procedure

The multistage design described carlier was used as the
general framework for the following tasks:

1. Standselection: 1deally, the FRI map data, field data,
and local knowledge of the deer yard would be used
to target the FRI stands having the greatest deer
habitat suitability potential. Normally, stands with
the greatest potential would be candidates for LSP
sampling and stands with low potential would be
sampled lightly or avoided. This concentrates the



relatively costly LSP effort where it is most needed.
Unfortunately, in this project, a FRI map production
problem precluded the targeted selection of candidate
stands. Instead, the problem constrained the LSP
coverage to the two shaded areas in Figure 4. These
were completely covered by 1:5 000 LSP to include
as wide a set of stand conditions as possible.

2. Photo acquisition: The LSP were acquired on
subcontract according to the photo specifications in
Table 2.

The two shaded blocks in Figure 4, about 210 km?, were
successfully photographed on 3 and 4 May 1994. A total
of 870 photos covered the two blocks.

3. Base map preparation: Base maps at a scale of
1:5 000 were prepared of the project area. These used
available enlarged Ontario base map coverage at
1:20 000. The base maps were needed to tie the tree
cluster polygons delineated on the 1:5 000 photos to
the FRI digital maps and satellite data.

4. Photo interpretation: The conifer tree clusters were
interpreted, delineated, and coded on the 1:5 000
photos according to the classification criteria in
Table 3. For all conifer species except hemlock
(Tsuga canadensis [L.] Carr.), the cluster height
must be taller than 10 m to be considered effective
cover. Hemlocks between 5 m and 10 m are also
considered effective cover and thus appear as an
additional category in Table 3.

The proportion of cach species in the cluster was coded to
the nearest 10 percent based on crown cover density
expressed as a single digit accompanying each species
code. Thus acluster may be described as He5 he 1 Sw4, the
proportions adding up to 10. If only one species was
present, the proportion was deleted.

5. Field check: The 1:5 000 photo interpretation work
was checked in the field to assess the accuracy of the
classification. Browse conditions and quantities, deer

L. Restoule

Loring Deer Yard
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Large-scale Vo
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Figure 4. Map of the Loring Deer Yard showing where the
Landsat TM and SPOT classifier were trained and tested.

occurrence, and carrying capacity data were available
fromrelated studies but were not collected specifically
for this project.

6. Map preparation: The delincations and codes were
transferredto the base maps using geographic features
common to both the photos and map. Where such
features were lacking, some additional control points
were added. The polygons were digitized in a GIS at
ascale of 1:5 000 and the codes were entered into an
associated database. An algorithm added buffers to
the tree cluster polygons. The mapped clusters were
then merged to the FRI polygons for analysis
purposes, and to provide the training and test data for
the satellite image data processing task and accessible
arca estimation model.

Test results

Figure 2 illustrates how the conifer cluster delineations on
the 1:5 000 photos were used to classify the effective area
and the browse area generated from the addition of the
30-m buffer. It also shows the resulting accessible and
inaccessible areas.

Figure 2 further illustrates how the tree clusters are linked
to an FRI polygon and used to summarize its cover
categories. As shown, the linkage includes the extension
of clusters from adjacent FRI polygons, either a portion of
effective arca orbrowse area. The analysis summarized all
FRI polygons in the project area that were covered by the
1:5 000 photos.

Table 2. Photo specifications.

Camera format: Cartographic camera:

230 mm by 230 mm format

Nominal 1:5 000

Nominal 150 mm

Photo scale:
Lens focal length:
Film type: Black and white panchromatic

Overlap (forward): 60 percent to 65 percent

Minimum sidelap: 20 percent

Season: April 15 to May 10, preemergent
hardwood flush and with little or
no snow on the ground

Table 3. Tree cluster classification criteria.

Cluster description Code

Hemlock clusters 5 m to 10 m height  he
He
Standard FRI1

species codes

Hemlock clusters >10 m

Other conifers >10 m




The tree clusters produced from the 1:5 000 photos were
thoroughly checked in the field. The location of the main
story tree clusters and their species coding were found to
be virtually without error. However, although the inci-
dence of conifer under cover was low, where it did occur
the interpreter had difficulty recognizing it under stands
with a conifer overstory. The deciduous stands did not
pose such a problem.

The cost of using the 1:5 000 photos to produce the tree
cluster information (effective area, browse area, and ac-
cessible area), including the cost of obtaining new photo
coverage, photo interpretation, mapping, and GIS analy-
sis to generate the deer cover information, is summarized
in Table 4. The total area covered by the photos was
approximately 210 km?. Because of the much larger area
involved than in previous trials, and the attendant econo-
mies of scale, the per hectare cost was nearly one-tenth
that reported on the initial development work on the
methodology (Dendron Resource Surveys Inc. 1991).

Satellite Image Data Classification

Objective

For the purposes of deer yard habitat assessment, satellite
data may contribute in two primary ways: namely, (1) the
detection and mapping of conifer cover, and (2) the
classification of the conifer cover by species or species
groups. Satellite data offer the advantage of timeliness—
the ability to account forchanges in the coversince the FRI
data were acquired—and the important potential, in the
present context, to map the distribution of conifer cover
within the FRI stand polygon. The latter offers the chance
of not only determining effective area but also, once
registered to the cartographic base, the application of
buffers to the margins of the polygons to quantify browse

Table 4. Summary of costs required to acquire, interpret,
and map the conifer clusters from the 1:5 000 photos.

Task Total cost Cost/hectare
(%) (%)
Photo acquisition 13,000 0.62
Base mapping 1,856 0.09
Photo interpretation 10,827 0.51
Photo-to-map transfer 7,976 0.38
Coding/checking 6.692 0.32
Digitizing 12,431 0.59
Database entry 7,925 0.38
Cover and browse area analysis 581 0.03
Map production 963 0.04
Total 62,251 2.96

and accessible area—the latter being the chief attribute of
interest.

The use of satellite data to classify conifer cover has been
investigated in similar applications (Lillesand and Kiefer
1979, Richards 1986). These studies suggest generally
that the separation of the conifer cover from other signa-
tures is feasible. However, the discrimination of conifer
species differences has proven more elusive, especially
where species mixtures are common.

The goal of this satellite data study was to establish how
well the two objectives can be met for deer habitat assess-
ment purposes.

Procedure

. Acquisition of satellite image data: Landsat 5
Thematic Mapper data were obtained for two dates:
14 February 1993 and 28 August 1993. In both cases,
cloud-free, precision-corrected, three-band subscenes
were ordered. Each subscene covered most of the
deer yard. A SPOT panchromatic and multispectral
mini-scene (6.5 km by 6.5 km), map oriented and
precision corrected, was obtained for acentral portion
of the deer yard (Fig. 4) on 25 March 1995.

2. Registration to map base: These scenes were loaded
onto a PCI Enterprises Inc. image data classification
system and registered to the digital cartographic
base. The registration error was not expected to ex-
ceed two pixels (each pixel measured 30 m by 30 m
in the case of TM, 20 m by 20 m in the case of SPOT
multispectral data, and 10 m by 10 m for the SPOT
panchromatic channel).

3. Satellite image data classifier: Large-scale photos
(LSP), described in the preceding section, provided
the conifer cover data needed to train and test the
image data classifier. The cluster maps were imported
into the OBM base to which the satellite data was
registered. Thus, the LSP cluster data were directly
connected to the satellite pixel data for training and
testing purposes.

4. Training and testing: The image data classifier was
“trained” to detect and separate conifer cover from
hardwood forest cover and other background features
(clearings, water, other vegetation, cutover, burns,
roads, etc.). The training established the link between
the multispectral and multidate TM or SPOT signa-
tures and conifer cover. The classifier was also
trained to detect conifer species. The 1:5 000 photo-
interpreted and mapped tree clusters provided the
basic data for this. One-half of the data set was used
for training and one-half was reserved for testing the
finished classifier. The training and test clusters
were separated at random. Because the registration



of the image data to the base could have an error of

a pixel or two, only conifer signatures (groups of

conifer pixels) larger than 1 ha where selected. This
provided more leeway to eliminate borderline pixels.

The image data classification training and test procedures
arc described in detail in Appendix A. The steps are
summarized as follows:

* Check the registration of the pixel data to the
cartographic base. Cartographic features such as
lakes, rivers, and roads were used to assess the
registration,

* Using the training data set, train the classifier
(maximum likelihood classifier—Appendix B) to
separate conifer cover from the deciduous cover and
other features.

