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ABSTRACT

Today, forests are viewed as more than just sources of timber. Although
commercial timber production remains the primary use of Ontario’s for-
ests, their importance is currently recognized for a variety of nontimber
values (e.g., recreation, wilderness, fish and wildlife, water, aesthetics,
education, maintaining biodiversity, and regulating global climate). Thus,
the forest has become a multiuse resource that requires an integrated forest
site management approach to evaluate the biotic and abiotic elements of the
ecosystem, as well as the ecological relationships within and between eco-
systems. One of the objectives of this report is to provide a brief history of
forest management in Ontario and to describe how it has evolved to recog-
nize the importance of ecosystemelements and ecological parameters foran
integrated, multiuse management approach.

A second objective is to review remote sensing methodologies that have
been applied within a forestry context. Although ecosystem parameters are
easily measured on the ground, detailed ecosystem mapping and monitoring
of large tracts of boreal forest have proven elusive. Remote sensing offers
potential for the mapping and monitoring of ecosystems at a variety of
spatial resolutions (scales). During this review, the relationships between
data collection and analysis techniques become a focus for successful forest
information extraction from remote sensing data. As aresult, the impact that
spatial resolution of remote sensing data has on ecosystem information
extraction is also discussed. Here, spatial resolution of remote sensing data
is considered analogous to the scale of the observations, and is therefore
viewed as surrogate for scale. This focus is particularly pertinent since the
spatial resolution (scale) of remote sensing data for information extraction
is currently an important research issue.



RESUME

De nos jours, on considere les foréts comme plus qu'une simple source de
bois. Bien que les foréts de I’Ontario soient surtout exploitées pour leur
bois. on reconnait maintenant leur importance a d’autres égards : loisirs,
espaces naturels, faune (y compris le poisson), flore, eau, esthétique,
éducation, maintien de la biodiversité et régularisation du climat planétaire.
La forét est done devenue une ressource A usages multiples, etune approche
d’aménagement intégré est requise pour évaluer ses éléments biotiques et
abiotiques ainsi que les relations écologiques a I’ intéricur des écosystemes
et entre les écosystemes, Ce document a, entre autres, pour but de faire
brievement I historique de I"aménagement forestier en Ontario et de décrire
son évolution vers une approche d’aménagement intégré et polyvalent qui
reconnait I'importance des divers ¢léments des écosystemes et des
paramétres écologiques.

Le document a aussi pour objet d’examiner les méthodes de télédétection
utilisées en foresterie. S'il est facile de mesurer au sol les parametres des
écosystemes, la cartographie et la surveillance détaillées des écosystemes
sur de vastes étendues de la forét boréale se sont révélées des taches
pratiquement irréalisables. La télédétection présente des possibilités pour
la cartographie et la surveillance des écosystemes a diverses résolutions
spatiales (échelles). Nous mettons I'accent sur les rapports entre les tech-
niques de collecte et d’analyse des données comme un aspect important a
considérer pour I’ extraction réussie de renseignements sur les foréts a partir
des données de télédétection. En conséquence, nous examinons également
'incidence de la résolution spatiale des données recueillies par
télédétection sur I'extraction de renseignements concernant les
écosystemes. Nous considérons la résolution spatiale des données de
télédétection comme analogue de I'échelle des observations. Notre intérét
pour cet aspect est particulicrement pertinent, étant donné que la résolution
spatiale (échelle) des données de télédétection pour I'extraction de
renseignements est actuellement un domaine de recherche important.
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REMOTE SENSING FOR FOREST
ECOSYSTEM CHARACTERIZATION: A REVIEW

INTRODUCTION

Although commercial timber production remains the ma-
jor resource use of Canada’s forests, additional demands
on forested land now include nontimber values such as
recreation, wilderness, fish and wildlife, water, and aes-
thetics. Forests are also becoming valued for education,
maintenance of biodiversity, and regulation of the global
ecosystem. Animproved understanding of forestresources
and the interactions among them is necessary (o view
these values in an integrated manner. Including these
disparate demands within a truly integrated management
system will require further development of forestresource
databases (Forestry Canada 1990).

To achieve an integrated management system for the long
term, detailed knowledge of the structural characteristics
of the forest is required, complemented by an understand-
ing of the relationships between those characteristics and
the environment. Hence, there is a requirement to define
the forest both from an ecosystem (unit) and an ecological
(process) perspective. A wide variety of information can
be accumulated from studying these characteristics and
the relationships between them. This information needs to
be organized and simplified in a manner that facilitates
enhanced decision making at a variety of levels. From an
ecological perspective, this organization has traditionally
been done using quantitative analyses for classification.

A forest classification system must be based on ecological
principles. For ease in applying the classification, it needs
to be based on readily identifiable (or inferred) features of
the land for easy identification in the field. In addition, use
of an hierarchical classification system can support deci-
sion making at several administrative or geographic levels
through the aggregation or disaggregation of the elements
of the classification (Driscoll et al. 1984).

In this report the development of ecological land (forest)
classification for Ontario is discussed, beginning with the
pioneering work of G.A. Hills and colleagues on forest
site characteristics. In his works, Hills stressed the physi-
ographic characteristics of ccosystems since these are
generally stable and largely in control of vegetation devel-
opment (Burger and Pierpoint 1990). Hills® ‘total site
type’ incorporated both the physiographic and biotic ele-
ments of ecosystems and provided the foundation upon
which subsequent forest ecosystem classifications for
Ontario would be based (Hills and Pierpoint 1960).

Detailed hierarchical forestecosystem classifications have
now been developed and implemented for large portions

of northern Ontario (e.g., Jones et al. 1983, Sims et al.
1989). These hierarchical classifications are primarily
designed for field-level mapping and consequently are
difficult to implement for the large tracts of forested land
characteristic of northern Ontario. They are also designed
for mature forest stands (>50 years) and do not apply to
recently disturbed or regenerating sites, or to other land-
cover types within the boreal forest. Although climax or
near-climax stands are likely to be more spectrally ‘unique’,
climax stands alone do not provide managers with suffi-
cient data to manage the forest for multiple uses. For truly
integrated resource management, these additional compo-
nents of the boreal forest need to be considered.

Remote sensing and digital image analysis techniques
offer potential for assisting in the analysis of large forest
tracts for identification of appropriate ecosystem classes,
particularly within an hierarchical classification scheme.
Remote sensing data are generally collected at a single
spatial resolution whereas nature’s elements exist at a
variety of scales. [t is difficult to identify a single spatial
resolution (scale) of remote sensing data that will provide
the most suitable level of information for extracting forest
ecosystem characteristics. Itis anticipated that multiscale
remote sensing data will provide suitable information at a
variety of levels for forest ecosystem classification.

In this report, the evolution of forestecosystem classifica-
tion is discussed in relation to site and stand characteris-
tics, The role of remote sensing forecological and forestry
applications is alsoreviewed along with some of the major
issues indigital image classification. As well, theissues of
spatial resolution (scale) are discussed, particularly with
respect to the relationship between surface features (i.c.,
objects and phenomena that contribute to spectral reflec-
tance) and spatial resolution, and how this relationship
affects classification accuracy. Spatial resolution is con-
sidered analogous to the scale of the observations (Wood-
cock and Strahler 1987) and will be used as a surrogate for
scale (Csillag 1991, Lam and Quattrachi 1992).

FOREST RESOURCE MANAGEMENT

Recently, forest management has emphasized the need to
understand and describe the ecological relations of for-
ests. Treatment of Canada’s forests in this manner pro-
vides additional information about the relationships
between forests and their environment—information
nccessary forsuccessful integrated resource management.
This emphasis on ecosystems also provides abetter under-
standing of forest contributions and/or responses to global



environmental change. It is important that resource man-
agers examine closely the factors that dictate how forests
develop. These factors will vary across Canada, particu-
larly with respect to climate, physiography, and soils. In
addition, management practices will vary between prov-
inces according to utilization pressures, data collection,
and standards for forest management practices. The eco-
system approach is being adopted across Canada, as forest
managers begin to examine forested lands from an ecosys-
tem perspective (e.g., Klinkaetal. 1979, Corns and Annas
1986, Stanek and Orloci 1987, Meidinger and Pojar 1991,
Banner et al. 1993). The following sections briefly de-
scribe the evolution of information requirements for forest
management from an Ontario perspective.

Forest Resources Inventory (FRI)

In the past, emphasis has been placed on managing
Canada’s forest resources for timber and fiber production.
In response to managers’ requirements regarding timber
volume and yield estimates, an inventory of forest stands
was implemented by the Ontario Department of Lands and
Forests. This group established the Forest Resources
Inventory (FRI) section within the Timber Management
Division in 1946. One of the primary objectives of this
inventory was to determine the total quantities and the
locations of merchantable timber in the province by spe-
cies and products. From a management perspective, the
main concern at the time was that of sustainable yield.

In 1921, aerial sketching was introduced in Ontario as a
means of forest mapping; the first aerial photography for
this purpose was acquired in 1926, Over time, aerial
photography, combined with ground sampling, became
the basis for the FRI program. The first document outlin-
ing the forest resources inventory procedure for Ontario
was published in 1960, with subsequent editions in 1965
and 1978 (Ontario Ministry of Natural Resources 1978).
Of primary importance in the inventory is the measure-
ment of parameters that are related directly to timber har-
vesting (e.g., volume estimates). To obtain general statis-
tical data on forest stands, the forest is stratified using
airphoto analysis techniques. Then, sufficient ground sam-
ples are located in each stratum to meet a predetermined
level of accuracy within the stratum, and for the forested
area as a whole (Ontario Ministry of Natural Resources
1978, Schreuder and Bonner 1987). Field-based and air-
photo interpretation data are correlated to extrapolate
statistics for similar stands not sampled in the field.
Parameters measured in the field include species compo-
sition, basal area, age, height, site class, and stocking. For-
est stands are classified for yield forecasting based on a
‘site class” parameter (Plonski 1974), an expression of site
quality determined by the height of dominant or codomi-
nant trees at a specified age (Bonnor and Morrier 1981).

[E%]

While this provides valuable information for estimating
volume and forecasting yield, it is not satisfactory for
prescribing harvesting and silviculture activities (Pierpoint
1986).

Vegetation Ecology: An Introduction

To manage forests effectively, the forest manager must
have a thorough understanding of forest ecology and for-
estecosystems. Inresponse to this requirement, forest site
information is becoming more vital for detailed manage-
ment of forest tracts at both the regional and local levels
(Bonnor and Morrier 1981). This section presents a gen-
eral outline of forest ecology, followed by a brief descrip-
tion of forest ecology research in site classification for the
boreal forest of northern Ontario.

Mueller-Dombois and Ellenberg (1974) describe vegela-

tion ecology as:
“the study of both the structure of vegetation and
vegetation systematics. This includes the investi-
gation of species composition and the sociological
interaction of species in communities, It further
includes the study of community variation in the
spatial or geographic sense, and the study of com-
munity development, change, and stability in the
time sense. Vegetation ecology is concerned with
all geographic levels of plant communities, from
broad physiognomic formations in the sense of
biomes ... to the very fine floristic patterns occur-
ring on an area less than a square meter in size.
Vegetation ecology is very much concerned with
correlations between environment and vegetation,
and with the causes of community formation™ (p-9)

As defined above, the ecosystem approach to forest man-
agement deals with the composition, development, geo-
graphic distribution, and environmental relationships of
plant communities. The emphasis in this paper focuses on
vegelation systematics; that is, the classification of typical
vegelation communities. However, vegetation systemat-
icsisno longerconsidered an end in itself, as environmen-
tal effects on vegetation development must also be
considered. An ecosystem concept emphasizes this point
in that an organism and its environment form a functional
system in nature (Tansley 1933).

Ecosystems are defined based upon both structural and
functional aspects (Mueller-Dombois and Ellenberg 1974),
A forestecosystem, then, can be described, in part, accord-
ing to the vegetation of its component strata, e.g., tree
layer, shrub layer, herb layer, and ground layer as defined
by environmental factors such as climate, physiography,
and soils. In addition, ecosystems are open systems that
have inputs and outputs, and experience a specific set of
responses and processes (Ovington 1962). The ecosystem



concept cannot replace established vegetation and plant
community concepts (Mueller-Dombois and Ellenberg
1974) as these are still necessary to characterize particular
ecosystems in space (i.e., geographically) and over time.
The ecosystem concept, however, emphasizes the need to
consider all of those components that serve to define and
functionally regulate ecosystems.

In classifying ecosystems, the vegetation ecologist aims
to integrate vegetation and environment. Depending on
the emphasis of the particular study, ecosystem bound-
aries can result from plant community boundaries
(Sukachev 19435), soil or landform boundaries (Hills 1960),
or by a combination of vegetation and environmental
characteristics, as preferred by Rowe et al. (1961). The
combined approach has been successful in providing
ccological data for applied research in forest and site
evaluation studies where the ecosystem components can
be employed as indicators of the more transparent site
factors, particularly for growthand yield studies (Mueller-
Dombois and Ellenberg 1974). Ecosystem classification
organizes the knowledge of particular environments, and

provides acommon scientific basis for the managemento f

renewable resources (Klinka et al. 1980). This process
must be initiated by a detailed examination of ecosystem
site paramelers.

Forest Site Characteristics

The Society of American Foresters has generally defined
site as an area, considered as to its ecological factors and
with reference to its capacity to produce forests or other
vegetation: itisthe ultimate expression of the combination
of biotic, climatic, and soil conditions of a (usually) very
localized geographic area (Society of American Foresters
1950). A site region has been characterized by Hills
(1960) as a very broad geographic arca in which the same
vegetation succession will occur on the same physiographic
site, providing the type and degree of disturbance are the
same. This provides a management framework for the
forester whereby silvicultural treatments will be relatively
consistent. The four major descriptors of a site region are
climate, physiography, vegetation (i.c., forest), and soil.
All are closely interrelated, insomuch as change in one
will impact the others (Fig. 1). Hills developed a series of
site region maps for Ontario, initially defining seven
regions based on temperature regime (Hills 1952), and
later incorporating effective humidity to identify addi-
tional site regions (Hills 1958, Hills 1960). Forest species
may occur in several ecoregions, but may exist in associa-
tion withdifferent physiographic conditions within differ-
ent regions.

In a regional context, climate is one of the major factors
affecting forest development, both directly and inrelation
to its influence on soil features and development, and on

Landform Climate

Soil 44— Vegetation

Figure 1. The four major descriptors affecting a site region.

topographic variables (e.g., insolationresulting from slope
and aspect). At the site region scale, macroclimate is con-
sidered to be relatively uniform, since these regions are
established by comparing natural successions of vegeta-
tion on similar landforms, rather than by using metcoro-
logical data (Hills 1960). The site region thereby is
instrumental in forest management, since it represents an
area that will respond similarly to natural disturbances and
forestry practices within similar combinations of land-
forms and forest types (Hills 1960).

For the many interests incorporated into integrated re-
source management, a concept of site is required that can
be tied to a common frame of reference. To achieve this,
itis necessary to look upon site as a total environment; an
integrated complex of all the features withinadefined area
(Hills 1952). However, Hills (1952} stressed thata site can
be characterized by a select number of site components.
Due to their stability, he selected physiographic features
as the primary basis for representing a site.

The management of forest resources is also dependent
upon a knowledge of the biological productivity of the
land (Hills 1961). Ecological principles are used to rate
physiographic sites for potential biologic productivity.
Factors that affect forest growth are identified in Table 1.
It must be remembered, however, that direct correlations
between absolute levels of these factors and forest growth
cannot he established since they are all interrelated, and
the effect of each will vary according to changes in the
other factors (Hills 1960). This knowledge of site pro-
vided the basis for determining the capability of areas for
forest production (e.g., imber-use capability [Hills 1961]).
This theme extended to the Canada Land Inventory and
Ontario Land Inventory of the 1960s and 1970s (Depart-
ment of Forestry and Rural Development 1965, 1966;
Ontario Ministry of Natural Resources 1977). The pur-
pose of these inventories was to collect a mass of infor-
mation on the land’s characteristics and to classify the
land according to its capabilities in each of four sectors:



Table 1. Factors affecting forest growth.

Includes elements that are not nutritive or toxic, but control the degree of

Many of these are directly related to the soil profile, while others are more
closely related to broader land features (e.g., topography, geologic

Includes atmospheric features, such as sunlight, heat, water, and carbon
dioxide, supplied to the above-ground portion of the forest vegetation;
provides mixing of oxygen, carbon dioxide, and heat to the organisms both

Includes all the higher plants that synthesize material from sunlight.

Includes all the animals that consume, either directly or indirectly, the prod-

The group of non-green organisms that reduce organic matler (e.g., micro-

Soil Nutrient elements
Toxic elements availability of nutrients to the plant.
Soil moisture
Soil aeration
Soil structure materials. and groundwater).
Soil reaction (pH)
Climate Atmospheric features
above and below the soil surface.
Vegetation  Forest
Fauna
ucts synthesized by plants.
Saprobes
organisms, fungi).
Human

Human disturbance may be either (1) occasional and/or irregular (e.g.. for-
est fire) or (2) sustained or regular (e.g.. planned logging operations, silvi-
cultural treatments).

(Adapred from Whittaker 1957, Hills 1960.)

agriculture, forestry, recreation, and wildlife. The limita-
tions prescribed to assess forestry capability were climate,
soil moisture, permeability and depth of rooting zone, soil
fertility, toxicity, stoniness, and inundation (Department
of Forestry and Rural Development 1966).

Ecological parameters that are important for silviculture
include soil fertility, slope, soil texture, parent material,
drainage, and aspect. With these parameters, it is possible
to predict the type of regeneration and its potential growth
(Levac 1991). These parameters can only be obtained
through detailed examination of site type. Examination of
the forest environment from this perspective provides a
basis for the initiation of forest classification.

Land (Forest) Classification: The Canadian
Perspective

Forests have been defined from two major perspectives:
the geographic and the ecologic (Hills 1960). An example
of the former includes Rowe (1972) based on Halliday's
(1937) forest classification for Canada. The forest regions
defined by this work are based on forest characteristics
only, and even though climate and physiography may be
described, strong ecological links between the forest and
these factors are not implicit. The ecological approach to
defining the spatial distribution of forests is based on

ecosystem characteristics, structure, and function. These
define the forest—environment relationships to provide a
sound basis for forest management (Hills 1960), which
can be applied at a variety of scales. In essence, the
landscape is perceived as a series of ecosystems, variable
in size and nested within one another in a spatial hierarchy
(Rowe et al. 1961).

The Canada Land Inventory (CLI) was initiated in the
carly 1960s and provided the foundation for subsequent
ccological surveys. It was a cooperative, federal-provin-
cial program administered under the Agricultural Reha-
bilitation and Development Act (ARDA) of June 1961.
The CLIrepresents areconnaissance survey of land capa-
bilities and uses (for forestry, agriculture, recreation, and
wildlife) designed to provide necessary information for
resource and land-usc planning at the municipal, provin-
cial, and federal levels. It was not designed as a manage-
menttoolsinceitdoes not provide the detailed information
required for management of individual parcels (Environ-
ment Canada 1978). Also, since it did not treat the various
components within an integrated framework. it was not a
true ecological classification (Karpuk 1978). For forestry,
the objectives were directed toward providing aclassifica-
tion system rating the potential (productive) capability of
the land under indigenous tree species growing at full



stocking and under good management (Rees 1977). In
Ontario, site regions as defined by Hills (1960) may be
used as bases for the description of forest capability
classes (Boissonneau et al. 1972).

The subsequent development of an ecological (biophysi-
cal) land classification in Canada was based on a need for
baseline data for the interpretation of the Canada Land
Inventory (Wiken and Ironside 1977). It was initiated n
1964 by the National Committee on Forest Land (NCFL),
which established the Subcommittee on Biophysical Land
Classification to study alternatives for a rapid, inexpen-
sive approach to land survey. This subcommittee pub-
lished guidelines outlining a methodology to classify and
map ecologically significant units of land, as depicted by
their inherent biological and physical characteristics
(Wiken and Ironside 1977). These included parent mate-
rial, landform, hydrology, vegetation, climate, and fauna
(Wickware and Rubec 1989). The objective of this inter-
disciplinary survey was to map and describe ecologically
distinct areas of the earth’s surface at a variety of spatial

Table 2. Levels of gencralization for ecological land survey.

scales. The resulting interpretive maps were based on
biophysical and physical characteristics defining criteria
at each level of gencralization (Wickware and Rubec
1989).

Initially, a four-level biophysical land classification sys-
tem was proposed to divide the natural environment into
Jand units that were a combination of landforms and
landform patterns, soils, and vegetation (Lacate 1969)
(Table 2). Each land unit within a particular level is a more
detailed subdivision of the previous level. Since this
system was based on classification of vegetated environ-
ments. il was well-suited to inventories of forest and
forest—tundra regions. These four levels of generalization
were applied in a number of ecological land surveys
(Gimbarzevsky 1978). The basic mapping unit was that of
‘land type’, which distinguishes an area by its surficial
deposits. Forests were then mapped within each land type.

Over the last two decades, numerous ccological land
surveys have been performed in a variety of environments

Level of generalization

Common scales of mapping Definitions

Ecoregion
Land region™®
Site region®*
1:3 000 000 to 1:1 000 000

Land district™®
Site district™*
1:1 000 000 to 1:500 000

Ecodistrict
1:5300 000 to 1:125 000

Ecosection
Land system™
Land type**
1:250 000 to 1:50 000

Ecosite
Land type*
Site type**
1:50 000 to 1:10 000

Ecoelement

1:10 000 to 1:2 500

A part of an ecoprovince characterized by a distinctive ecological
response to regional climate, as expressed by vegetation, soils, water, and
fauna; characterized by regional climate reflected in the vegetation, but is
heterogeneous in terms of other ecological phenomena.

Characterized by a distinct relief pattern, geology, geomorphology. and
associated regional vegetation; range of parent materials.

A part of an ecoregion characterized by a distinctive pattern of relief,
geology, geomorphology. vegetation, soils, water, and fauna.

A part of an ecodistrict throughout which there is a recurring pattern
of terrain, soils, vegetation, water bodies, and [auna.

A part of an ecosection having a relatively uniform parent material,
soil, and hydrology, and a chronosequence of vegetation.

A part of an ecosite displaying uniform soil, topographical. vegeta-
tive, and hydrological characteristics (e.g., plant community).

(Adapted from Hills 1958, Lacate 1969, Karpuk 1978, Environmental Conservation Task Force 1981, Rubec 1983,

Wiken 1986, Wickware and Rubec 1989.)

Represent levels of generalization defined by Lacate (1969).

#% Represent levels of generalization defined by Hills (1958).



within Canada. It was observed that Lacate's original four
levels of generalization often proved inadequate and as a
result these were modified to suit specific environmental
conditions. Forinstance, Thie (1974) observed that Lacate s
system was more land oriented than an integrated land and
water system. As aresult, the levels of generalization have
evolved over the past 20 years. This evolution is not only
in response to a range of different environmental condi-
tions. but also to new mapping technologies that have
become available over the last two decades, including
remote sensing technologies (Legge et al. 1974). These
levels of generalization are presented in Table 2. A sum-
mary of the major developments in forest classification is
outlined in Table 3.

Forest Ecosystem Classification

The pioneering work of G.A. Hills and his colleagues in
developing an ecological framework for recognizing and
describing forest sites in Ontario, along with other
landscape-level and stand-level studies, spawned the de-
velopment of a series of forest ecosystem classifications
(FECs) for northern Ontario. The goal of existing FECs is
to permit the “accurate, consistent and practical descrip-
tion of forest ecosystems so that existing and new manage-
ment knowledge can be organized, communicated and
used more effectively” (Sims and Uhlig 1992, p. 68).
Forest ecosystem classifications aim to contribute to the
organization of silvicultural practices, and to knowledge
about and the application of integrated forest manage-
ment. The framework upon which FEC systems are based
incorporates those components of forest sites that contrib-
ute to forest development (i.e., canopy and understory
vegetation, soils, landform, general climatic regime, and
regional physiography (Fig. 2) (Sims and Uhlig 1992).
Studies that demonstrate the applicability of FECs to
forest management include those by Towill et al. (1988),
Racey et al. (1989), and Wickware (1989).

Forest ecosystem classifications are primarily intended to
be applied at the stand level, and to provide information
about those local forest stands, vegetation, soil, and site
conditions that the forest manager requires to develop
management plans and strategies. It is proposed that this
field-level information be integrated with other scales of
forestry and planning information (Sims and Uhlig 1992).
The basic units of FECs are Vegetation Units and Soil
Units, which are determined through a “key” system
(Sims et al. 1989) (Fig. 2). To adapt to a broader level for
certain management purposes, these field-level units can
be integrated to create ecological units (Hills and Picrpoint
1960), which are also termed operational groups (OGs)
(Jones et al. 1983), treatment units (TUs) (Sims et al.
1989), or site types (STs) (Merchant et al. 1989) (Figs. 2
and 3). These aggregations of FEC soil and vegetation
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lypes possess similar species composition, productivity,
and macroclimatic or ecological properties (Racey et al.
1989), and can be used with existing forest management
knowledge to improve management interpretations and
decisions (Sims and Uhlig 1992) (Figs. 2 and 3).

Forest ecosystem classifications have been completed for
the Clay Belt (Jones et al. 1983). for northwestern and
north central Ontario (Sims et al. 1989), and for sites
supporting red pine (Pinus resinosa Ait.) and white pine
(P. strobus L.) stands in the Algonquin Region of central
Ontario (Merchant et al. 1989). FECs are currently under
development for the Central and Northeastern regions. An
extensive FEC computerized database has been devel-
oped that incorporates detailed soil, site, and vegetation
information from mature or harvestable forest stands.
This database has been used to acquire a better under-
standing of the nature, distribution, and relationships of
site and vegetation in northern Ontario (e.g., Baldwin
et al. 1990, Sims et al. 1990, Sims and Baldwin 1991,
Walsh and Wickware 1991),

There are a limited number of resource survey databascs
available in Ontario, each providing only a part of the
information required for silviculture or integrated re-
source management (Sims and Uhlig 1992). A compre-
hensive summary of resource inventories for Ontario has
been published by Pierpoint and Uhlig (1985). Some of
these are outlined in Table 4, along with an interpretation
of their overall ability to provide information for inte-
grated resource management. Note that the FEC provides
more information related to the forest stand and site, and
is therefore a more amenable application to integrated
resource management.

Summary

Forest information requirements in Ontario have evolved
from primarily inventory data to integration of site and
forest conditions for a more comprehensive approach to
forest ecosystem characterization. The importance of de-
scribing a forest from a more holistic viewpoint has been
recognized by resource managers as a requirement for
integrated resource management. Although forest ecosys-
tem classification cannot solve land-use problems, it pro-
videsabasis forimproved forest productivity and integrated
management at a time when forest resources are under
increasing pressure (Klinka et al. 1980).

Forests of the future will be more planned, managed. and
regulated in a conscious effort to maintain biological
diversity and support arange of forest values, not just tim-
ber resources. At the same time, some areas will be more
intensely managed for timber and fiber production (For-
estry Canada 1990). It is proposed that these objectives
can be achieved through the maintenance of ecosystems at



Table 3. An evolution of land classification in Ontario.