¢ Using the same classifier algorithm, train the classi-
fier to discriminate conifer categories, starting with
individual species and proceeding to the three
categories in Table 1.

* Finally, subject the trained classifier to a trial against
the test data set aside to evaluate the conifer cover
detection and the ability to discriminate the conifer
species and species groups.

5. Classifierassessment: A simple method for assessing
theeffectiveness of an image data classifier involved
the use of a correlation matrix. The matrix arranged
the interpreted classes as column headings and actual
classes, as obtained from the LSP as row headings.
The pixel classifications were sorted by what the
classifier and test data indicated and placed in
corresponding cells opposite the matching headings.
The matrix was used to evaluate the overall accuracy
of the classifier, and to indicate among which classes
the errors or confusion were occurring. This test
framework allowed both the conifer cover detection
and species discrimination objectives to be evaluated.

Test results

The Landsat Thematic Mapper (TM) scenes covered most
of the deer yard; the SPOT data covered only a 6.5-km by
6.5-km block as shown in Figure 4. The results of the TM
teston the full LSP data set, represented by the shaded arca
in Figure 4, are presented first, followed by a comparison
of the TM and SPOT classifiers on the 6.5-km block. The
best TM multispectral/multidate classifier found in the
first test was used in the comparison.

All classifications were performed with the Maximum
Likelihood Classifier (Appendix B), the recommended
classifier for forest stand classification. The February and
August 1993 TM images were tested scparately and in
combination. The accuracy performance of the classifier

was assessed in terms of the percentage of pixels classified
as conifer compared to that indicated by the test data.
These originated from the interpreted and mapped 1:5 000
photos.

A preliminary assessment can be made from the data used
to “train” the classifier—what is most often reported in
classifier investigations. However, a much more realistic
accuracy assessment can be made from the independent
test data set. Both results are presented in this report.

TM conifer cover classification

A fundamental question is how well the satellite image
data classifier can separate conifer cover from other ob-
jects (e.g., deciduous stands, brush and open areas, water).
The results are presented in Table 5. The overall rating is
the proportion of pixels falling in conifer cover that were
correctly classified as such by the classifier.

The results indicate that the classifier is a reliable means
of discriminating conifer cover from the background of
other forest cover, vegetation, openings, and water. The
classifier should also be an effective means of identifying
and updating conifer stands after disturbances, and for
detecting conifer cover that may have been missed during
the FRI photo interpretation. The test data results, which
were of lower accuracy than the training data accuracy
rating, provide amore realistic assessment of the classifier
performance because the test data set emulates a new
population of conifer clusters. The February image was
more reliable than either the August or the combined
image. The superiority of the February image is no sur-
prise, but the low performance of the combined image is.
The explanation relates to strictness with which the clas-
sifier places doubtful classes into the null class (the one
without conifer cover). The combined image data was
attempted because multi-date classification has been found
to improve the discrimination of conifer and hardwood
stands in some cases. The test of the ability of the classifier
to detect conifer cover is explained in more detail in
Appendix B.

Figure 5 compares the LSP (above) and TM (below)
classifications of conifercoveronaportion of an FRImap.
The delincated LSP coniferclusters (shaded) comprise the
effective area. The crosshatched counterpart below are
conifer cover detected by the TM classifier. Note the
rendition of individual TM pixels close to FRI Polygon

Table 5. Conifer cover classification accuracy (percent).

Data set February ~ August  February/August
Training 95.1 97.8 84.6
Test 84.9 72.7 33.6
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Figure 5. A portion of an FRI map showing stand polygons (numbered) and conifer clusters mapped from LSP
(above), and the same area classified from TM date (below).
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Identifier 263. Comparison of the two maps, particularly
along the FRI polygon boundaries, illustrates how the TM
classifier detects the conifer cover and is able to represent
the distribution of effective area. The missed areas gener-
ally relate to small LSP clusters, dispersion, and admix-
tures with hardwoods. Since the TM classifier has been
adjusted to be quite sensitive to the presence of conifer
cover, it may overestimate the actual area of such cover by
picking up small conifer clusters or shadows from hard-
wood stands that have a similar tonal value. Some evi-
dence of this can be seen in FRI Polygon 271. However,
such a systematic error can be detected by the LSP
counterpart and adjusted. The 30-m browse area buffers
are applied by the GIS. The direct TM estimate of acces-
sible area within the polygon is the sum of their effective
and browse areas.

TM species discrimination

The next objective was to test how well conifer species or
species aggregations can be separated. The results, pre-
sented in Table 6, express the overall accuracy of the
discrimination on an individual species basis. As can be
seen in Appendix B, white pine (Pinus strobus L.), red
pine (Pinus resinosa Ait.), and black spruce (Picea mari-
ana [MilL] B.S.P.) were discriminated more accurately
than the other conifer species (hemlock, cedar [Thuja
occidentalish.], white spruce [Picea glauca (Moench)
Voss], and balsam fir [Abies balsamea (1..) Mill.]). Unfor-
tunately, the latter happened to be the key cover species.
Nevertheless, the classification accuracy is too low to be
of much practical value. The accuracy ratings of the
training data set, although included in Table 6, are higher
and less realistic than those of the test counterpart because
the test data emulates application of the classifier to a new
population.

The third step was to test how well the most separable
conifer species could be discriminated. The most sepa-
rable species (hemlock/cedar, pines, and spruces) are

similar to the minimal groupings in Table 1. The results of

the test are presented in Table 7.

The “other” column in Table 7 pertains to other conifer
species, hardwoods, and non-forested categories. The
percentages along the highlighted diagonal indicate the

Table 6. Overall species classification accuracy
(percent).

Data set February =~ August  February/August
Training 61.3 58.6 74.6
Test 21.9 26.1 15.2

10

accuracies with which key individual species are correctly
classified. If all the pixels were correctly identified, the
percentages along the diagonal would equal 100. The
overall accuracy of 46 percent was better than by chance
alone (33 percent), but it was not considered adequate for
the deer yard application.

The cost of acquiring and registering the image data to the
geographic base, training and implementing the TM clas-
sifier, applying the 30-m browse buffer to the conifer
cover in the GIS, and database work to append the result-
ing datato the FRI database is summarized in Table 8. The
costs are based on the actual time taken for an experienced
operator to carry out the tasks on an image data classifica-
tion system (charged on an hourly rate). To better simulate
the cost of operational implementation of the TM classi-
fier, the time required to develop the methodology was
excluded.

SPOT conifer cover classification

The following is a comparison of the SPOT classificr
compared to the best TM classifier on the 6.5-km by
6.5-km block in Figure 4. On the 6.5-km block, both the
TM and SPOT classifiers were tested in their ability to de-
tectthe presence of conifer cover as mapped from the LSP.
The results of the comparison are presented in Table 9.

The T™M and SPOT columns, which pertain to the LSP
classification, diverged slightly because the differing
pixel sizes affect how the classes are counted. The TM
classifier correctly detected 85.2 percent of the conifer
cover mapped from the LSP; SPOT was no different at
85.6 percent. The TM result is similar to the accuracy
found in the earlier test over the much larger area. Look-
ing at the overall classification accuracy of the conifer
cover and “other” category, the TM and SPOT classificrs
were slightly more that 90 percent accurate. Also, the
confusion between the conifer and the “other™ category
tend to compensate, resulting in estimates of conifer
cover within 5 percent of each other. The two overall
accuracy assessments, however, mean much less than the

Table 7. Overall conifer species classification accuracy
(percent) of the three most separable species.

Percent classified

Test Red  Black
standard Pixels Hemlock pine spruce Other
Hemlock 3138 46.1 0.6 7.0 463

Red pine 158 5.1 36.5 I3 . 571
Black spruce 723 13.3 0.1 472 394

Overall accuracy = 45.9 percent.




Table 8. Summary of costs of using Landsat TM image data to map conifer cover over the project area.

Cost Cost/ha

Task (%) ($)
Acquisition of a Landsat TM image data of the project area 3,520 0.07
Registration of the image data to the base map 1,145 0.02
Training and testing of the image data classifier 1,145 0.02
Implementation of the classifier including time on the PCI system 1,550 0.03
Application of browse buffers in the GIS environment 435 0.01
Summarization and addition of data to the FRI database 470 0.01
Map production 450 0.01
Total cost 9,020 0.17
Table 9. Conifer classification by TM and SPOT in hectares.

TM classifier SPOT classifier
LSP classes Conifer Other LSP total Conifer Other LSP total
Conifer 113.0 19.6 132.6 1158 19.5 135:3
Other 25.7 330.6 356.3 27.6 326.0 353.6
Total 138.7 350.2 488.9 143.4 345.5 488.9

conifer detection accuracy because, in the deer yard
assessment context, positional accuracy is of primary
importance. Thus, the 85 percent detection accuracy is the
best measure of accuracy performance. The eventual
effectiveness is assessed later when the results of the
classification are linked to the cartographic base, the
buffers are added, and the accessible area is determined.
The SPOT classifier was not better than the TM classifier
in discriminating individual conifer species.

The overall cost of SPOT image data, registration, train-
ing, GIS application of buffers, and summarization is
about the same as for the TM. However, since the TM
image covered the whole target area (500 km?) and the
SPOT image covered only 42 km?, the per hectare cost of
SPOT is much higher. This could be reduced by ordering
alarger SPOT scene, but the acquisition costis still higher
than the TM on a per hectare basis.

Assessment of Deer Yard Suitability

In this project the suitability of the forest for deer habitat
depended on locating conifer cover, identifying the spe-
cies comprising the cover, and determining the accessible
area associated with the cover. The ability of the mapped
FRI stand polygons and associated attribute data to detect
conifer cover and the species composition is assessed in

one test. An accessibility estimation model, which draws
on the relationships between FRI attribute data, satellite
data, and LSP derived accessibility, is assessed in asecond
test. Since accessibility data were notdirectly available in
the FRI data set, the purpose of the model was to use FRI
data and/or satellite data to estimate accessible area.
Finally, the effectiveness of the model is compared with
methods based on LSP and satellite data alone, and with
two models previously developed by Broadfoot et al.
(1994). The comparison was confined to the two shaded
areas in Figure 4.

Usefulness of FRI species data

The existing FRI data sets contain information on the
predominant species (called the working group) and codes
for up to ten species together with a I-digit number
expressing the proportion of each species present in the
stand. The species data originates from photo interpreta-
tion of FRI black and white photos of the deer yard. Some
of the stand descriptions may have been confirmed from
sample plot data or field checking.

To determine the reliability of the species information in
relation to the deer yard suitability question, a test was
carried out to compare the species proportions with those
derived from the LSP clusters. The test included only FRI
stands that were covered by LSP photos.
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To simplify the species comparison, the FRI species
proportions were aggregated into the three species groups:
namely, (1) cedar and hemlock, (2) white spruce, balsam
fir, and white pine, and (3) red pine, jack pine (Pinus
banksiana Lamb.), and black spruce. Likewise, the LSP
species codes were aggregated into the three species
groups. Although most conifer species can be accurately
distinguished on the 1:5 000 photos, one species pair
cannot: white spruce and black spruce. However, other
information such as soil type, site, and drainage conditions
can help make the separation. So also can the FRI stand
codes, which were used in these investigations.

The following steps were needed to complete the test:

« overlay the 1:5 000 LSP clusters on the FRI stand
polygons;

= aggregate the area of the LSP clusters within an FRI
polygon;

* summarize the aggregated area by species group;

* allocate the FRI polygon area by the species pro-
portions and aggregale into the three species groups;

= compare the species group area totals by FRI and
LLSP sources; and

* make a correlation matrix to compare the frequency
of occurrence of the predominant species (working
group) by FRI and LSP sources.

The results of the area comparison are shown in Table 10.
Overall, on a polygon area basis, the FRI attribute data
produces estimates that are 33 percent higher than the
1:5 000 source. This was anticipated because the FRI data
were based on the interpretation of photos at a scale of
1:20 000. As scale increases, the open arcas around the
canopy clusters are clearly visible on the 1:5 000 photos
buttend to merge into the canopy cover and shadows at the
smaller scale, thereby making the cover appear more
dense. Because this tendency is fairly constant with scale,
its effect can generally be detected and corrected.

The correlation matrix, which compares how the. two
methods assess the predominant species group, is pre-
sented in Table 11. The shaded numbers along the diago-
nal are the number of FRI polygons that were classified as

Table 10. Comparison of how FRI and LSP classify the
arca (ha) of three conifer species groups on the same area.

Source Species Species  Species All
Group 1 Group2  Group3 species
FRI 1559.8 14519 126.9 3138.6
LSP 13354 931.6 99.2 23606.2
Difference  224.4 520.3 2707 772.4

belonging to the same groups using both FRIand LSP data
sources. The latter was adopted as the “true” cases. The
off-diagonal (or unshaded) entries represent the number
of polygons where the data sources disagreed (were con-
fused). Overall, on an FRI stand polygon count basis, the
FRI attribute data was 9 percent low in counts of Species
Group 1 and 1 percent low in Species Group 2. The third
group had too few stands to make a reliable estimate. In
this project, the second and third species groups could be
lumped together without adverse effects.

The overall evaluation based on the comparison of the row
and column totals, however, did not reflect the degree of
confusion among classes and unclassified cases. Seven-
teen percent of the counts were either confused or not
classified as one of the conifer classes.

The results of the two tests show that the FRI data can be
used as a fairly reliable means of detecting and classifying
conifer cover (effective area) for deer yard purposes.
However, some field or LSP data are required to “tune *
the arca estimates. Although the existing FRI can address
the need for effective area data, itdoes not offer direct data
on accessible area.

Accessible Area Prediction Model

The existing FRI data contain no information on the
spatial distribution of conifer cover within the stand poly-
gon, nor on the browse or accessible area associated with
the cover. However, a prediction model was investigated
as a means of deriving such information from other
available FRI data fields, such as polygon area, polygon
perimeter, conifer species proportions, stocking, stand
height, age, etc. The accessible area determined accu-
rately from the LSP was used to develop and test different
models. A successful model would then be applied to all
FRIpolygonsthathave no supporting LSP data. Likewise,
the satellite classification, which covered all the polygons,

Table 11. Correlation matrix comparing how the FRI and
LSP identify the predominant species of FRI polygons.

FRI source

:SP Group*  Group Group Other** Total
source ! 2 3

Group 1 186 32 2 33 253
Group 2 28 99 2 35 164
Group 3 2 9 1 0 12
Other 17 25 I 16 59
Total 233 165 6 84 488

* Groups refer to three species groups.
## Other refers to unclassified cases.



may be used directly or indirectly in the model eitheralone
or in combination with the FRI data. The satellite estimate
of accessible area within an FRI polygon was tested as an
additional variable in the prediction model.

The prediction model was posed in the following general
form:

AA =b0 + bI1*EA +b2*PA + b3*TM + b4*PP + b5*ST
+b6*HT + b7*AG + b8*SI
where: AA is the accessible area (ha) from LSP;

PA is the FRI polygon area (ha);

ST is the stocking (proportion);

EA is the arca of conifer cover (ha) derived from
the FRI polygon arca, proportion conifer, and
stocking (EA = % Conifer species*ST*PA);

TM is the area (ha) of conifer caver from the TM
classifier;

PP is the FRI polygon perimeter (m);

HT is the stand height (m);

AG is the stand age:

SI is the site class; and

b0, b1, ... are regression coefficients.

The above can be cast as a lincar multiple regression
mode! of the form:

Y = b0 + b1*X1 + b2*X2 + b3*X3 + ..... + bN*XN

and used to estimate the model coefficients b0 to bN,
which may then be used as the prediction model for the
accessible area for particular FRI polygons.

Many variations of the model were tested using stepwise
regression. The following variables emerged as the most
effective: (1) accessible area estimated from the satellite
data (TM), (2) the total area of conifer cover (EA)
estimated from the FRI data, and (3) polygon area (PA).
Age, stocking, and FRI polygon perimeter emerged as
minor contributors in some tests of data subsets. Only the

first three were consistently strong. The three models in
Table 12 were found to be the most effective.

The models were run over all FRI polygons having LSP
clusters. The combined TM and FRI model was the
strongest, although the TM model alone has almost as
much predictive power. The TM/FRI model accounts for
86 percent of the variation in accessible arca, and esti-
mates it, on average, to within £ 7.7 ha two-thirds of the
time. Development of separate models by FRI dominant
conifer species (working group) did not consistently
improve the reliability of the model. The second model
could be used successfully in cases where TM imagery is
unavailable or is considered to be 100 expensive. The
third model primarily corrects for systematic differences
between direct TM measures of accessible area and actual
measures based on the LSP. The three models were used
for comparison.