Reference(s)

Svnopsis

Landscape level
Halliday 1937

Rowe 1972

Hills 1952, Hills 1958,
Hills 1960, Hills and
Pierpoint 1960

Department of Forestry
and Rural Development
1965, 1966

Ontario Ministry of
Natural Resources 1977

Lacate 1969,
CCELC 1976

Wickware and Rubec 1989

National Vegetation
Working Group 1990

State of Environment
Reporting (SOER)
Group of Environment
Canada, Ottawa, 1994

Stand level

Hills et al. 1960
(from Sims and
Uhlig 1992)

Zoltai 1965,
Zoltai 1974

Jones et al. 1983

Merchant et al. 1989,
Sims et al. 1989

Produced the original work ‘Forest Regions of Canada’; a comprehensive description of
areal distribution of Canada’s forests.

Revised the work of Halliday's ‘Forest Regions of Canada’.

Development of the *Ontario Site Classification System’; an hierarchical classification
that emphasized physiographic characteristics of sites and was organized as a multilevel
framework for forest management.

Stemming from the mapping techniques developed by Hills et al., the ‘Canada Land
Inventory' (CLI) was developed. It evaluated land capability across Canada at scales of
1:250 000 and smaller.

Similar to the CLI, the Ontario Land Inventory (OLI) was developed as a land capability
evaluation program for extensive portions of the province.

Also based on Hills" work, techniques were adapted for an extensive set of land-
classification surveys conducted in northern Canada during the 1960s and 1970s (*Eco-
logical Land Classifications’); these programs were intended to provided multiple-
resource inventories of northern terrain or broad-area treatments at a regional or pro-
vincial level.

‘Ecoregions of Ontario’ is a synthesis and integration of a wide range of environmental
information for Ontario within the national ecological database framework developed
by the CCELC since 1976.

The proposed “Canadian Vegetation Classification System™ uses a combination of
physiognomic, structural dominance, and floristics criteria in a seven-level hierarchy.

Ongoing activities of the SOER Group to develop a nationally acceptable set of
Ecozones and Ecoregions based upon climate, physiography, vegetation, and broad soil/
landform patterns; in Ontario, Hills' site regions are prominent in the definitions of
main terrain  units.

Examined forest succession patterns as they relate to physiography in the northern Clay
Belt (soil moisture regime, depth to bedrock, landform, and humus types were recorded
for each vegetation type).

Hills” approach was applied to an area in northwestern Ontario where 24 land types
were identified based on geologic material, soil texture, soil depth, stoniness, and com-
mon overslories.

The first in a series of forest ecosystem classification (FEC) programs was completed
for the northern Clay Belt.

FEC completed for the Algonquin Region and northwestern Ontario; underway in other
parts of the province.

(Adapted from Hills 1960, Rowe 1972, Sims and Uhlig 1992.)
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Figure 2. Ecological relationships determining forest production ( Adapted from Hills and Pierpoint 1960, Raceveral. 1989).
* Analogous terms for the NWO FEC (from Sims and Uhlig 1992).

the landscape and stand levels. However, this can only be
successful when forest resource managers have the neces-
sary resource information need to effectively evaluate

multiple uses.

REMOTE SENSING IN FORESTRY

Remote sensing is the science of deriving information
about an object from measurements made at a distance.
The quantity most frequently measured in present-day
remote sensing systems is the electromagnetic energy
emanating from objects of interest as opposed to other
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With the launch of the first Earth Resources
Technology Satellite (ERTS-1) in 1972
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(laterrenamed Landsat-1), ancw erabegan
with respect to land resource mapping.

Figure. 3 Organization of FEC soil and vegetation types (with the input of
management information and knowledge; management interpretation may

be developed iteratively (from Sims and Uhlig 1992).

possibilities (¢.g., seismic waves, sonic waves, and oravi-
tational force) (D.A. Landgrebe, in Swain and Davis
1978). Remote sensing of electromagnetic energy in the
visible and near-infrared portions of the spectrum at high
and medium spatial resolutions (i.e., 1 m to 80 m) will be
the primary focus of attention in the following sections.
These are the primary data used for analysing vegetation
at site and landscape scales.

Remote sensing in forestry can be divided into two major
components: data acquisition (using sensors to record
variations in the way carth’s surface features reflect or
emit electromagnetic energy) and information extraction
(data analysis using visual or digital techniques). Both
these components are closely related, in that the method
by which remote sensing data are collected has a direct
impact on the type of information that can be extracted. As
a result, most remote sensing data are collected in a
specific manner to optimize information extraction.

Remote Sensing of Forests

Remote sensing data used in forestry studies range from
coarse-resolution weather satellite data (>1km) to high
spatial and spectral resolution data acquired with airborne
sensors (£10m). Medium- and coarse-resolution earth
resources satellite data with spatial resolutions ranging

Never before was systematic, repetitive,
medium-resolution (i.e., 80 m) multispec-
tral data available for the earth’s surface.
The Multispectral Scanner (MSS) has been
carried by each of the five satellites launched
in the Landsat series to date. Landsat-4,
launched in 1982, carried a second scan-
ner, the Thematic Mapper (TM). Currently, Landsat-5
carries both of these multispectral scanners. The Landsat
program has provided data for over two decades and
[Landsat-5 continues to be in operation. The spectral,
spatial, and temporal characteristics of Landsat sensors
arc outlined in Table 5. In 1986, France launched the first
of a series of earth-observation SPOT (“La Systeme Pour
I'Observationde la Terre” [“Earth-Observation System™])
satellites. These satellites incorporate linear-array detec-
tors! to acquire data at higher spatial resolutions than does
Landsat (Table 5).

A number of studies have been carried out to compare data
acquired from different satellite sensors used in forest
research. Lulla (1983) provides a useful summary of
studies where Landsat MSS data were used for vegetation
analysis and mapping. In comparing Landsat MSS and
TM data for forest-species identification, Evans and Hill
(1990) found that TM performed slightly better than did
MSS fordiscriminating among pine species, butit was not
significantly better for separating pine and hardwood
stands. However, Williams and Nelson (1986) achieved
a 20 percent improvement in the mapping of detailed
Level I (Anderson etal. 1976) forest cover with TM data
as opposed to MSS. This is the most detailed level of

! Lincar arrays normally consist of a series of charge-coupled devices (CCDs) positioned end-to-end. Each detector element is
dedicated to sensing a defined range of electromagnetic energy for a single ground resolution cell along any given scan line. The data
for each scan line are electronically complied by sampling each element along the array (Lillesand and Kiefer 1994). This technology
eliminates the need for a rotating mirror to scan across the ground surface, thereby increasing the amount of time that electromagnetic

energy can be collected by a detector element.
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Table 4. An estimate of the abilities of existing resource inventories in Ontario (o meet some of the information re-

quirements for integrated resource management.*

FRI FEC Agriculture OLI SO/NO
soil survey EGTS

Planning horizon

Short-med. term (1-5 yr.) ). 0. Gl XX X X X

Long-term (5-20 yr.) XX XX XX XX XX
Normal scale/resolution 1:20 000 Ground-based 1:10 000 1:250 000 1:100 000

(variable)
Extent of coverage in Ontario Widespread ~ Local surveys Scattered Widespread ~ Widespread
(small arcas)

Species composition XX XX O O 0
Working group XX X O O 0
Stand density and spacing XX X @] (@] 0
Present productivity XX XX O O 0
Potential site quality 0] XX XX X X
Product type/product amount X X 0O @] O
Noncommercial forest types X X X O O
Depth of mineral soil O XX XX X X
Depth/type of organic matter O X XX X X
Soil moisture regime O XX XX XX X
Soil texture (@] XX XX XX XX
Macro/microtopography 0 X XX X X
Surficial geology/landforms O X X X XX
Wildlife browse prediction O XX X 0O O
Fisheries concerns X X XX X XX
Competition prediction 0 XX X 0] 0
Windfirmness X X X O (@)

* FRI = provincial Forest Resources Inventory (Obsborne 1989); FEC = Forest Ecosystem Classification; OLI =
Ontario Land Inventory (Ontario Ministry of Natural Resources 1977); SO/NO EGTS = Southern Ontario -
Northern Ontario Engineering and Terrain Survey Maps (e.g., Mollard and Mollard 1981).

** (O = not useful, X = useful. XX = very useful). (From Sims and Uhlig 1992.)

Anderson et al.’s (1976) land cover / land use classifica-
tion system for use with remote sensor data (1:20 000-
1:80 000 scale). Bradbury ctal. (1985) compared Landsat
MSS and TM data for classifying woodland and other
land-cover types for an area in South Wales. It was found
that TM data achieved 90 percent classification accuracy
for woodland and provided suitable accuracy levels for
identification of some tree species. In asimilar study using
MSS and simulated TM data over an agricultural area,
Badhwar et al. (1984) found that although there was a
decrease in mixed pixels at field boundaries, there was an
increase in within-field variability, which may lead to
poorer classification results. Horler and Ahern (1986)
found the middle-infrared bands of Landsat TM to be
particularly useful for analyzing stem density of conifer-
ous forests, especially for forest regeneration sites in
northwestern Ontario,
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In comparisons of Landsat TM and SPOT multispectral
(XS) data for biophysical analysis, Ripple et al. (1991)
determined that the near-infrared bands of both sensors
had strong negative correlations to the logarithm of soft-
wood volume (XS 3. r = -0.89; T™M 4, r = -0.83). In
addition. Ripple et al. (1991) determined that XS and TM
data sets exhibited high band-to-band correlations. In a
similar study of forest inventory parameters, Brockhaus
and Khorram (1992) found that TM data were more likely
to be significantly correlated with stand parameters. such
as basal area and age class, than was SPOT data. When
cquivalent bands of the two sensors were used to classify
six forest classes and one water class in scenes from North
Carolina, SPOT achieved slightly better accuracy (74.4
percent versus 70.8 percent). However, when all TM
spectral features were included in the classification pro-
cess. overall accuracy increased to 88.5 percent. This



Table 5. Earth resource satellite systems.

Sensor Spectral range Number of Spatial resolution Temporal
{mm) spectral bands (m) resolution (days)
Landsat
Multispectral Scanner (MSS) 0.5-0.6 4 80 16
0.6-0.7 80
0.7-0.8 80
0.8-1.1 80
Thematic Mapper (TM) 0.45-0.52 7 30 16
0.52-0.60 30
0.63-0.69 30
0.76-0.90 30
1.55-1.75 30
2.08-2.35 3
10.4-12.5 120
SPOT*
HRV (XS) 0.50-0.59 3 20 26
0.61-0.68 20
0.79-0.89 20
HRV (P) 0.51-0.73 1 10 26

# SPOT consists of two identical High Resolution Visible imaging systems—each of which can operate in cither
three-band multispectral mode (XS) or single-band panchromatic mode (P).

Pointable optics (through a range of +/- 27° off-nadir) provide potential for increased temporal coverage.

(Adapted from Lillesand and Kiefer 1994.)

would indicate that the spectral resolution of TM is more
important than the improvement in spatial resolution that
SPOT XS provides. The importance of the additional
spectral bands of TM (e.g., mid-infrared) for discriminat-
ing ground features has been confirmed for other sites
with different environmental conditions (Nelson et al.
1984, Williams and Nelson 1986, DeGloria and Benson
1987, Chavez and Bowell 1988, Franklin and Wilson
1991, Joria et al. 1991).

Airborne Remote Sensing

Airborne remote sensing systems present a versatile alter-
native to spaceborne satellite systems. Airborne systems
are flexible with respect to data acquisition parameters
(e.g., time of acquisition, frequency of coverage, and
spatial resolution). As a result, they provide the best
opportunity to collect data that are optimal for extracting
specific forest parameters of interest to the user (e.g.,
damage assessmentduring insectinfestations, monitoring
regeneration, and analysing forest structural parameters).
However, the optimal conditions for data collection are
not readily known. In addition, certain characteristics of
high spatial resolution data (e.g.. spectral variability,
bidirectional reflectance) have confounded cfforts to ex-
tract forest information digitally from remote sensing
data. Details of forest stand structure (e.g., density, crown

closure, understory) create a very complex mosaic of
spectral reflectance values at high spatial resolutions. A
review of remote sensing studies using airborne multi-
spectral scanners and imaging spectrometers is presented
below. An emphasis is placed on Canadian sensors and
studies.

Multispectral scanner (MSS) data acquired from aircraft
can be used as a primary source of information, as supple-
mental data to support more extensive satellite surveys or
to provide a testing ground for proposed satellite sensors.
Numerous forestry applications for airborne multispectral
scanners can be found in the literature. For ecxample,
airborne MSS have been used for forest studies on a stand
(Teilletetal. 1981, Irons etal. 1991, Franklin etal. 1991,
Miller et al. 1991) and single-tree basis (Hughes et al.
1986, Yuan et al. 1991), and for estimating biophysical
parameters such as biomass (Jensen and Hodgson 1983),
green leaf-arca index (Curran and Williamson, 1987), and
forest-stand parameters (e.g., tree height, crown closure,
tree and stand vigor, stand age) (Butera 1986, Danson,
1987). Measurements of these parameters may then be
used to model additional stand characteristics such as
basal area and volume (Smith 1986, Hall etal. 1989). For
example, three canopy-closure classes (0-25, 25-75, and
75-100 percent) were modeled using Thematic Mapper



Simulator (TMS) data with prediction accuracies of 71,
74, and 57 percent, respectively (Butera 1986). Two air-
borne sensors, both developed in Canada, have contrib-
uted significantly to forestry research and are worth
discussion. These arc the Multi-detector Electro-optical
Imaging Sensor (MEIS) and the Compact Airborne Spec-
trographic Imager (CASI).