Comparison of methods

Seven methods of determining accessible area were com-
pared: five from this project and two from previous work
by Broadfoot et al. (1994). The first method was the test
standard based on LSP alone; the second was based on the
direct results of the TM image data classification; the
third used the LSP data and TM image data together; the
fourth used LSP and FRI data together; and the fifth used
4 combination of LSP, TM image data, and FRI. The last
method mentioned employed the equations developed
carlier and presented in Table 12. The two models by
Broadfoot et al. (1994) included a random conifer cover
distribution assumption and aclumped distribution model
derived through computer simulations. The comparison
was made in terms of accuracy and cost. The accuracy is
expressed as a systematic error component (shifts con-
sistently above or below the true or standard value) and
a random component that expressed variations from
stand to stand. The LSP estimate of accessible area was
adopted as the true value. The comparison involved only
the two shaded areas in Figure 4 that have complete LSP
coverage. The results of the comparison are presented in
Table 13.

Table 12. Accessible arca estimation models based on FRI and TM variables.

Accessible area estimation model N#* R ** Sekp*
(ha)

AA = 0.3656 + 0.8167 X TM + 0.1512 X EA 432 0.86 7.74

AA = 1.3491 + 1.0731 X EA +0.2934 X PA 432 0.72 10.70

AA =0.4699 + 0.8575 X T™M 432 0.85 7.78

* N is the number of polygon observations.
#* R is multiple correlation coefficient squared.

s###% Se is the standard deviation of regression residual errors.



As seen in Table 13, assessment of the accessible area
directly from the TM classifier was 15 percent higher
than the standard. The Broadfoot random model was
39 percent higher, and the Broadfoot clumped model was
59 percent lower. The systematic error of the other
methods was 1 percent high. The TM method was high
because of the sensitivity of the classifier to the presence
of conifer in the pixels comprising a polygon. The effect
can be seen graphically by comparing how the conifer
clusters are mapped by the LSP and the TM classifier in
Figure 5. The spread in the Broadfoot model probably
means that the actual distribution of conifer cover js part
way between a random distribution and the degree of
clumping assumed in the Broadfoot simulation.

The variation in accessible area estimates from one FRI
polygon to another is a more important expression of
accuracy because no further control or adjustment can be
made. An error of estimate of + 7.7 ha can be interpreted
to mean that a polygon 25 ha in size will, on average, be
estimated to within about 30 percent two-thirds of the
time. Since these are random errors, sums over a number
of stands comprising a study area or a planning zone will,
according to the sample size principle, reduce the variabil-
ity of averages. For example, the LSP comparison area
contains 438 stands with accessible area. The estimate of
the average accessible area will have a variability of about
+£7.7/V&38 or 0.36 ha or 1.5 percent of the average.

The FRI digital maps and polygon data are common to,
and needed for, all seven methods. Thus the cost of
acquiring the OBM and FRI data were not included in the
comparison. Fortunately, these data were already avail-
able and the considerable expense of acquiring the FRI
spatial and attribute data set did not have to be borne by the
project. However, the FRI model costs shown in Table 13
included the steps required to assemble the GIS digital
base, the FRI spatial data and the associated polygon
database, some LSP data to calibrate the model, and an

algorithm to calculate the accessible area and append it to
the FRI database. The costs of the two Broadfoot models
were based on the 2 or 3 days needed for one person to set
up the existing FRI database and the biomass estimation
models. Because of the large systematic errors in the
Broadfoot models at the scale tested, and because no
means was available to calibrate or adjust them, they were
dropped from further cost/effectiveness comparison.,

The cost of the LSP method includes the full costs of
acquiring the photos, interpreting, delineating and coding
the conifer clusters, mapping, digitizing, and entering the
codes into a database. These costs were summarized in
Table 4. Likewise, the cost of any of the methods using the
TM classifier must reflect the cost of acquiring the image
data and producing the conifer classification summarized
in Table 8. However, the cost of the LSPin the cases where
an accessible area model is used does not need as much
LSP coverage as was obtained in the project—coverage of
100 to 150 stands would be adequate to develop or cali-
brate the models, Thus, the cost of the LSPcomponent was
assumed to be about 30 percent of that actually needed to
cover the 438 stands in this project.

Methods 3, 4, and 5 were compared in a simple cost/
effectiveness framework. The framework assesses the
cost required to estimate the total accessible arca of the
test area (shaded areas in Fig. 4) to an accuracy level
equivalent to the most accurate of the three (Method 5 at
£ 30.8 percent for $27,720). In order to raise Method 4 at
$18,700 to the same level of accuracy, the level of effort,
as derived from the sample size rule, would have to be in-
creased by a factor of 1.9, which brings the cost up to
about $35,500. To raise Method 3 to the same accuracy
standard would require that its budget be raised to about
$21,000. Method 3—LSP supported TM—requires the
lowest budget of the three and therefore emerges as the
best option. Furthermore, the TM offers additional infor-
mation, such as ameans of updating for recent changes or

Table 13. Comparison of seven methods of determining accessible area.

Accessible Systematic Standard error Cost

Method area (ha) error (%) (ha) (%) &)

1. LSP (1:5 000 photos) - standard 83814 0.0 0.0 0.0 62,251
2. T™ classifier direct 9 646.8 +15.1 8.4 33.6 9,020
3. TM model (LSP calibrated) 84779 +1.2 7.8 312 20,420
4. FRI model (LSP calibrated) 8 460.4 +0.9 10.7 42.8 18,700
5. TM/FRI model (LSP calibrated) 8484.4 +1.2 7.7 30.8 27,720
6. Broadfoot - random distribution Il 634.5 +38.9 18.7 74.8 800
7. Broadfoot - clumped distribution 38353 -54.2 15.6 62.4 800
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disturbances in the stands, and preliminary conifer cover
information for deciding on the best sites for the LSP
sampling. Although Method 3 comes out best, this should
not imply that Method 4 could not be used, perhaps where
acquisition of TM data and deployment of an image data
classification system is not practical.

Estimation of Winter Browse Supply

Winter forage biomass estimates, expressed in kg/ha,
were used as the primary measure of browse supply in this
project. The per hectare estimates have been found to vary
with species composition of stands, development stage,
site class, canopy density, and deer browsing intensity.
Broadfoot et al. (1994) have developed a generalized
winter forage biomass model based specifically on: (1)
cover type derived from FRI working groups or their
aggregations; (2) development stage derived from combi-
nations of working group, site, and age; and (3) canopy
density based on two levels of FRI stocking. A BASIC
program (Appendix C), prepared for this project, imple-
mented the model using the procedures and data in
Broadfoot et al. (1994). The per hectare estimates pro-
duced from the mode! were applied to all FRI stands in the
deer yard by calculating the biomass per hectare for the
particular stand characteristics and multiplying it by the
stand’s accessible area. The resulting forage biomass
quantities were then appended to the FRI stand database
where the biomass supply could be queried and summa-
rized, and the distribution of concentrations mapped.
Likewise, planning areas could be defined in the GIS to
analyze the biomass supply and spatial distribution.

RESULTS

The browse supply quantities appended to the FRI data-
base can be summarized by map sheet, stand, species

group or working group, age class, cic. or for defined
blocks. zones, or planning areas within the project area.
For example, Table 14 provides a breakdown of acces-
sible area and browse supply by species or species aggre-
gations across the full deer yard. The accessible area
estimates were based on the LSP-calibrated TM/FRImodel
(Moadel 5in Table 13). The firsttwo species correspond o
the optimal conifercover, the next three species to suitable
cover, and the next two to marginal cover. The remaining
three species groups are gencerally not considered to pro-
vide suitable cover based on FRI criteria. However, the
ISP data indicate that they may contain substantial acces-
sible area and quantities of browse.

CONCLUSIONS AND
RECOMMENDATIONS

The purpose of this project was to investigate the role that
emerging datacollection technology can play in providing
information for the management of white-tailed deer
habitat. The key habitat requirements center on the winter
thermal cover provided by coniferous trees and an ad-
equate supply of accessible browse to sustain a healthy
population. The information is needed to manage deer
yards on a sustainable basis in conjunction with timber
management practices, the needs of all wildlife, and other
uses of the forest that influence deer habitat.

The data sources included digital Ontario base maps,
Forest Resource Inventory maps and an associated poly-
gon attribute database in GIS format, satellite image data,
large scale sampling photos, and the use of a global
positioning system to locate field observations. The GIS
provided a common cartographic base for bringing to-
gether the several sources of data.

Table 14. Accessible area and browse supply on the deer yard by species or species groups.

Conifer cover  Species or species

Accessible area Browse biomass

priority aggregations (ha) (kg)
Optimal Hemlock 31714 16 275.7
Cedar 226.8 8413.7
Suitable White spruce 448.3 10037.1
Balsam fir 1831.8 12461.0
White pine 602.5 16 109.2
Marginal Red pine, scots pine, and jack pine 258.1 2902.4
Black spruce 606.0 43237
Unsuitable Other conifer species 95.1 1 184.4
Tolerant hardwoods 14511.2 127 687.5
Intolerant hardwoods 21282 24 770.6
Total 23 879.4 224 165.3




The OBM was used successfully as the cartographic
foundation for the project. The FRI polygon data, which
included delineated forest stands, were registered to the
base. The satellite classification and LSP data were mapped
on to the base. The GPS enabled field data to be precisely
positioned on the map base. The satellite and LSP data
were summarized to the FRI stand polygon level and
appended to the attribute database.

The LSP methodology was confirmed as a very useful and
reliable means of isolating conifer cover clusters and
assessing their species composition. When the clusters are
digitally mapped, a browse area buffer can be readily
applied by the GIS and used to evaluate effective areas,
browse areas, and accessible areas within the stand. The
methodology is expensive, but was found to be much less
so than in the initial development trials because of the
larger size and attendant economies of scale.

The FRI data provided useful conifer cover species infor-
mation and data that can be used to estimate effective area
and accessible area. However, since the FRI provides no
information on the distribution of the cover within the
stand, the LSP had to be relied on to develop simple
estimation models. These models established linear rela-
tionships between accessible area (obtained from the
LSP), T™M classifications, and FRI stand attribute data.

Landsat Thematic Mapper and SPOT multispectral and
panchromatic data were tested. Both were successful in
separating conifer cover from hardwood cover and other
features. However, the image data were found to be
ineffective in separating coniferous species. The SPOT
data, although of higher resolution and much more expen-
sive than the TM, was not much better than the TM in any
of the classification tasks. The TM provided useful infor-
mation on the spatial distribution of conifer cover within
the FRI polygons and, when registered to the cartographic
base and the browse buffer added by the GIS, could be
used to estimate the effective areas, browse areas, and
accessible areas. However, the estimation of these areas
without supporting LSP data resulted in large systematic
errors. Thus a small quantity of LSP data was needed to
calibrate the estimation models to remove such errors. The
TM/LSP model, nevertheless, was found to be reliable and
can estimate the accessible area of an FRI stand to within
about + 7.7 ha 67 percent of the time, and with the
systematicerrorremoved. Models based only on FRI/LSP
data were found to be accurate to within about + 10.7 ha.
This means that nearly twice as much LSP support is
needed to achieve the same reliability in estimates. The
additional cost of the extra LSP will more than cover the
cost of the TM. Thus the FRI/LSP combination will
provide good estimates, but not as efficiently as the TM/
LSP combination. Additionally, the TM provides ameans
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of updating changes since the FRI photos were acquired.
The TM also supports the FRI data in targeting the LSP
sampling.

The random and cluster models developed by Broadfoot
etal. (1994) produced estimates in this project that devi-
ated markedly from the test standard both in terms of
systematic error and variability. Calibration of the ran-
domization/clumping simulations may reduce the sys-
tematic component. However, it is unlikely that much can
be done to reduce the variability.

The GIS provided an excellent platform for combining the
several data sources. It also offered an effective means of
presenting the cover and browse results, either as maps
showing the distribution of the cover or as quantitative
data summarizing accessible areas or browse supply.
Database queries allow breakdowns to be made by work-
ing group, age and site classes, and defined planning areas
or zones. The GIS can also be used to locate promising
decer habitat for more intensive analysis or treatments,
suchas supplemental feeding. If stand development simu-
lations are made based on FRI stand projections, future
deer habitat suitability, browse supply, and carrying ca-
pacity can be predicted for medium and long term plan-
ning purposes,

The GPS was found to be an effective means of tying field
data to the geographic base.

The following deer yard assessment methodology, based
on a multistage design, is recommended:

1. Obtain available OBM and FRI digital coverage of a
prospective deer yard,

b2

Optionally, obtain Landsat TM coverage of the target
darea.

3. Use the FRI and/or TM classier to locate FRI stand
polygons with a significant conifer cover. Use FRI
data to classify the cover by suitability priority
(optimal, suitable, or marginal).

4. Select 100 to 200 stands for LSP sampling weighted
according to priority and estimated accessible area.
The estimate does not need to be calibrated at this
stage.

5. Obtain the LSP coverage of the selected polygons,
Follow the LSP specifications in Table 2.

6  Photo interpret (delineate and code) conifer clusters
on the LSP according to the criteria in Table 3. Map,
digitize, and overlay the LSP clusters on the FRI
polygonmap; use the GIS to apply the browse buffer;
summarize effective areas, browse dareas, and
accessible areas; and append the data to the FRI
attribute database.



7. Optionally, use the LSP data to calibrate the TM
classifier and apply this classifier to all polygons in
the target area. Append the results to the FRI attribute
database.

8. Use the available FRI, TM, and LSP data to calibrate
(estimate new coefficients) for the accessible area
models (Table 11).

9. Use the models to estimate the accessible area of all
polygons in the target area and append the result to
the FRI database.

10. Use the biomass model (Appendix C) to calculate
the browse supply on each FRI polygon in the target
arca and append the result to the FRI attribute
database.

11. Use the GIS to map the distributions of conifer cover
and the location of priority polygons on the deer
yard, portions thercof, or defined planning arcas.
Use database queries to report accessible area and
browse supply summaries similar to the results in
Table 14. Apply models (not implemented in this
project) to assess sustainable carrying capacities.

The application of one of the models developed and

calibrated in this project to other deer yards, without new

LSP data, may be possible. However, systematic drifts

must be expected, especially as the foreststands change in

species composition, structure, and conifer cluster distri-

bution. Re-interpretation of 1:15 840 or even 1:20 000

FRI photos to specifically address the conifer cluster

delineation requirements may help to track the drift. The

1:10 000 scale photos available in some cases will provide

an even better substitute, but considerable caution should

be exercised in considering such alternatives to LSP.

Even a relatively small sample of 1:5 000 photos, in the
hands of a skilled photo interpreter, will accurately dis-
cern the conifer components; provide the spatial distribu-
tion of conifer cover; and yield a reliable means of
mapping effective arca, browse area, and accessible area
for browse supply appraisal purposes. When applying the
methodology to a new deer yard, such data can be used
citherto confirm the applicability of the current models or
provide the data necessary to recalibrate them to match
the new forest stand conditions.
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APPENDIX A. IMAGE DATA CLASSIFICATION PROCEDURES.

METHODOLOGY

TM Registration

From the PAMAP GIS system an image of the lakes and
rivers was exported and used as the master for image-to-
image registration. Also from the PAMAP, an image of
the TEST classes was imported as a separate image. The
master image has UTM coordinates and can easily be
imported back into PAMAP. Each of the two TM scenes
were then each registered individually to this master
image. Next, the rivers and lake channels and the TEST
classes image were made into bitmaps. A visual examina-
tion of the result by flickering the bitmaps on top of the TM
images showed good registration in the area common (o
both the PAMAP-generated images and the TM images.
The registration over the rest of the image outside the
TEST bitmap will be linearly similar.

Bitmap Generation

Two approaches were taken to generating the bitmap used
to define a class for use in the image classification.

The first approach involved a visual collection of pixels
for cach class. The TEST class was used to orient on the
image of stands for each class occurrence. By examining
the values collected in each EDIT class bitmap, a bitmap
with consistent values and a low standard deviation can be
gathered.

The second approach was to use the TEST classes as the
EDIT class and eliminate all pixels having values outside
an observed central cluster.