The MEIS was developed in the late 1970s and early
1980s by MacDonald, Dettwiler and Associates (MDA)
under contract to the Canada Centre for Remote Sensing
(CCRS) to assist in the evaluation of linear-array technol-
ogy and to develop remote sensing applications for this
technology (Neville et al. 1990). The MEIS became the
primary sensor of the CCRS electro-optical facility before
being handed over to the private sector for operation. The
MEIS is a high-performance digital multispectral imager
that incorporates a linear-array design to improve radio-
metric? and geometric fidelity in comparison to traditional
opto-mechanical multispectral scanners and survey cam-
eras (Till 1987). The MEIS is an 8-channel imager, with
the capability of incorporating a variety of lens and filter
combinations, including continuous for—aft stereo acqui-
sition. Detailed descriptions of the MEIS can be found in
Zwick et al. (1978), Zwick (1979), McColl et al. (1983),
and Till et al. (1983).

Airborne multispectral scanners have been used for iden-
tifying arcas of eastern spruce budworm (Choristoneura
Jumiferana [Clem.]) damage (Ahern et al. 1986), and for
improved estimation of insect damage on a per-tree basis
as compared to conventional color infrared photography
(Kneppeck and Ahern 1989). They have also been used
successfully in discriminating tree species using principal
components analysis (Leckie and Dombrowski 1984),
evaluating forest regeneration (Brand et al. 1991), and
assessing spruce budworm damage on astand (Ahernetal,
1991a) and single-tree basis (Leckie et al. 1992). Treitz et
al. (1992) reported variable results for identifying detailed
ecological classes using 5-m resolution MEIS data in
conjunction with a parametric classifier. These variable
classification accuracics were attributed to the large spec-
tral variance of forest stands caused by heterogeneous
canopies at that resolution.

To date, satellite data have provided relatively poor spa-
tial, spectral, and temporal resolutions for the detailed
study of forest-stand dynamics. Even with airborne mul-
tispectral scanners, remote sensing data collection is lim-
ited to a specified and finite number of spectral bands.
However, in the past decade, imaging spectrometers have
been developed to acquire continuous spectra over land
and water surfaces. These include the Airborne Imaging
Spectrometer (AIS) (Vane et al. 1984). Advanced Solid-
State Array Spectroradiometer (ASAS) (Ironsetal. 1991),
Airborne Visible-Infrared Imaging Spectrometer
(AVIRIS) (Vane et al. 1987, 1993), Fluorescence Line
Imager (FLI) (Borstad et al. 1985), Compact Airborne
Spectrographic Imager (CASI) (Babey and Anger 1989,
Borstad etal. 1989), and the proposed Shortwave Infrared
Full-Spectrum Imager (SFSI) (Neville and Powell 1992).
Research into the development of these airborne sensors
and analysis of high spectral resolution data (Gai 1993,
Kruse etal. 1993) will provide a background for develop-
ment of spaceborne imaging spectrometers for the Earth
Observing System (EOS).? Some potential sensors are the
Moderate Resolution Imaging Spectrometer (MODIS)
(Ardanuy etal. 1991), the High-Resolution Imaging Spec-
trometer (HIRIS) (NASA 1987, Goetz and Herring 1989)
and the European Space Agency’s proposed Medium-
Resolution Imaging Spectrometer (MERIS) and High-
Resolution Imaging Spectrometer (HIRIS) (Iantoscaet al.
1992). The development of high spectral resolution imag-
ing spectrometers will permit improved study of those
narrow-band spectral reflectance features that are charac-
teristic of specific vegetation canopies.

Through field and laboratory studies, a variety of these
narrow spectral band features have been shown to be
related to changes in vegetation condition and amount.
These include physiological characteristics such as chlo-
rophyll amount and/or type (Horler et al. 1983; Rock etal.
1988, 1994; Vogelmann et al. 1993) and canopy chemical
characteristics and theirrelation tocarbon cycling (Peterson
ct al. 1988; Wessman et al. 1988, 1989). High spectral
resolution sensors can also be used in the study of bidirec-
tional reflectance characteristics of forest canopies (c.g..
Abuelgasim and Strahler 1994, Ranson et al. 1994). An
understanding of these characteristics is essential for the

2 Radiometric fidelity refers to the sensitivity of a sensor/detector to detect subtle changes in energy flux at the surface that is being
sensed. For digital sensors, radiometric resolution generally refers to the range of digital values that a sensor will record for any given

surface (e.g., 8 bit or 236 grey levels).

' The Earth Observing System (EOS) is one of the primary components of the NASA-initiated conecept Mission to Planet Earth
(MTPE). The MTPE is an international carth science program aimed at providing the observations, understanding, and modeling
capabilities needed 1o assess the impacts of natural events and human-induced activities on the earth’s environment. EOS is the
centerpiece of NASA's contribution to the program. Itincludes a series of polar orbiting platforms for long-term global observations,
operated in coneert with poplar-orbiting and midinclination platforms developed by Europe and Japan. The EOS is envisioned to begin
in 1998 and continue for at least 15 years (from Lillesand and Kiefer 1994).
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correlation of remote sensing measurements with bio-
mass, species composition, stand structure, and reflectance.

Imaging spectrometry data, in conjunction with suitable
analysis techniques, may provide a basis for quantita-
tively measuring phenological change in vegetated terrain
that results from changes in primary productivity and
vegetation vigor. The phenological changes may be in
response to regional- and/or global-scale environmental
or climatic changes (Miller et al. 1990a). Two assump-
tions must be satisfied if imaging spectrometry is to be
useful in the biophysical analysis of terrestrial ccosystems
(NASA 1987). First, there must be a strong correlation
between canopy characteristics and the rates at which
processes important to the biosphere occur. Second, these
canopy characteristics must be successfully measured
using high spectral resolution remote sensing data. Miller
etal.(1990a) identified the most significant biogeophysical
parameters that can affect plant vigor and primary produc-
tivity in terrestrial ecosystems as (i) leaf chlorophyll
content, (i) photosynthetically active radiation (PAR),
(iii) canopy water content, and (iv) soil nitrogen content.
The authors proposed that it is possible to derive chemical
and morphological characteristics from a variety of spec-
tral reflectance parameters that can be measured using
various remote sensing tools. These include the measure-
ment of red-edge* spectral position (Horler et al. 1983;
Rock et al. 1988: Boochs et al. 1990; Miller et al. 1990b.
1991 Elvidge etal. 1993; Vogelmannetal 1993), normal-
ized difference vegetation index (Tucker et al. 1986),
moisture stress index (Cohen 1991), and shortwave infra-
red reflectance parameters related to canopy chemistry
parameters (Peterson et al. 1988; Wessman ct al. 1988,
1989). Further examples of the use of remote sensing data
in biophysical studies are discussed later (see Biophysical
Remote Sensing).

The FLI, also known as the Programmable Multispectral
Imager (PMI) and CASI systems have contributed a great
deal to the development and future of imaging spectrom-
etry technology in Canada (Gower et al. 1992, Staenz
1992). Both systems are able to collect data in two modes:
spectral mode, where continuous spectra for ground reso-
lution elements are collected for up to 288 spectral bands:
and spatial mode, where amore limited number of spectral
bands is recorded. but complete spatial coverage [or the
swath is provided (Table 6).

The FLI was designed as a prototype instrument for the
federal Department of Fisheries and Oceans, primarily to

map ocean and coastal phytoplankton concentrations by
imaging the emission from solar-induced fluorescence of
chlorophyll a (Gower et al. 1992). Although the FLI was
applied mainly to mapping of chlorophyll fluorescence
and bathymetry, some terrestrial studies were also per-
formed, particularly the detection and monitoring of chlo-
rophyll red-edge spectral characteristics and associated
responses to stress (a shift towards the shorter wave-
lengths known as the “blue shift”) (Rock et al. 1988,
Gower et al. 1989).

The CASI has been involved in a number of forestry
studies with encouraging results. Representative studies
include measuring vegetation red-edge parameters (Miller
etal. 1991), recording spectral signatures for tree species
(Gongetal. 1992b), determining surface reflectance aniso-
tropy (Franklin etal. 1991), and identifying forest species
and stand parameters (Franklin etal. 1991, Gillespie et al.
1992, Franklin 1994). Palmier and Ansscau (1992) used
laboratory studies of spectra, specifically the red edge, to
define spectral bands for CASI data collection to assess
chlorosis and stress in sugar maple (Acer saccharum
Marsh.). For forest-cover mapping, it has been demon-
strated that high-resolution CASIdata (2.5 m) were highly
successfulindiscriminating lodgepole pine (Pinus contorta
Dougl.), balsam poplar (Populus balsamifera 1.), trem-
bling aspen (Populus tremuloides Michx.), and cotton-
wood (Populus trichocarpa Torr. & Gray) without the
addition of ancillary variables (Franklin etal. 1991). The
authors also confirmed the variability of remote measure-
ments of radiance as a consequence of topography and
viewing-angle changes. This is a significant observation
and underlies the importance of atmospheric corrections
for application of remote sensing data in biophysical
analysis and classification.

Forest Information Extraction

Remote sensing data can be used for a variety of applica-
tions in forestry. The following discussion examines uses
of remote sensing for monitoring forest change and bio-
physical parameters, and for mapping and classifying
forest stands.

Change Analysis

The repetitive, synoptic coverage of satellite, and to a
lesser extent, airborne remote sensing systems provides
for the monitoring of dynamic change in forest environ-
ments, This ranges from dramatic short-term changes
(e.g., forest harvesting, fire, insect damage) to more subtle

* The red edge is the slope of a reflectance spectrum over the range 0.68 to 0.76 um. Shifts to longer or shorter wavelengths are used
to document changes in the chemical or morphological status or health of plants. For example, trees stressed by high concentrations
of heavy metals in the soils generally display a characteristic shift of the red edge toward shorter wavelenghts. often referred to as the

blue shift (Lillesand and Kiefer 1994).
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Table 6. A comparison of the Fluorescence Line Imager (FLI) and the Compact Airborne Spectrographic Imager

(CASI) sensors.

Parameter

FLI

CASI

Spectral coverage

Spectral mode

Spatial coverage

Spatial mode

430 nm to 800 nm using 288 detectors;
pixel size 1.3 nm; spectral resolution
2.5 nm

Spectra are recorded from 40 directions
across the swath; bandwidth and look
direction are under software control.

70° swath, 5 cameras, 1 925 detectors:
spatial resolution 1.3 mrad

Spectral pixels are grouped to form a
pushbroom image about 1 900 pixels
wide in each of eight spectral bands;
band width and spectral position are

418 nm to 926 nm using 288 detectors; sampling
interval 1.8 nm; spectral resolution 2.9 nm

39 spectra of the full 418 nm to 926 nm range
are recorded, with 2.9 nm resolution, from 39
different directions across the swath: a full-
resolution image at a predetermined wave

length is also recorded to assist in track recovery.

35.5% swath, with standard lens; single camera
gives 612 pixels; sampling interval 1.2 mirad;
spatial resolution 1.6 mrad

Spectral pixels are grouped to form up to 15
bands (512 pixels wide); band width and
spectral position are under software control; the
number of bands governs the integration time.

under software control.

(Adapted from Gower et al. 1992.)

long-term changes in forest ecosystems (c.g., succession,
growth/regeneration, primary productivity). In the latter
sense, satellite data should prove useful for monitoring
ecosystem responses caused by environmental change.

For monitoring change caused by harvesting or insect
activity, temporal satellite data can be used to identify
significant levels of forest canopy alteration. Initially,
only changed versus unchanged canopies require identifi-
cation (Nelson 1983). Once areas of change have been
identified, more detailed sampling can be undertaken to
define the nature of such changes. Landsat TM has be-

come an operational tool for the identification of areas of

dramatic change, usually caused by harvesting or fire. As
aresult, Landsat TM has been used to update large forest
databases (Pilon and Wiart 1990, Maclean et al. 1992,
Maus et al. 1992).

Insect, disease, and environmental damage to forest tree
species has long been of primary interest to forest manag-
ers. Mapping and quantification of forests damaged by
biotic and abiotic factors is crucial to managing forest
operations, in particular for the planning of control or re-
medial programs. For instance, in 1985, the eastern spruce
budworm (Cheristoneura fumiferana Clem.) inflicted

moderate and severe defoliation on 25.2 million hectares
in eastern Canada, the Great Lakes States, and the north-
castern United States (Leckie et al. 1988b). Early identi-
fication of areas affected by insect damage, and timely
information on rates of spread/movement, in particular,
are required as one component of a program to ensure the
long-term viability of the forest industry in Canada.

Satellite sensing of insect damage is somewhat limited
due to low spatial resolution, poor spectral characteristics,
and restricted acquisition times of existing platforms
(Nelson 1983, Rencz and Nemeth 1985), although more
recent high spatial resolution satellites with pointable
optics (i.e., SPOT) have demonstrated some success
(Franklin and Raske 1994). Efforts toward classifying
levels of damage caused by spruce budworm have been
mainly limited to airborne systems (Ahern et al. 1986,
Leckic and Ostaff 1988, Ahern et al. 1991a).

Leckie (1987) has provided a useful review of the factors
affecting defoliation assessment using airborne MSS data
and of the problems encountered. Rescarch examining the
spectral characteristics of cumulative damage caused by
spruce budworm, leading to selection of optimal sensor
spectral bands, has been carried out by Leckie et al.