Comparing these two approaches for the classes of hem-
lock, cedar, and white spruce, little difference was found
in the derived class signatures. Therefore, the rest of the
classes were continued using the second approach; this
was casier and considered to be more precise. The first
approach of collecting pixels tended to produce a mean
centering around the average of the first few stands. This
may not be representative of the actual mean.

Classification
Once the bitmaps were edited to make the EDIT classes,
asignature was produced for each class. Three signatures,
using the February images, the August images, and the
combined August and February images, were produced
for each bitmap.

The classification performed in all cases used the Maxi-
mum Likelihood procedures described in Appendix B.
Rather than being forced into the most likely class. a null
class was produced for nonclassified pixels. The classifi-
cation image was then compared with the “truth” TEST

and EDIT images, and the results displayed ina confusion
(correlation) matrix,

Finally, the image was visually examined for classifica-
tion fit. Here the classification image was burned into
class bitmaps that were flickered over the images to
visually examine the precision of the fit.

Results

Conifer Classification - August

Subarea reports using Theme Channel 7 and Subarea
Channel 4:

7 [SU]MCD  Conifer Classification Thrs=3

4L[8UI MCD  Water and conifer TEST classes

Arcas Pixels classified by code (%)
Code name  Pixels Null Conifer
Water 30 440 94.4 5.6
Conifer 8915 27.3 72.7

Average accuracy = 72.70 percent.

Overall accuracy = 72.70 percent.

Subarea reports using Theme Channel 7 and Subarea
Channel 5:

7 [8U] MCD
SL [8U] MCD Conifer EDIT class

Areas

Conifer Classification Thrs=3

Pixels classified by code (%)
Pixels Null Conifer
3346 2.2 97.8

Average accuracy = 97.76 percent.

Code name

Conifer

Overall accuracy = 97.76 percent.

Conifer Classification - February

Subarea reports using Theme Channel 7 and Subarea
Channel 5:

7 [8U] MCD Classified as conifer 14-Mar-95
SLISU]MCD Conifer and water TEST classes 14-Mar-95

Areas Pixels classified by code (%
Code name  Pixels Null Conifer
Water 30 440 98.5 1.5
Conifer 8915 15.1 84.9

Average accuracy = 84.92 percent.

Overall accuracy = 84.92 percent.



Subarea reports using Theme Channel 7 and Subarea 6:

Subarea reports using Theme Channel 10 and Subarea 9:

7 [6U]  MCD Classified as conifer 14-Mar-95 10 [ 6U] MCD Classified as conifer 14-Mar-95
6L[8U] MCD Conifer EDIT class 14-Mar-95 9L[ 8U] MCD  Conifer EDIT class 14-Mar-95

Areas Pixels classified by code (%) Areas Pixels classified by code (%)
Code name  Pixels Null Conifer Code name Pixels Null Conifer
Conifer 3291 49 95.1 Conifer 1 454 13.4 86.6
Average accuracy = 95.11 percent. Average accuracy = 86.59 percent.
Overall accuracy = 95.11 percent. Overall accuracy = 86.59 percent.
Conifer Classification - February/August
Subarea reports using Theme Channel 10 and Subarea
Channel 8:
10[8U] MCD Classified as conifer 14-Mar-95
8L[8U] MCD Conifer and water TEST classes 14-Mar-95

Areas Pixels classified by code (%)
Code name  Pixels Null Conifer
Water 30 440 99.9 0.1
Conifer 8915 66.4 33.6
Average accuracy = 33.60 percent.
Overall accuracy = 33.60 percent.
Species Classification - February
Subarea reports using Classified Channel 7 and TEST Area Channel 5:

Areas Pixels classified by code (%)

Code name Pixels 0 10 15 20 25 30 a5 40
10 Hemlock 3183 355 15.8 10.0 7.7 12.3 7.0 4.2 7.5
15 Cedar 237 8.4 4.6 414 4.6 16.5 7.2 0.0 17.5
20 White spruce 384 38.5 5.7 8.9 11.2 13.0 29 13.3 6.5
25 Balsam fir 1 566 358 6.3 10.8 9.9 22.0 I:5 4.0 9.8
30 White pine 2 664 24.5 55 8.2 52 23 27.0 17.0 10.2
35 Red pine 158 38.6 0.0 2.5 7.6 2.5 0.0 48.1 0.6
40 Black spruce 723 8.3 10.8 23,9 6.1 213 5.8 1.0 22.8

Average accuracy = 26.90 percent.

Overall accuracy = 21.86 percent.



Subarea reports using Classified Channel 7 and EDIT Area Channel 6:

Areas Pixels classified by code (%)
Code name Pixels 0 10 15 20 25 30 35 40
10 Hemlock 388 0.0 52.1 15.7 59 17:3 39 0.0 5.2
15 Cedar 26 0.0 0.0 73.1 0.0 7.7 1.7 0.0 11.5
20 White spruce 38 0.0 18.4 2.6 42,1 15.8 10.5 5.3 5.3
25 Balsam fir 266 0.0 10.2 16.2 9.4 52.6 0.0 0.0 117
30 White pine 528 0.0 3.4 6.2 4.5 0.0 81.8 0.4 3.6
35 Red pine 29 6.9 0.0 0.0 20.7 0.0 0.0 72.4 0.0
40 Black spruce 179 0.0 14.5 29.1 3.4 11.7 7.3 0.0 34.1
Average accuracy = 58.31 percent.
Overall accuracy = 61.28 percent.
Species Classification - August
Subarea reports using Classified Channel 7 and TEST Area Channel 5:

Areas Pixels classified by code (%)
Code name Pixels 0 10 15 20 25 30 35 40
10 Hemlock 3183 36.4 320 1.6 8.7 12.4 54 0.6 3.0
15 Cedar 237 16.0 4.6 16.0 1.7 13.1 12:2 0.8 354
20 White spruce 384 42.4 10.7 2.6 13.3 8.1 11.5 6.8 4.7
25 Balsam fir 1 566 344 15.5 4.4 7.4 16.8 10.5 1.4 9.6
30 White pine 2 664 26.7 7.7 7.5 12.9 8.8 23.8 0.4 12.2
35 Red pine 158 51.3 2.5 0.0 3.8 1.3 3.8 36.7 0.6
40 Black spruce 723 324 6.1 5.5 33 7.6 8.6 0.1 36.4
Average accuracy = 24.99 percent.
Overall accuracy = 26.07 percent.
Subarea reports using Classified Channel 7 and EDIT Area Channel 6:

Areas Pixels classified by code (%)
Code name Pixels 0 10 15 20 25 30 35 40
10 Hemlock 388 0.0 75.3 0.0 10.8 12.4 1.5 0.0 0.0
15 Cedar 26 0.0 0.0 88.5 0.0 0.0 0.0 0.0 11.5
20 White spruce 38 0.0 10.5 0.0 68.4 15.8 53 0.0 0.0
25 Balsam fir 266 0.4 18.8 4.9 16.2 41.0 17:7 0.0 1.1
30 White pine 528 0.9 09 14.8 13.3 12.3 45.8 0.0 11.9
35 Red pine 29 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0
40 Black spruce 179 157 0.0 12:3 0.0 4y 11.2 0.0 73.2

Average accuracy = 70.31 percent.

Overall accuracy = 58.60 percent.