? Pointable optics provide the opportunity for side to side off-nagir viewing. The allows for more frequent coverage of a specific arca,
as well as for full-science stereoscopic imaging from two different satellite tracks (Lillesand and Kiefer 1994).
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(1988a, 1988b, 1989). The spectral differences observed
as aresult of defoliation were wide spectral-band features,
with the blue, red, near-infrared, and middle-infrared
showing the greatest sensitivity for discrimination. Al-
though current airborne and satellite sensors operate in
these bands, there is a potential for optimizing sensor
spectral bands (Leckie et al. 1988b). Examples of remote
sensing studies dealing with forestdamage assessmentare
prescented in Table 7. From examination of these studies,
it is evident that (i) the ability to remotely detect forest
damage is related to the actual extent of damage: (11) high
spatial resolution data are generally required to quantify
the changes that can be detected; and (iii) in general. visual
assessment in combination with expert knowledge may be
more successful than digital analysis of high-resolution
data for monitoring change.

Ahern et al, (1991a) identified three areas of research
required for spruce budworm damage assessment. These
were (i) identification of optimal cost-effective spatial
resolutions, (ii) radiometric corrections for large off-nadir
viewing angles, and (iii) development of reliable methods
for correcting for variable atmospheric path radiance and
transmission. As these current limitations are overcome,
operational aerial defoliation survey methods using mul-
tispectral scanner data should become feasible.

Biophysical Remote Sensing

In addition to identifying short-term change, remote sens-
ing data can also be used to collect biophysical informa-
tion that can be useful for monitoring and predicting
long-term changes to ecosystems. In his review article on
biophysical remote sensing, Jensen (1983) stated that data
collected by remote sensing (ratio-scaled data) for bio-
physical variables may be more suitable for modeling and
simulation than are land-use and land-cover information
(nominal-scaled data), which are often used in modeling
physical processes. Recent studies using remote sensing
methods have focused on the study of biogeochemical
processes, including biogeochemical cycles. For these
studies, inventories of vegetation characteristics (e.g..
biomass, primary productivity. photosynthetic activity)
and physiologic processes (transpiration flux, leaf mois-
ture content) are essential.

Characteristics of aplantcanopy (e.g., composition, height,
density, sociability) are, collectively, strong indicators as
to the state of an ecosystem as a whole, and represent the
physical interface for which optical remote sensing is able
to provide quantitative measures. Forexample, changes in
water and nutrient availability are reflected in the amount
and seasonal duration of leaf area, in addition to changes
in reflectance (NASA 1987). Conventional forest inven-
tories acquired through the analysis of aerial photographs
provide a starting point for predicting forest growth by

characterizing forest stands with respect to species, age,
stocking. and site quality. However, these standard forest
inventories fail to describe stands adequately in terms of
the key determinants to stand growth—the structure and
quantity of the foliage present in the stand canopy.

Satellite data provide an attractive potential solution to
this problem since these data are able to quantitatively
characterize stand canopies via spectral reflectance at
frequent intervals (Ahern et al. 1991b). In fact, the first
five spectral bands of the Landsat TM sensor (Table 5)
were designed to sense the biophysical properties of
vegetation (Lillesand and Kiefer 1994). Some fundamen-
tal biophysical variables that can be measured directly
include color and spectral signature, vegetation chloro-
phyll absorption characteristics, vegelation biomass, veg-
etation moisture content, soil moisture content,
temperature, and texture/surface roughness (Jensen 1983).
As an example, all other conditions being equal, a de-
crease in vegetation moisture content will be accompa-
nied by an increase in reflectance in the middle-infrared
spectral wavelengths. Hybrid variables can be derived
from fundamental variables (e.g., vegetation stress can be
derived from vegetation chlorophyll absorption charac-
teristics and moisture content) (Jensen 1983). In addition
to forest cover type, the most common forest characteris-
tics that have been studied with remote sensing data
involve stand structure; in particular, crown closure, basal
arca, leaf-area index (LAI), and tree size (Spanner et al.
1984a, Franklin et al. 1986, Peterson et al. 1986).

Jensen (1983) warns, however, thatin order to extract mean-
ingful information on biophysical properties the nature of
spatial, spectral, temporal, and radiometric resolutions
must be understood. These properties are looscly coupled
with a number of factors that influence the optical pro-
perties of forest canopies. It is particularly important to
understand the effects of these parameters on forest can-
opy spectral response in order to quantitatively interpret
biophysical variables. These factors are summarized in
Table 8. For example, correcting for atmospheric effects
increases the slope of the regression line for TM spectral
radiance and LAIL thereby producing greater sensor sen-
sitivity to LAI (Spanneretal. 1984b, Running etal. 1986).

Estimates of ground biophysical variables from spectral
reflectance measurements can be derived using two types
of analysis techniques: (i) deterministic or stochastic can-
opy radiation models, or (i) empirical spectral indices.
Analytical techniques model the radiative transfer process
between the land surface and the sensor to invert reflec-
tance measurements to a particular physical parameter
(Otterman et al. 1987, Goel 1988). Goel (1988) presents a
useful overview of the factors affecting canopy reflec-
tance (e.g.. incoming solar flux. spectral properties of
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Table 7. Examples of damage assessment of forests using remote sensing.

Condition

Synopsis

Reference

Insect damage

Spruce budworm

Spruce budworm

Spruce budworm

Mountain pine
beetle*

Eastern hemlock
looper**

Mountain pine
beetle

Hail damage

Sugar maple®**
decline

Spruce budworm

Norway
spruce**#*
defoliation

Spruce budworm

Used multitemporal Landsat MSS data and vegetation difference
index to identify areas of forest canopy change.

Due to the date of SPOT simulation data acquisition (18 June 1983).
spruce budworm damage assessment was limited: able to separate the
previous years defoliation into two levels (severely defoliated and
dead trees).

Evaluated the factors affecting defoliation assessment (radiometric,
topographic, scene related, ete.) and emphasized that the magnitude
of these factors can be larger than the range of differences between
healthy and severely defoliated trees.

From in situ spectrometer measurements, determined that the most
effective bands for discriminating different levels of defoliation were:
2030-2210, 660-670, 15601620, and 770790 nm.

Tested SPOT-enhanced visual products to determine effectiveness in
detecting insect mortality; areas 1-2 ha in size with 80-100 percent
red crowns could be detected; not suitable for control program.
SPOT HRV multispectral data were classified o successfully discrim-
inate two classes of eastern hemlock looper damage, moderate/severe
and light.

MEIS 1.2-m data was superior to MEIS 3.4-m and conventional aerial
photography for detection of red crowns through visual interpretation
in British Columbia; natural color composites were optimal for

visual assessment.

Landsat TM imagery was used to assist in the mapping of a forested
area damaged by hail and to assess damage in planning for an opera-
tional salvage harvest.

Found a close relationship between sugar maple decline and spectral
(principal component 2) and texture (contrast) features in aerial multi-
spectral video imagery; based on examination of single-tree canopies.
7-m resolution MEIS data was acquired to classify cumulative defoli-
ation and three levels of current defoliation (light, moderate, severe);
a per-pixel MLC based on eight spectral bands achieved 72 percent
accuracy for six classes relevant to defoliation survey; the majority

of misclassifications were between adjacent healthy and current
defoliation classes.

Found that the decrease in TM band 4 reflectance was the single con-
sistent spectral effect of moderate defoliation on Norway spruce (ratio
methods seemed inappropriate when defoliation was the sole symptom
of decline as opposed to defoliation and chlorosis).

SPOT multispectral data along with NDVI and chromaticity measures
were used to discriminate four damage classes; discrimination of dam-
age classes was improved when the sample sites were stratified by
species composition. density. age, and height.

Nelson 1983

Buchheim ct al. 1985

Leckie 1987

Leckic et al. 1988b

Sirois and Ahern 1988

Franklin 1989

Kneppeck and Ahern
1989

Gillis et al. 1990

Yuan et al. 199]

Ahernetal. 1991a

Ekstrand 1994

Franklin and Raske
1994

Dendroctonus ponderosae [Hopk. |
*%  Lambdina fiscellaria [Guen.]
¥*E - Acer saccharum Marsh.
=xx% Picea abies (L.) Karst.
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Table 8. Factors affecting the spectral response of forest canopies.

Factors

Description

Reference

External
Size of viewed area

Sun elevation

Zenith view angle

Cloud cover

Atmospheric
aerosols

Wind speed

Internal
Orientation of tree
rows (plantations)

Soil optical
properties

Canopy geometry
(closure, density)

Terrain (slope angle
and aspect)

Height, vigor, and
comparison of
species

Variability of the spectral response of a forest canopy will depend on
the size of the instantaneous field of view.

Solar radiation penetrates more deeply into a canopy at steep angles;
bidirectional reflectance increases in the visible and decreases in the
near-infrared with increasing sun elevation, particularly with dense
forest canopies; leaf transmittance is low in the visible, but up to

50 percent in the near-infrared.

Natural surfaces do not perform as Lambertian reflectors; spectral
radiance of surfaces varies as a function of view, zenith, and orienta-
tion angles; bidirectional reflectance for continuous canopies is
wavelength dependent,

Clouds modify the irradiance level for a given sun elevation and
significantly change the proportion of direct and diffuse radiation
reaching the earth’s surface,

Modify the optical path between the satellite and earth surface;
wavelength dependent; more pronounced at shorter wavelengths.

Affects the geometry of the forest canopy.

Light penetration varies as a function of row direction (a function of
plantation); these structural aspects of plantations are thought to be
more directly correlated with spectral response than canopy cover.

Background spectra may confound changes in the spectral response
of the overstory vegetation; optical properties of soil show an increase
in reflectance from the visible to middle-infrared.

The most significant factor acting on the optical properties of forest
canopies (controls the fractions of overstory and understory visible
to the sensor).

Terrain elements account for appreciable variations in response in all
wavelength bands; slope and aspect can produce a wide range of pixel
values within one cover class; this effect is linked to solar elevation
and azimuth.

Density, height, and vigor of vegetation and percent compositon
of species affeet the spectral response of forest canopies. These
affects directly impact forest change assessment and classification.

Guyot et al. 1989

Kimes et al. 1986,
Guyot et al. 1989

Curran 1980,
Stohr and West 1985,
Guyot ct al. 1989

Guyot et al. 1989

Guyot et al. 1989

Guyot et al. 1989

Guyot et al. 1989,
Danson and Curran
1993

Ranson et al. 1986,

Guyot et al. 1989

Guyot et al. 1989

Stohr and West 1985

Wickware and
Howarth 1981,
Riordan 1982,
Price 1986

vegetation elements, canopy architecture, and scattering
from the soil or ground-surface features) and how these
factors can be used to model canopy reflectance. Nemani

etal. (1993) describe radiation models as rigorous in their
treatment of radiative transfer in vegetation canopies, but
they are difficult to parameterize and are often developed
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for relatively homogeneous vegetation covers. Conse-
quently, these are more suited to agricultural canopies
than to heterogeneous forest canopies consisting of spe-
cies mixtures with variations in leaf optical and structural
properties. Radiative transfer models rarely simulate for-
est heterogeneity or generally require input data for pa-
ramelerization at resolutions that are difficult to obtain.
Research on invertible canopy models has made signifi-
cant progress (e.g., Li and Strahler 1985, 1986; Goel and
Grier 1986a, 1986b, 1988; Franklin and Strahler 1988)
but. for forest conditions. such models are not yet opera-
tional (McGwire et al. 1993),

The majority of studies that estimate biophysical variables
from remotely sensed data (Table 9) have used empirical
techniques to relate spectral data and various derivatives
to biophysical parameters. If biophysical parameters are
strongly correlated with remotely sensed radiance data,
then these data can be used to predict those biophysical
characteristics for variable scene and sensor characteris-
tics over large areas. For example, index-based techniques
have been used to estimate vegetation parameters (e.g.,
LAI PAR, biomass), or soil attributes (e.g.. composition,
brightness, moisture) (McGwire et al. 1993). If strong
correlations could be obtained consistently with these
biophysical parameters, they would prove useful for moni-
toring long-term environmental changes of such critical
characteristics as primary productivity.,

Curran (1980) observed that as biomass increases and the
canopy becomes more complete (i.e.. LAl increases), the
relationship between multispectral reflectance and vegeta-
tion amount can be considered linear for the majority of
cases. Numerous studies have since shown the correlation
between remotely sensed red and near-infrared reflec-
tance of coniferous forest stands to plant biomass (LAI)
(Tucker et al. 1981; Spanner et al. 1984a; Badhwar et al.
1986a, 1986b; Franklin 1986; Runningetal. 1986; Peterson
et al. 1987; Spanner et al. 1990b). There is a consistent
negative relationship between red radiance and LAI and
a weak or slightly positive relationship between near-
infrared radiance and LAI As aresult of increased green
vegetation and shadow within the canopy, there is a de-
crease in visible reflectance. An increase in near-infrared
reflectance should also occur; however, increased shadow
in a complex canopy acts to suppress such reflectance.
This influence of canopy is significant, and even in stands
with variable understory, canopy cover is considered the
most important variable in determining canopy reflec-
tance (Spanneretal. 1990a, Stenback and Congalton 1990).
Conversely, in a coniferous forest plantation that is
managed to maintain a large amount of green vegeta-
tion with little spatial variation, this relation may be
weaker, as stand structural characteristics (tree density,
mean tree height, mean tree diameter) become more
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closely correlated with stand spectral response (Herwitz
etal. 1989, Danson and Curran 1993). For open canopies,
near-infrared reflectance from understory, particularly
broadleaved, species dominates the overall reflectance
(Badhwar et al. 1986a).