Species Classification - February/August

Subarca reports using Classified Channel 7 and Subarca Channel 5:

Arcas Pixels classified by code (%)
Code name Pixels 0 10 15 20 25 30 35 10
10 Hemlock 3183 76.8 12.4 0.5 1.8 5.9 1.7 00 08
15 Cedar 237 511 1.3 9.3 0.4 1.4 34 0.0 23.2
20 White spruce 384 81.8 1.8 1.0 7.6 49 0.8 0.0 2.1
25 Balsam fir 1 566 7510 34 0.7 22 14.8 0.6 0.1 33
30 White pine 2 664 68.6 2.0 1.4 3.0 1.6 18.1 (0.0 53
35 Red pine 158 81.6 0.0 0.0 0.0 0.0 0.0 18.4 0.0
40 Black spruce 723 60.6 3.2 2.4 0.8 7.1 2.6 0.0 234
Average accuracy = 14.83 percent.
Overall accuracy = 15.21 percent.
Subarea reports using Classified Channel 7 and Subarca Channel 6:
Areas Pixels classified by code (%)
Code name Pixels 0 10 15 20 25 30 35 40
10 Hemlock 388 6.7 75.5 0.0 6.2 9.8 1.8 0.0 0.0
15 Cedar 26 0.0 0.0 80.8 0.0 0.0 3.8 0.0 15.4
20 White spruce 38 7.9 5.3 0.0 68.4 13.2 53 0.0 0.0
25 Balsam fir 266 11.3 8.6 1.1 15 69.2 0.0 0.0 23
30 White pine 528 11.9 1.9 23 4.7 0.4 75.2 0.0 3.6
35 Red pine 29 17.2 0.0 0.0 0.0 0.0 0.0 82.8 0.0
40 Black spruce 179 10.6 0.0 6.7 0.0 2.8 22 0.0 77.
Average accuracy = 75.64 percent.
Overall accuracy = 74.55 percent.
TM Signatures of EDIT Class
August Image
Hemlock signature Cedar signature
Sample size: 388 Encoding: 10 Sample size: 26 Encoding: 15

TM band Mean Deviation TM band Mean Deviation

3 20.123711 0.725212 18.692308 0.461538

4 81.355667 5.142034 4 64.961540 2.084388

54.391754 3.808717 43.423077 1.668096



White spruce signature

Sample size: 38 Encoding: 20

T™ band Mean Deviation
20.078947 0.839222
74.552635 2.721236
47.710526 3.363174

Balsam fir signature

Sample size: 266 Encoding: 25

TM band Mean Deviation
3 19.278196 1.126265
4 73.827065 4513157
5 49.533836 3.388501

White pine signature

Sample size: 528 Encoding: 30

TM band Mean Deviation
3 19.861742 1.233149
68.204544 3.940829

= 45.196968 2.852934

Red pine signature

Sample size: 29 Encoding: 35

TM band Mean Deviation
3 19.034483 1.033333
4 76.413795 2.684758
5 37.344826 3.632002

Black spruce signature

Sample size: 179 Encoding: 40

T™ band Mean Deviation
3 19.273743 1.199596
4 60.921787 3.597722
5 42.111732 2.644448

February Image
Hemlock signature

Sample size: 388 Encoding: 10

TM band Mean Deviation
3 31.015465 3.068760

4 39.654640 2.699619
21.090206 1.638646

Cedar signature

Sample size: 26 Encoding: 15

TM™ band Mean Deviation
3 27.153847 1.291758
4 35.269230 2.781224
5 18.423077 2.151441
White spruce signature
Sample size: 38 Encoding: 20
T™ band Mean Deviation
3 34.368420 3.382782
4 41.973682 2.942312
5 19.736841 2.582168
Balsam fir signature
Sample size: 266 Encoding: 25
TM band Mean Deviation
3 32.838345 4.068053
4 37.458645 3.017521
5 19.598497 2217717
White pine signature
Sample size: 528 Encoding: 30
TM band Mean Deviation
3 27.865530 2.348215
4 41.907196 2.698363
5 19.178030 1.231888



Red pine signature

Sample size: 29 Encoding: 35

TM band Mean Deviation
3 34.068966 4.555641
4 46.620689 4.163998
5 16.551723 3.469932
Black spruce signature
Sample size: 179 Encoding: 40
TM band Mean Deviation
27.988827 2.545648
36.201118 2.596473
18.245810 2.271003
Observations
Assumptions

1. TEST Class is accurate in terms of species spectral
radiation.

2. EDIT Class is accurate in terms of species spectral
radiation.

3. TM image is linearly orthocorrected.

Conifer Classification

Classification of either the February or the Augustimages
for a single conifer class was quite successful. Table Al
presents the percent accuracy results using the two sets of
bitmaps to test the classification. Surprisingly, the classi-
fication using the February/August images was not very
good in terms of the TEST bitmap. This was likely
because the signatures are too tightly bundled and alot of
pixels are put in the null class unnecessarily. As for the
TEST class, the separation is better in February when the
hardwoods are leafless.

Table Al. Classification percent accuracy results.

August Fcb_r-uary Combined
EDIT 97.8 95.1 84.6
TEST 72.7 84.9 33.6

Table A2 provides the results for the TEST bitmap set.
The August water class is not as separable as in the

February image because the aquatic vegetation can be
closer in signature to the forest than will be ice or snow.
Also, the registration was quite accurate over the area of
the TEST bitmap as the water class is very accurately
classified. Poor registration would be manifest where the
waler bitmap pixels fall over land, and hence would be
classified as either null or conifer. Therefore, Assump-
tion 3 was concluded to be correct.

Table A2. Bitmap set results.

February

August Combined
TEST conifer 72.7 84.9 33.6
Water 94.4 98.5 99.9

Species Classification (Separation)

The above tables indicate that classification by species is
not feasible; there is too much confusion between the
conifers. This occurs both in the TEST and EDIT bitmap
sets. Using the TEST bitmaps there was some concern
with misregistration, although this is unlikely to be a
primary cause. Using the EDIT classes that are carcfully
selected pixels, good separation would be expected if it
were spectrally feasible. Visual examination of the spec-
tral clusters or feature spaces among the images confirmed
the difficulty of separating by species. As far as separating
by species groups, it could have been examined further but
was unlikely to provide adequate separation (i.e., better
that 80 percent) in terms of the TEST bitmaps. Visual
examination of the TEST bitmap data shows a wide
overlap of values within species classes, and thus a weak
ability to discriminate among them.

Conclusions

Conifer species as a single category can be successfully
discriminated from all other features, including hardwood
stands, water, and other “backgound” features. The best
separation is achieved using a winter image.

Further editing of the conifer class signature could be
considered tosee whatsort of separation can be done when
combining winter and summer images. However, ad-
equate conifer cover discrimination is possible using a
single image, thus avoiding the cost of an extra TM scene.

In this project species separation was not feasible using
TM images. It may be possible to discriminate broad
species classes, butuseful separations of species groups of
relevance to the deer habitat requirements were not pos-
sible.



APPENDIX B. MAXIMUM LIKELIHOOD IMAGE CLASSIFIER.

The following information on the Maximum Likelihood
Classifier (MLC) was extracted from the PCI image data
classification system Help feature.

MLC classifies all image data on a database file using a set
0f256 (64 on MS-DOS) possible class signature segments
as specified by the DBS1 parameter. Each segment stores
signature data pertaining to a particular class. Class signa-
ture segments are created using CSG.

The result of the classification is a theme map directed to
a specified database image channel (DBOC). A theme
map encodes eachclass withaunique grey level. The grey-
level value used to encode a class is specified when the
class signature is created (VALU for CSG). If the theme
map is later directed to the display, a pseudocolor table
should be loaded so that each class is represented by a
different color. If more than 1 output channel is specified,
the 2nd, 3rd, ..., nth most likely classes will be stored in the
2nd, 3rd, ..., nth output channels, respectively. Up to 16
(4 on MS-DOS) output channels can be specified. The
number of output channels cannot be more than the num-
ber of signatures. If parallelepiped classification is cho-
sen, only one output channel can be specified.

The NULLCLAS parameter allows the user to specify
whether every pixel should be classified. If this option is
“YES” then a pixel is assigned to a class only if itis within
the gaussian threshold specified for the class. If it is not
within any threshold, itis assigned to the NULL (0) class.
If the option is “NO” then the thresholds are ignored and
every pixel will be assigned to the most probable class
(i.c., nearest class based on Mahalanobis distance).

Table B1. Irvine.pix database report.

I the MATRIX parameter is turned on (YES) and DBSA
is specified, a confusion matrix report will be generated.
This report is based on the assumption that the values
encoded in the DBSA channel correspond to the classifi-
cation encoding values in the source channel (DBIC).
Furthermore, itis expected that the arcas in DBSA speci fy
either the training areas for the signatures used to create
the DBIC classification, or the testing areas where the user
knows the classes already from reference data. If these
conditions are not met, the confusion matrix report is not
meaningful. If training areas are used, the confusion
matrix gives information on how much of each original
training arca was actually classified as being in the class
that the training was meant to represent. If many pixels in
the training areas were classified in classes different than
those intended, it is likely that the training areas were not
appropriate. Testing arcas arc areas of representative,
uniform land cover that are different from, and consider-
ably more extensive than, training areas. They are often
located during the training stage of supervised classifica-
tion by intentionally designating more candidate training
arcas than are actually needed to develop the classification
statistics. A subset of these may then be withheld for the
postclassification accuracy assessment, again using the
confusion matrix to express the results. The accuracies
obtained in these areas represent at least a first approxima-
tion to classification performance throughout the scene.