Many of these investigations have suggested that simple
transformations of band reflectances are more closely
correlated with plant biophysical qualities (Wiegand et al.
1991), and are generally less sensitive to external vari-
ables such as the solar zenith angle. An example of one of
these transformations is the “normalized difference veg-
ctation index™ (NDVI) (Badhwar et al. 1986b), although
there are also various derivatives of NDVI (White 1991,
Kogan 1990). Along with NDVI, the most common veg-
ctation indices utilize the information content of the red
and near-infrared canopy reflectance or radiances. This
transformation is highly correlated with green-leal bio-
mass (Jensen 1983). Chlorophyll absorption in the visible
portion (0.5-0.7 um) of the spectrum is high (reflectance
<20 percent), whereas reflectance and transmittance are
about equal in the near-infrared portion (40-50 percent)
(Smith 1983). This physiological relationship has been
used to estimate the intercepted photosynthetically active
radiation (IPAR) of plant canopies (Asrar et al. 1984,
Sellers 1985, Baret and Guyot 1991, Sellers et al. 1992),
percent canopy cover (Richardson and Wiegand 1977).
chlorophyll content (Tucker 1977), and LAI (Asrar et al.
1984, Baret and Guyot 1991) through the use of various
ratios (Sellers 1983). Nemani et al. (1993) used the middle-
infrared band of Landsat TM to correct for understory and
background effects on NDVI for estimating LAL Some of
these ratios and their applications are described in Table
10. It must be remembered that these indices are also
sensitive to the internal and external factors that affect
spectral reflectance of vegetation (i.c., those described in
Table 8). However, Goward et al. (1994) found that
variations in vegetation indices for western Oregon origi-
nate from changes in both canopy spectral characteristics
and background spectral reflectance, rather than from
simple variations in LAT or percent canopy closure. Cau-
tion must therefore be taken when relating changes in
vegetation indices to vegetation physiognomic properties
at regional and global scales.

The use of vegetation indices with wide spectral band re-
mote sensing datais not appropriate for areas of low green
canopy cover since background rock, soil, ground surface,
and litter materials produce a range of vegetation index
values (Elvidge and Lyon 1985, Huete et al. 1985, Hucte
and Tucker 1991). The development of high spectral re-
solution imaging sensors (e.g., AVIRIS. CASI) has led to
the study of terrestrial materials using new analysis tech-
niques. Once the physical nature of the materials within
the sensor field of view are determined. quantitative



Table 9. Examples of biophysical remote sensing of forests.

Variable(s)

Synopsis

Reference

Structural classes
(crown closure,
size class)

LAI
LAI

Canopy closure/
basal area

LAI

Spectral shift
(blue shift)

Forest damage
(foliar loss
[percent])

Forest
productivity

LAI

Timber volume

Timber volume

Timber volume

Single-tree
defoliation

LAI

Feature selection identified TM simulated bands 4, 7, 5, and 3 as
optimal for forest structural analysis; moderately successful for
identifying four crown-closure classes and two size classes.

Various ratios of red and near-IR were correlated with LAL

Strong correlations between LAI and Landsat TM reflectance of aspen
(Populus spp.) early in the growing season disappeared as the understory
developed.

Canopy closure was most closely related to spectral response of TMS
bands and ratios; basal arca showed strong correlations with some
species, e.g., red fir (Abies magnifica A. Murr.) and lodgepole pine
(Pinus contorta Dougl.), but not white fir (Abies concolor [Gord.

& Glend.] Lindl).

A strong positive relationship was detected for the [R/red reflectance
ratio; explained by a strong asymptotic inverse relationship between LAI
and red reflectance and a flat response between LAI and IR reflectance.

Detected a 5-nm shift away from the normal inflection point of the red
edge reflectance feature towards shorter wavelengths; a result of stress.

TM shortwave-IR to near-IR band ratios were found to correlate well
with ground-based measurements of forest defoliation.

TM data, in conjunction with biogeographical and ground plot data,
were used to successfully model forest productivity at the landscape
level, but the reliability of single pixel estimates was poor.

The relationship between LAI of coniferous forests and TM data
corrected for atmospheric effects and sun—surface—sensor geometry
was affected by canopy closure, understory vegetation, and back-
ground reflectance.

Vegetation-condition indices generated from shortwave-IR and
ncar-IR TM bands showed strong correlations with net annual
spruce—{ir volume change; useful for stand development forecasting.

A strong relationship (-0.79) was observed between the volume of
coniferous forest compartments and spectral radiance recorded by
Landsat TM, particularly TM band 5 (estimates for compartments
with small volumes were better than for those with large volumes).

Found good correlations between stand volume and normalized
difference of TM bands 4 and 5 for homogeneous stands (however,
this capability was reduced at low volumes due to spatial inhomogen-

eities and at high volumes due to complete canopy closure).

A linear relationship existed between visually estimated tree defoli-
ation for trees with >20 percent defoliation and spectral features of
40-cm MEIS data; NDVI provided the best correlations with defoliation.

Demonstrated the potential use of Landsat TM data for studying
seasonal dynamics in forest canopies by obtaining strong correlations
between LAT and NDVI for September 1988 and March 1989,

Spanner ct al.
1984a

Running et al. 1986

Badhwar et al.
1986a

Peterson ct al. 1986

Peterson et al. 1987

Rock et al. 1988

Vogelmann and

Rock 1988

Cook et al. 1989

Spanner et al.
1990a

Ahern et al. 1991b

Ardd 1992

Gemmel and
Goodenough 1992

Leckic et al. 1992

Curran et al. 1992
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Table 10. Examples of ratio-based indices for biophysical studies.

Index Landsat TM equivalent

Description

Origin

Near-IR / red TM4/TM3
reflectance ratio

Normalized
Difference
Vegetation Index
(NDVI)

(TM4-TM3)/(TM4+TM3)

Infrared index  (TM4-TMS)/(TM4+TMS5)

Moisture stress  TMS/TM4

index

Leaf water
content index

-log[1-(TM4-TM5)]
-log[1-(TM4ft-TM5fu)]

ft represents reflectance in the
specified bands when leaves are
at their max. relative water content

Mid-IR index TMS5/TM7

100(NDVIij-NDVIminj)
NDVImaxj-NDVIminj

Vegetation
Condition
Index (VCI)

Perpendicular
Vegetation
Index (PVI)

Soil Adjusted  (TM4 + L1)/(TM3 + L2)
Vegetation

Index (SAVI)

Transformed
Soil Adjusted

" Vegetation Index
(TSAVI)

Greenness
Vegetation Index
(GVI)

Mean Green-
ness Vegetation

Index (MGVI)

Gram-Schmidt orthogonalization

Principal components analysis

Responds to changes in amount of green
biomass, chlorophyll content, and leaf-
water stress.

Responds to changes in amount of green
biomass, chlorophyll content, and leaf-
waler stress,

Infrared index more closely tracks changes
in plant biomass and water stress than
NDVI.

Tracks changes in plant water stress.

Responds to changes in water stress.

Shows a strong correlation with soil
moisture.

Portrays weather dynamics more effec-
tively than NDVI for nonhomogeneous
areas by removing the influences of
geographic resources such as climate,
soil, vegetation type. and topography.

Attempts to eliminate differences in soil
background and is most effective under
conditions of low LAI (arid and semi-
arid environments).

Incorporates parameters (L1, .2) to min-
imize soil-brightness induced variations.

Modifications of Huete (1988) SAVI to
compensate for soil variability due to
changes in solar elevation, leaf-angle
distribution, and LAI

Greenness vegetation index is a measure
of the amount of vegetation present relative
to bare soil.

Principal components are used to identify
the extent of soil and vegetation in the
scene.

Birth and McVey
1968, Tucker
1979

Rouse et al.
1974, Tucker
1979

Hardisky et al.
1983

Rock et al. 1985

Hunt et al. 1987

Musick and
Pelletier 1988

Kogan 1990

Richardson and
Wiegand 1977

Huete 1988

Major et al. 1990,
Richardson and
Wiegand 1990

Kauth and
Thomas 1976

Misra and
Wheeler 1977

(Adapted from Cohen 1991, Major et al. 1990.)



estimates of their abundance can be made using spectral
mixture analysis methods (Roberts et al. 1993, Foody and
Cox 1994). For example, spectral mixing methods have
been used to model the relative contributions of green
vegetation and soils to image spectra (Huete 1986; Smith
et al. 1990a, 1990b; Gong et al. 1992b: Roberts et al.
1993). Such methods provide derived quantitative esti-
mates of vegetation and soil abundance (e.g., Smith ¢t al.
1990a, 1990b), as well as nonphotosynthetic vegetation
and shade (Roberts et al. 1993).

Leaf arca of closed canopy forests 1s an important ecologi-
cal parameter used in numerous studies. Leaf-area index
(LAI) is a standard expression for the leaf area of a plant
community and is defined as the total leaf area per unit
ground cover (Herwitzetal. 1989). Light interception, gas
exchange, photosynthesis, and biomass production are all
closely related to LAI (Peterson et al. 1987, Herwitz etal.
1989, Bonan 1993, Nemani et al. 1993). Regional varia-
tions in LAI have been found to be lincarly related to site
water balance (Nemani and Running 1989) and above-
ground net primary production and stand volume (Gholz
1982, McLeod and Running 1988). For global change
studies, satellite-derived measures of vegetation cover
type and LAI may be used to provide more accurate esti-
mates of the carbon content and exchange rates of global
vegetation than are possible with current data (Running et
al. 1986). Forinstance, Mack et al. (1990) used vegetation
indices derived from Landsat MSS data to examine the
relationship between vegetation cover and CO, flux den-
sity for agricultural and forested areas.

From the above discussion, it is evident that remote
sensing has the potential to provide information for the
definition and mapping of spatial patterns in ecosystems,
as well as for their change in time. This includes not only
the monitoring of biophysical variables related to forest
ccosystem structure and processes, but also the definition
of forest ecosystem units as presented in the following
discussion.

Forest Classification

Landsat MSS data have become widely used in a variety
of land resource applications, including forestry. Forestry
applications initially focused on the enhancement of
Landsat MSS data for visual interpretation, but as digital
image analysis techniques became available, visual analy-
sis was gradually replaced by more automated techniques
for extraction of forest information.

Landsat MSS has been used primarily for generalized
forest-type mapping (Bryant et al. 1980, Kalensky ct al.
1981, Pettinger 1982). Success has also been achieved for
forest site-type mapping (Tom and Miller 1980, Hame
1984) and for species and structural mapping, but only in

association with the careful treatment of training statistics
(Walsh 1980) or the addition of ancillary variables (Strahler
et al. 1980) (Table 11). Classifications have been im-
proved by integrating MSS spectral data with digital
elevation data and associated gecomorphometric variables
(Strahler et al. 1980, Franklin et al, 1986, Franklin 1987),
as well as with texture measures (Franklin and Peddle
1989) (Table 11),

Landsat MSS has proven successful for generalized for-
est mapping due primarily to the large spatial resolution
(80 m) that averages the spectral characteristics of forest
structure, thereby reducing variance and spectral overlap
between broad cover classes. This produces spectral char-
acteristics for general cover types that often fit the normal
distribution of parametric classifiers, particularly for areas
of low relief. The addition of ancillary data (c.g., geo-
morphometric variables) or additional feature processing
(c.g., texture) provides enhanced classification results.

In Canada, the use of remote sensing has been integrated
into Ecological Land Survey approaches in the form of
multistage sampling procedures for various scales ol sur-
vey (Rubec 1983) (Table 12). Landsat MSS has been used
in many ecological surveys, providing information at the
ecoregion and ecodistrict levels (Wickware and Rubec
1989). The combined use of Landsat transparencies, in a
multistage approach with other remote sensing data, has
proven useful in the prefield, field. and postficld activities
involvedinthe Ecological Land Survey of numerous arcas
in northern Canada (Rubec 1983). Digital image analysis
techniques using Landsat MSS did not provide suitable
results for mapping ecological land classes at detailed
levels (initially reported by Thie [1976]).

Improved spatial, spectral, and radiometric characteristics
of Landsat TM have led to numerous forest studies for the
purpose of classifying forest types and structural charac-
teristics. Congalton et al. (1993) stated that the spatial
resolution of SPOT and Landsat TM are a major improve-
ment over Landsat MSS. A survey of the literature indi-
cates that more detailed information is available from
Landsat TM data (Table 13). However, due to the in-
creased heterogeneity of the spectral data representing
cover classes, the extraction of information requires more
sophisticated analysis and classification techniques. The
increase in spectral “noise” that accompanies higher spa-
tial resolution data indicates that such noise is usually
related to variations in structural properties of forest
communities (Peterson et al. 1986). Hence, TM may pro-
vide researchers with a greater ability to extract stand
structural characteristics.

SPOT data have now come into wide use for land-cover
and land-use mapping. For forest mapping, concern has
recently been raised regarding the low dynamic range of
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Table 11. Forest classification with Landsat MSS.

Variable(s)

Technique*

Description

Reference

Spatially complex
vegetation

Coniferous species
(including stand and
site characteristics)
(MLC)

Timber height and
density (to estimate
timber volume for
homogeneous strata)

Forest Site Index (9)

Conifer species
Canopy density
Crown diameter

Softwood, hardwood
regeneration

Anderson’s
classification
(Levels I, II, I1I)

Forest site types

Forest cover types
(species level for
conifers)

Mountainous
landscape classes

Forest types (within
a moderate relief
boreal environment)

ucC (MLC)

controlled
clustering

(i) UC;

(11) model
‘region type’
with DTM

LDA spectral
and ancillary

variables

UC (guided
clustering)

SC, UC (MLC)

modified
clustering

(MLC)

MLC

SC, ucC
(MLC)

LDA

LDA

Difficult correlating spectral classes and

ground classes; small land-cover units and
rugged terrain complicated interpretation;
UC not demonstrated to be superior to SC.

Twelve surface-cover types (merged from

59 spectral clusters) were mapped to an
average accuracy of 88.8 percent; slope angle,
aspect, and surface cover affected spectral
variability.

The authors developed a stratification pro-
cedure for a high relief forest environment
incorporating tone (MSS), texture, and
geomorphometric variables,

Achieved 97 percent training accuracy when
combining 19 image and map variables; MSS
alone achieved 43 percent.

Guided clustering defined a maximum number
of low variance spectral classes; by matching
spectral curves of known and unknown spectral
classes it was possible Lo assign spectral classes
to categories.

Performed generalized forest-type mapping
(reconnaissance stage) and emphasized a multi-
stage approach.

Successful for mapping at Anderson’s Level 1
(83.0 percent); detailed mapping at Levels 11
and IIT achieved 52.2 percent accuracy.

Used a multi-stage process to improve the
efficiency of mapping site types.

Results indicated that classification accuracy
is more dependent on forest composition and
distribution than on a particular classification
scheme.

Geomorphometric and MSS data (75 percent);
MSS data alone (46 percent).

Texture algorithm improved classification;
geomorphometric variables provided the
greatest improvement Lo classification.

Townshend and
Justice 1980

Walsh 1980

Strahler et al. 1980,
Franklin et al. 1986

Tom and Miller 1980

Mayer and Fox 1981

Kalensky et al. 1981

Pettinger 1982

Hame 1984

Hudson 1987

Franklin 1987

Franklin and Peddle
1989

* SC = supervised classification; UC = unsupervised classification; MLC = maximum likelihood classification;
LDA = lincar discriminant analysis.



Table 12. Relationship between remote sensing systems and ecological land survey mapping scales and levels.

Remote sensing source

Ecological land survey mapping level

Mapping scales

Satellite imagery Ecoregion
High altitude photography Ecodistrict
Moderately high altitude photography Ecosection
Lov {_.qlludc photography Ecosite

L _w altitude or ground photography Ecoelement

1:3 000 000 — 1:1 000 000
1:500 000 — 1:125 000
1:250 000 — 1:50 000

1:50 000 - 1:10 000

1:10 000 - 1:2 300

From Wickware and Rubec 1989.)

data acquired over forested regions. This may prevent
satisfactory classification results (Borry et al. 1990, De
Wulf et al. 1990). It has also been noted that there is high
correlation between SPOT XS Bands 1 and 2. De Wulf
et al. (1990) had limited success extracting forest-stand
paramelters (e.g.. stand density, stand age. average tree
diameter, stand basal area, average canopy height, and
stand volume) from both multispectral and panchromatic
dataand as aresult considered SPOT data as L-resolution®
(Strahler et al. 1986) with respect to forest canopy struc-
ture. For visual and digital analysis of SPOT multispectral
data, the date of acquisition is a key element to successful
forest mapping and analysis; data acquired in the early
part of the growing season provide superior results (Borry
et al. 1990). Upon achieving unimpressive classification
accuracies for vegetation classes using SPOT data (cor-
rected for terrain), Baker et al. (1991) noted that spectral
classification alone may not be sufficient. Theinclusion of
certain geomorphometric variables (Franklin and Wilson
1991, Franklinetal. 1994) in ahigh-relief environment, as
well as texture features (Franklin and Peddle 1990), gen-
erally improved the classification accuracies achieved
with SPOT multispectral data.

Information content in an image is expressed by the
‘intensity” of each pixel (i.c., tone or color) and by the
spatial arrangement of pixels (i.e., texture, shape, and
context) in the image (Lee and Philpot 1991). Campbell
(1987) defines image texture as the apparent roughness or
smoothness of an image region, usually the result of an
irrcgular surface being illuminated from an oblique angle
and causing a pattern of highlighted and shadowed areas.
Texture is an important functional attribute of a remotely
sensed image and is therefore a significant contributor
to scene information extraction. Although texture has
long been recognized as an important clue in the visual
recognition of objects in aerial photographs. conventional

automated processing traditionally has not exploited this
component of remote sensing data.

[t is well known that actual landscapes consist of a spec-
trally diverse assemblage of features, which become in-
creasingly complex as spatial resolution increases. Indeed,
the use of texture explicitly implies that the resolution
cells are smaller than the elements in the scene model,
because numerous measurements are required for each
element or class in order to allow the characteristic spatial
texture to occur (Woodcock and Strahler 1987). To extract
more information from digital remote sensing data, image
classification should include information regarding the
overall pattern of variation that characterizes each cat-
egory. However, the majority of image classification pro-
cedures, particularly in operational use, rely on spectral
‘intensity’ characteristics alone, and thus are oblivious to
the spatial information content of the image. These types
of per-point classifiers do not perform well in environ-
ments where there is an excess of boundary pixels or
where there is substantial spectral overlap between the
chosen informational classes (Martin ¢t al. 1988).

Textural algorithms, onthe other hand, attempt tomeasure
image texture by quantifying the distinctive spatial and
spectral relationships that occur among neighboring pix-
els. For a forested environment, where local variance is
high, texture measures should be more valid than con-
textual methods because they rely on spatial variation to
differentiate classes (Woodcock and Strahler 1987). In
response to the need to extract information based upon
the spatial arrangement of digital image data, numerous
texture algorithms have been developed. These include
methodologies based upon: (i) structural approaches
(Conners and Harlow 1980); (ii) spatial-frequency pat-
terns (Bajesy and Liebermann 1976); (iii) first-order
statistics (Hsu 1978, Irons and Petersen 1981, Arai 1993);

6 |_-resolution, a term defined by Strahler et al. (1986), indicates that the spatial resolution cells within the remote sensing image are
larger than the clements within the ground scene. These elements on the ground are therefore not resolvable. H-resolution, on the other
hand, indicates that the spatial resolution cells are smaller than the elements within the scene: therefore the individual elements may

be resolved.

[
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Table 13. Forest classification with Landsat TM.

Variable(s) Technique* Description Reference
Alpine and subalpine  TM band ratios, TM transformations combined with landscape Frank 1988
communities, NDVI, LDA variables were able to discriminate alpine and

Montane forests subalpine vegetation types; forest types in the
Montane zone were not distinguishable.

Nine forest classes SC, MLC TM provided superior forest-type mapping and Hopkins et al.

(species, terrain condition assessment information than MSS: aver- 1988

derived) age accuracy for nine forest classes was 69 pereent;
improved when forest categories were merged.

Nine natural SC, MLC Tested a variety of TM band combinations and Karteris 1990

resource categories found that six TM bands provided the highest
overall classification accuracy (92.4 percent).

Species and age TM imagery was inadequate for separating species;  Coleman et al.

groups (pine age classes were separable. 1990

plantations)

Landscape classes, LDA Classification accuracy increased from 55.8 percent  Franklin and

high relief to 77.6 percent when geomorphometric variables Moulton 1990
were included with TM data.

Canopy closure and uc The data were stratified into three categories of Stenback and

forest understory canopy closure; presence or absence of understory Congalton 1990
in each category was then evaluated using spectral
response pattern analysis; understory presence or
absence (55-69 percent accurate).

Three forest types PCA, LDA, TM data were transformed using PCA and com- Franklin 1992

and eight land-cover ~ MLC bined with geomorphometric variables to provide

classes mapping accuracies of 76 percent.

Successional stages UC, MLC A wetness index and a TM 4/5 ratio and TM 4 Fiorella and
were the best features for distinguishing between Ripple 1993
old-growth and mature forests; accuracy
(71.7 percent).

Species, size class SG, uc In-depth spectral analysis was performed to deter- Congalton et al.

(structure, crown ancillary mine the strength of the correlation between the 1993

closure) variables spectral data and vegetation; SC and UC were per-
formed and similarities between the spectral statis-
tics for each classification were compared using a
clustering algorithm (accuracies > 80 percent).

Six forest and five Vegetation “Guided” clustering of Landsat TM bands and Bauer et al. 1994

nonforest classes indices various vegetation indices provided classification

(canopy change) “guided” accuracies of 75 percent for six forest classes and

clustering five nonforest classes; misclassification resulted

from stands being a mix of two or more species that
also differ in size, density, crown closure, and age.

* SC = supervised classification; UC = unsupervised classification; MLC = maximum likelihood classification:
LDA = lincar discriminant analysis; PCA = principal component analysis.



(iv) second-order statistics (Haralick et al. 1973, Gallo-
way 1975, Sun and Wee 1982); (v) texture spectrum
(Wang and He 1990, Gong et al. 1992b): and (vi) spectral
texture pattern matching (Lee and Philpot 1991). Useful
summaries of methodological approaches to measuring
texture are provided by Haralick (1979) and Marceau
(1989).

In studies comparing various lexture measures, second-
order statistical techniques are generally identified as
superior to other methods (Weszkaetal. 1976). In particu-
lar. the grey-level cooccurrence matrix (GLCM) tech-
nique has proven to be optimal for capturing the textural
content of an image (Conners and Harlow 1980, Gongetal.
1992a, Treitz et al. 1993). Statistical approaches, such as
those developed by Haralick et al. (1973) and Sun and
Wee (1982), make use of grey-level probability density
functions that are generally computed as the conditional
joint probability of pairs of pixel grey levels inalocal area
of the image.

A number of studies incorporating texture analysis into
classification of land cover and land use are outlined in
Table 14. It is evident that texture data provide additional
information that can be used for the classification of cer-
tain forest structural attributes. For instance, stand struc-
tural characteristics (.., diameter at breastheight [DBH].
crown diameter, density, basal area, age) have been found
to be highly correlated with texture images generated from
SPOT panchromatic data (Cohen and Spies 1992). Tex-
ture also appears (o be more evident at higher spatial
10 m) because at these levels stand
structural characteristics tend todominate the scene (Yuan
et al. 1991, Franklin and McDermid 1993).

resolutions (e.g..

Research into the classification of remotely sensed data
has been pursued for approximately three decades and has
involved many dilferent strategices (e.g., supervised/unsu-
pervised, per-pixel/per-field, textural, contextual). Pixels
are grouped into various classes using a suitable classifier
(e.g.. minimum distance, maximum likelihood) or multi-
variate analysis (e.g.. discriminant, principal components)
or both. No single strategy has proven best for all situa-
tions; the most suitable approach is dependent upon the
nature of the data collected, the availability of additional
or collaborative terrain data, the characteristics of the
surface being “sensed ™, and the ultimate objectives and/or
products desired from the classifier. The analystisrespon-
sible for devising suitable strategies for collecting remote
sensing and ground information, and forapplying suitable
analysis techniques to the data for a particular environ-
ment. To analyse the data correctly, the analyst requires a
¢ood understanding of the physical nature of the remote
sensing data. as well as the statistical tools used to group
such data into relevant classes.

The analyst frequently does not have a large choice of
classification algorithms in which pixels or comparable
spatial neighborhoods are assigned to a particular class.
Traditionally, classification algorithms have relied on
spectral data alone for pixel assignment. As discussed by
Robinove (1981), the philosophical basis for mulu-
spectral classification implies that the multispectral data
represent an acceptable surrogate for the attributes of the
ground features that are of interest and that spectral classes
separated within the data correspond to a distribution of
ground-coverclasses. In fact, information classes are gen-
erally subsets of a continuum of reflectances and in
classification are applied against the geometric character
of the classifier (Richards and Kelly 1984).

Given the relatively small range of classification algo-
rithms available, analysts may be forced to select classifi-
ers that may not be appropriate for the data they are
analyzing. This situation is becoming more problematic,
particularly as new data types with increased spatal,
spectral, and radiometric resolutions become available.
Some of the classifiers commonly used are statistical in
nature and include nonparametric classifiers suchas mini-
mum-distance-to-means, parallelepiped, and lincar dis-
criminant analysis (LDA) (Duda and Hart 1973, Tom and
Miller 1984, Campbell 1987, Kershaw 1987). Parametric
classifiers are also used, such as the maximum-likelihood
classifier(MLC)and its sophisticated extension, the Baye-
sian classifier (Campbell 1987).

Parametric classifiers, such as the MLC, have become
widely used in operational remote sensing, These classi-
fiers calculate the statistical probability of each pixel
value belonging to each class or category, as defined by
the analyst; they are then assigned to the class with the
highest probability. This sequence of events is performed
by first taking into account the mean vector and covari-
ance matrix of the spectral categories and then calculating
probability density functions (PDF). However, the MLC
model assumes normality, whereby the pixels sampled to
define the decision rules of the classifier possess a normal
or Gaussian distribution. This assumption has been rea-
sonable for common spectral response patterns, which are
encountered when using medium to low spatial resolution
data (e.g., Landsat MSS - 80 m) (Lillesand and Kiefer
1994). The Bayesian classifier 1s similar to the MLC, but
allows for the input of @ priori probabilities for each class.
These are then multiplied by the PDF determined from
training data so as to quantify the posterior probability
(Campbell 1987). The use of a priori probabilities in MLC
has been shown to improve classification accuracies
(Strahler 1980), but the approachis often not implemented
since appropriate information is rarely known.

R
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Table 14. Some applications of texture analysis for land-cover classification.

Texture method(s)

Synopsis

Reference

Grey-Level
Cooccurrence
Matrix (GLCM)

GLCM

GLCM

GLCM

First-order statistics:

Standard deviation

GLCM

GLCM

First-order statistics:

Standard deviation
Absolute difference

First-order statistics:

Variance

Demonstrated improved classification accuracy through the inte-
gration of texture features with 20-m airborne MSS data; improve-
ment was more pronounced with a detailed classification scheme
separating damaged and undamaged forest species.

Incorporating texture features into a linear discriminant analysis of
Landsat MSS data improved accuracies up to 7.1 percent; using four
orientations of the cooccurrence provided higher accuracies than
using average textures; this could be related to topographic orientation
(c.g., slopefaspect).

Classes containing either mixed vegetation patterns or possessing a
strong relationship to structural features (e.g., topography) showed
improved classification accuracy using tone and texture information,

The authors found significant improvement in classification accuracy
for some land-cover classes when incorporating texture measures:
window size is a dominant factor affecting accuracies.

Texture processing was compared to per-field sampling and low-
pass filtering to improve land-cover classification accuracy; texture
improved accuracy 2.4 percent for single-date and 3.9 percent for

a two-date analysis.