An example report generated on the irvine.pix database is
provided in Table B1

30 40 50 60 70 80

Code Name Pixels 0 10 20

10 Waterl 470 0.2 96.4 0.0 2.8 0.6 0.0 0.0 0.0 0.0
20 Water2 145 28 0.7 89.7 6.9 0.0 0.0 0.0 0.0 0.0
30 Urban 3829 1.5 0.0 0.0 92,9 2.7 0.0 0.5 24 0.0
40 Range 1 835 0.0 1.7 0.0 74 79.1 L2 0.0 3.8 6.9
50 Cropl 1536 0.0 0.0 0.0 5.7 4.7 88.4 0.0 0.0 1.2
60  Crop2 2057 47 0.0 0.0 10.2 0.7 0.0 87.5 0.0 0.0
70 Crop3 350 0.0 0.0 0.0 2.0 2.6 0.0 0.0 95.4 0.0
80 Forest 1973 0.0 0.5 0.0 1.3 1.6 0.4 0.0 0.0 962




In this example, of the 470 pixels in the “Water1” training
area, 96.4 percent were classified as *Water1™; 0.2 percent
were not classified at all (0). Looking down the matrix,
“Range” (40) suffered from the worst classification con-
fusion, with only 79.1 percent of the training area classi-
fied as “Range”.

The average accuracy is the average of the accuracies for
each class: the overall accuracy is a similar average with
the accuracy of each class weighted by the proportion of
test samples for that class in the total training or testing set.
Thus, the more accurate estimates of accuracy (i.e., those
from larger test samples) are weighted more heavily in the
overall accuracy.

In the above example, average and overall accuracy are
calculated as follows:

Average accuracy = (96.4 +89.7 + 79.1 + 88.4 + 87.5 +
95.4 +96.2)/8

Overall accuracy = (96.4%470 + 89.7%145 + etc. ... +
96.2%¥1973)/(Pixel sum)



APPENDIX C. BASIC PROGRAM USED TO IMPLEMENT THE BROWSE SUPPLY MODEL.
10 * Program BIOMASS.BAS to find the biomass per ha for FRI polygons

15 B$=SPACES$(10) *23/11/95

20 DIM KGPH(10,5,2) ‘I indexes cover type, I development stage, K stocking

25 DIM DS(10,4,3).WG(10),AREA(10) ‘T and J as above, L indexes site index

27 CLS:LOCATE 10,10, 1:INPUT “File name (fineasta) >" FILES

30 OPEN FILES + “.mod” FOR INPUT AS #1

40 OPEN “KGPH.DAT” FOR INPUT AS #2

50 FOR I=1 TO 10:FOR J=1 TO 5:FOR K=1 TO 2: INPUT #2, KGPH(I,J, K):NEXT:NEXT:NEXT
60 CLOSE #2

70 OPEN "DEV_STG.DAT"” FOR INPUT AS #2

80 FOR L=1 TO 3:FOR I=1 TO 10:FOR J=1 TO 4: INPUT #2,DS(LI,L:NEXT:NEXT:NEXT

90 CLOSE #2

100 * OPEN “DEER.DAT” FOR OUTPUT AS #2 "Append biomass data to file and write

101 ‘out to a new file. Not currently used.

102 ‘Output currently summarized and printed

140 IF EOF(1) THEN 800

150 LINE INPUT #1,A$:INPUT #1,B$ ‘255 byte string AS + rest of string
160 WG$=MID$(A$.96,2) ‘FRI working group extracted

170 SITES=MID$(A$.138,1) ‘FRI site class

180 AGE=VAL(MID$(AS$,128,3)) ‘FRI stand age

185 ACCESS=VAL(MID$(A$,189,10)) "Accessible arca extracted from string
190 STOCK=VAL(MID$(AS$,135,3)) ‘FRI stocking

1951F STOCK <.7 THEN K=1 ELSE K=2  ‘Sels the stocking level to K=1 or 2
200 * Cover type coding based on FRI working group

210 IF WG$="PO"” OR WG$="33" THEN I=1:GOTO 500 ‘Aspen

220 IF WGS$="PB” OR WG$="33" THEN I=1:GOTO 500 ‘Balsam poplar
230 IF WGS="BW" OR WG$="36" THEN I=1:GOTO 500 ‘White birch

240 IF WG$="MH" OR WG$="22" THEN I=2:GOTO 500 ‘Hard maple

245 IF WG$="M * OR WG$="23" THEN I=2:GOTO 500 ‘Maple general
250 IF WG$="OR” OR WG$="28" THEN I=2:GOTO 500 ‘Red oak

255 IF WG$="0 *“ OR WG$="28" THEN I=2:GOTO 500 ‘Oak general

260 IF WG$="MS" OR WG$="24" THEN [=2:GOTO 500 ‘Sofi maples

270 IF WG$="OW” OR WG$="28" THEN 1=2:GOTO 500 ‘White oak

280 IF WGS="AW" OR WG$="20" THEN I=2:GOTO 500 ‘White ash

290 IF WG$="AB” OR WG$="20" THEN [=2:GOTO 500 ‘Black ash

295 IF WGS="A *“ OR WG$="20" THEN 1=2:GOTO 500 ‘Ash general

300 IF WG$="BY” OR WG$="26" THEN [=2:GOTO 500 ‘Yellow birch
305 IF WG$="H ** OR WG$="29" THEN I=2:GOTO 500 ‘Other hardwood
310 IF WG$="S *“ OR WG$="10" THEN I=5:GOTO 500 ‘Spruce general
320 IF WGS$="PW” OR WGS$="01" THEN [=4:GOTO 500 ‘White pine




330 IE WGS$="PR” OR WG$="04" THEN I=7:11=4:GOTO 510 ‘Red pine
340 IE WG$="PS” OR WG$="08" THEN I=7:11=4:GOTO 510 ‘Scotts pine
350 IF WGS="SW"” OR WG$="12" THEN [=5:GOTO 500 ‘White spruce
360 IF WGS="B * OR WG$="13" THEN 1=3:11=5:GOTO 510 ‘Il indexes species group
370 IF WG$="SB” OR WG$="11" THEN I=6:GOTO 500 ‘Black spruce
380 IF WG$="PJ” OR WG$="07" THEN [=7:GOTO 500 ‘Jack pine

390 IF WGS="HE"” OR WG$="16" THEN [=8:GOTO 500 ‘Hemlock

400 IF WG$="CE" OR WG$="17" THEN [=9:GOTO 500 ‘Cedar

410 IF WG$="L * OR WG$="18" THEN I=10:GOTO 500 ‘Tamarack

420 IF WG$="0C” OR WG$="19" THEN I=10:GOTO 500 *Other conifer
430 IF WGS$="C “ OR WG$="19" THEN I=10:GOTO 500 ‘Other conifer
440 IF WGS=" “ THEN 140 ‘Blank working group

450 PRINT “Strange code: “;WGS:STOP

500 * Branch on the basis of site class

501 I1=I1

510 IF SITE$="X" OR SITE$="1" THEN L=1: GOTO 600

520 IF SITES="2" THEN L=2:GOTO 600

530 IF SITES="3" OR SITE$="4" THEN L=3:GOTO 600

540 IF SITE$="* THEN 140

550 PRINT “Strange site code: “;SITE$:STOP

600 IF AGE>DS(I1,4,L) THEN J=5:GOTO 700

610 IF AGE>DS(11,3,L) THEN J=4:GOTO 700

620 IF AGE>DS(11,2,L) THEN J=3:GOTO 700

630 IF AGE>DS(11,1,L) THEN J=2:GOTO 700

640 J=1

700 ¢ Use I, J and K (cover type, development stage and stocking level

710 * to get biomass load (kg/ha) - called KGPH

720 TOTBIO=ACCESS*KGPH(I1.J.K)

730 WG(1)=WG(I) + TOTBIO:AREA(I)=AREA(I) + ACCESS

780 GOTO 140

800 FOR I=1 TO 10

810 PRINT USING “#H# iR # WG(I), AREA(D)

820 SUMBM=SUMBM + WG(I)

825 SUMAR=SUMAR + AREA(I)

830 NEXT

840 PRINT:PRINT USING “###### # #s##" . SUMBM,SUMAR

900 * Termination

910 CLOSE

920 PRINT “Fin"”

930 END




Notes
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