Texture measures for TM data were greater than for MSS data; by
adding texture features to a multitemporal data set, classification
improved 1.6 percent to 4.7 percent.

When texture features were incorporated into classifications of land
cover in a moderate/high relief environment using synthetic aperture
radar and SPOT multispectral data, accuracies increased 11 percent

and 15 percent. respectively.

Texture of the SPOT 10-m data was strongly correlated with stand
structural characteristics, whereas TM texture was weakly correlated;
the spatial resolution of TM data is too coarse to detect the spatial
variability within the forest stands studied.

The range of variability derived from image semivariograms, cal-
culated over lodgepole pine stands, were used to identify optimal
window sizes and were most useful for estimating canopy coverage.

Teillet et al. 1981

Franklin and Peddle
1989

Franklin and Peddle
1989

Marceau et al. 1990

Curran and Pedley
1990

Arai 1991

Peddle and Franklin
1991

Cohen and Spies 1992

Franklin and
McDermid 1993

When using the MLC, certain preprocessing procedures
can be applied to the data to render them more amenable
to the statistical assumptions of the classifier. These pro-
cedures are intended to reduce variance within the spectral
classes, which can be considered either as noise or in-
herent heterogeneities within the land-cover class. These

procedures include multivariate transformations of fea-
ture space, such as principal components analysis (PCA),
which is used to examine the interrelationships between a
large number of spectral vectors. PCA is also used to
reduce the dimensionality of the original data with mini-
mal information loss.



Spatial filtering” has been used as a preprocessing and/or
postprocessing technique to improve classification accu-
racy (Cushnie and Atkinson 1985, Toll 1985). These
context-dependent operators come in a variety of forms
(¢.g., mean, median) and are used to alter « pixel value
according to its relationship with pixel values within a
specified neighborhood or window. For example, a mean
filter will smooth an image to greater degrees as the
window size or array of pixels upon which the filter is
applied is made progressively larger. A median filter, on
the other hand, will smooth noise and also retain edges or
boundaries. Both approaches effectively reduce the spa-
tial resolution of the dataand, logically, one must question
the degree of information lost in such a process. Similar
techniques can be applied after the data have been classi-
fied. Toimprove the accuracy of per-point classifications,
a postelassification smoothing filter can be applied to the
classified data, whereby an isolated class (noise) is as-
signed to the class category representative of the majority
of pixels surrounding it (Thomas 1980). This technique,
however, does not incorporate the true spatial characteris-
tics of the class; it is only concerned with context as it
relates to classified data and will only be effective for
isolated pixels or groups of pixels (Lee and Philpot 1991).

Improvements in per-pixel classification have been ob-
served with the use of linear discriminant analysis (LDA)
(Tom and Miller 1984). This method relaxes the restric-
tion of the data meeting a specified distribution (i.e.,
normal) and results in decisions for assigning pixels to a
particular class that are more flexible, although perhaps
less certain, As a result, the data play a much more
prominent role in the creation of decision rules. LDA uses
the pooled covariance matrix and reduces a multivariate
problem to a univariate one by defining the weighted
combination of input variables that best describe the
separation among the groups (Tom and Miller 1984,
Franklin 1992). As a result, LDA is less sensitive to the
number of input variables than i1s MLC (Peddle 1993).

Efforts are currently being placed on the use of contextual
classifiers to extract spatial information (Wharton 1982,
Gurney and Townshend 1983, Gong and Howarth 1992,
Gong 1994). Whereas texture refers to the spatial varia-
tion within a contiguous group of pixels that contribute
to the overall appearance of the image, context refers to
the spatial relationships of a pixel (or group of pixels) to
pixels in the remainder of the image (Gurney and Towns-
hend 1983, Campbell 1987). The basis of contextual

classification lics with the premise that pixels of a given
class are likely to be surrounded by pixels of the same
class. This premise is likely to hold true for classes that are
larger than the pixel size. However, at high spatial resolu-
tions individual spectral components of land-coverclasses
become distinguishable. This spatial/spectral variability
may compromise contextual classification in certain en-
vironments. Treitzetal. (1992)used SPOT dataand acon-
textual classifiertoimprove land-use classification accuracy
in a rural-urban fringe environment, which contained
numerous land-use classes (discrete variables). In a forest
and certain other environments, continuous variables may
dominate and, under such circumstances, the premise for
contextual classification may not be valid.

New developments in image classification include non-
parametric classifiers (Skidmore and Turner 1988); ad-
vanced iterative clustering techniques (Guo and Haigh
1994); the use of fuzzy sets for information representation
(Wang 1990a, 1990b; Foody and Cox 1994); evidential
approaches for multisource data analysis (Lee et al. 1987,
Wilkinson and Megier 1990, Veronese and Mather 1992,
Peddle 1993); and neural networks (Benediktsson et al.
1990, Ersoy and Hong 1990, Bischofetal. 1992, Fernandez
1992, Foody et al. 1992, Benediktsson et al. 1993). Evi-
dential and neural-network classifiers have a number of
advantages when compared to many statistical classifiers:
(i) they are not restricted by underlying statistical models
(e.g., normal distribution); (ii) they are not sensitive to
variance thresholds; (iii) they are able to adequately handle
increased numbers of input variables: and (iv) they are
capable of processing data of different variable types
(e.g., nominal, ordinal, interval, and ratio) (Benedikisson
et al. 1993, Peddle 1993).

Neural-network and evidential-reasoning classifiers have
demonstrated superior classification capabilities when
compared to traditional statistical classifiers (e.g., LDA,
MLC)(e.g.. Downey etal. 1992, Foody etal. 1992, Peddle
1993), particularly for nonnormally distributed training
data (Benediktsson et al., 1993). The neural-network
classifier performs a segmentation of the original data to
different spatial resolutions (scales). Spectral signatures
and spatial frequency textural information are used to
guide an anisotropic diffusion process that smooths within-
cover-class seements atdifferentscales (Fernandez 1992).
Although these classifiers show promising classification
results, they are gencerally slower to train than traditional
statistical classifiers. For most neural-network classifiers,

7 Spatial filtering is a localized enhancement process by which pixel values from an original image are modified on the basis of the
arey levels of neighboring pixels. Spatial filtering is performed on image data to emphasize or deemphasize image data of certain
spatial frequencies (1.e., the roughness of the tonal variations occurring in an image). Low-pass filters are used to emphasize low-
frequency features (e.g., agricultural crops) whereas high-pass [filters are used to emphasize high-frequency features (e.g., road

networks, geologic lincaments).



the training process is computationally very complex and
requires a large number of training samples; such require-
ments may translate into a long implementation phase.

Franklinand Wilson (1992) used athree-stage approach to
classification; it was initiated with a quadtree-based seg-
mentation operator, followed by a Gaussian minimum-
distance-to-means test, and then a test incorporating
ancillary geomorphometric data and a spectral curve mea-
sure. Knowledge-based and expert systems promise to
improve remote sensing image classification through the
integration of knowledge and reasoning (Schowengerdt
and Wang 1989, Srinivasan and Richards 1990, Ton et al.
1991). However, these attributes are often site and appli-
cationspecilic (Wang and Newkirk 1988, Skidmore 1989),
asituation thatrenders difficult the widespread use of such
techniques.

Summary

The current role of remote sensing for forestry and eco-
logical land classification has been described earlier in
this report. An examination of the relevant literature has
revealed that the results of digital image classification for
forestry studies using remote sensing data are, at best,
varied. This can be largely attributed to an incorrect
matching of remote sensing data to the variables (informa-
tion classes) being sought and/or use of inappropriate
classification algorithms for the distribution of the data.
However, when suitable information requirements are
applied to the appropriate remote sensing data set, along
with the appropriate analysis techniques, results can be
positive (Pettinger 1982, Hame 1984, Franklin 1987,
Franklin and Peddle 1989, Congalton et al. 1993). In such
studies, the value of satellite data for forest classification
has been clearly demonstrated.

In response to concerns regarding environmental change
as a function of changing climatic conditions, substantial
remote sensing research is being directed toward the bio-
physical modeling of forest-stand parameters. Some suc-
cess has been observed in the form of strong correlations
between forest-stand parameters (e.g., leaf-arca index)
and spectral reflectance or spectral indices (Curran et al.
1992). These relationships may prove useful for monitor-
ing subtle changes in primary productivity and other cco-
logical processes as ecosystems respond to changing
climatic conditions.

Airborne sensors that generate high spatial and spectral
resolution data are now available for remote sensing
applications. The data generated from these sensors are
not suited to traditional image analysis techniques devel-
oped for use with Landsat MSS data. Researchis currently
underway on image analysis techniques that attempt to
incorporate textural and contextual information into

decision rules. Also, classifiers that are not limited by
data-distribution rules (i.c., Gaussian) are being devel-
oped to operate with a variety of data types, including
nominal data sets. Such classifiers should prove useful for
the analysis of high spatial resolution remote sensing data
in conjunction with other types of spatial data.

THE FACTOR OF SPATIAL RESOLUTION
(SCALE) IN REMOTE SENSING FOR
FORESTRY

Spatial resolution is a fundamental concept in remote
sensing and plays a significant role in the planning of any
remote sensing investigation. Townshend (1981) and
Forshaw et al. (1983) provide insightful backgrounds on
the concept of spatial resolution and its various meanings.
Here, we consider spatial resolution as the instantaneous
field of view (IFOV) of the sensing system, which is the
areaon the ground viewed at any particular instant in time.
With this definition, spatial resolution is analogous to the
scale of the observations (Woodcock and Strahler 1987).
For the purpose of this discussion, the term spatial resolu-
tion will be used not only in the traditional sense, but also
as asurrogate for scale (Csillag 1991, Lam and Quattrachi
1992).

Spatial Resolution (Scale) and Multispectral
Classification

One of the major considerations in any remote sensing
forestry application is to determine the spatial resolution
of the data that best meets the objectives of the project.
Thus, itis important to understand how spatial resolution
affects the spectral and spatial expression of forest at-
tributes. For example, increased spatial detail may not
necessarily improve classification performance (Markham
and Townshend 1981, Buis et al. 1983). Such conditions
have been observed for forest environments as spatial
resolution becomes finer than 60-80m (Sadowski et al.
1977, Latty and Hoffer 1981, Nelson et al. 1984). Re-
searchers investigating the effects of spatial resolution on
classification accuracy have generally found that classifi-
cation performance improves at lower spatial resolutions
for various classification hierarchies (Latty and Hoffer
1981, Markham and Townshend 1981, Brass et al. 1983,
Townshend 1983, Irons et al. 1985, Cushnie 1987).
Wiersma and Landgrebe (1979) identified two counter-
acting forces that affect classification accuracy as a func-
tion of spatial resolution. These are: (i) heterogencous
targets and (ii) the percentage of boundary pixels within a
scene. As spatial resolution increases, the proportion of
pixels falling on, or near, boundaries of objects in the
scene decreases. thereby reducing the number of mixed
pixels and hence improving classification accuracy. How-
ever, higher spatial resolution also increases the spectral



variance for cover types which, in turn, adversely affects
the spectral separability of classes. Changes in classifica-
tion accuracy that accompany changes in spatial resolu-
tionare thus a function of the relative importance of “scene
noise” and boundary pixels (Markham and Townshend
1981). Itis also notable that scene noise may vary consid-
crably among land-cover categories and across spectral
bands for the same cover class.

Closely associated with the high spectral variability of

high-resolution imagery is the large amount of spatial
information inherent in the data. Over the past 10 years, as
higher spatial resolution satellite and airborne remote
sensing data became available, it was discovered that
conventional analysis techniques did not provide satis-
factory results (Townshend 1983, Hodgson and Jensen
1987, Jensen and Hodgson 1987). As aresult, the research
focus has shifted toward developing new techniques for
exploiting spatial information (Sunand Wee 1982; Wood-
cocketal. 1988a, 1988b; Lec and Philpot 1991; Yuanetal.
1991; Franklin and McDermid 1993). Woodcock and
Strahler (1987) examined various cover types at SPOT
and Landsat TM resolutions (Table 5) and found the local
image variance to be high for forested and urban/suburban
cover types. They suggested that texture, context, and
mixture modeling be incorporated into information ex-
traction techniques for these data. Of particular focus has
been the development of new classification algorithms
that incorporate textural and contextual measures. as
discussed in the previous section, However, to date, the
development of more sophisticated sensors and more
complex classification techniques, be they supervised or
unsupervised, parametric or nonparametric, spectral, tex-
tural, contextual or knowledge-based. has not led to satis-
factory results on a repetitive basis (Marceau 1992).
Terrestrial and photogrammetric measurements remain
the standard for the majority of scientific and operational
mapping projects. For this reason, a more detailed exami-
nation of surface features and their relationship to remote
sensing spatial resolution is required.

The Modifiable Areal Unit Problem (MAUP)

Remote sensing images represent comprehensive spatial
samples of terrain or other surfaces, and cach pixel con-
tains the integrated radiant flux for the surface features
(¢.g.. trees, shrubs, ground cover, soil, and shadows in a
forested environment) over an area corresponding to the
spatial resolution of the sensor. Based on traditional
remote sensing methods, itisimplied that there is astrong
and predictable correlation between the measured radi-
ance and the surface features of interest. However, surface
features possess different sizes, shapes, and spatial distri-
bution, as well as spectral characteristics, which would
indicate that for an arbitrary sampling grid such as that

imposed by remote sensing systems, there is really no
intrinsic geographic meaning to the spectral measure-
ments recorded (Marceau et al. 1994b). Arbitrary sam-
pling does not necessarily provide a suitable model for
nature. In nature, scales of phenomena are dictated by the
physical laws that dominate at each level and, rather than
being arbitrary, tend to concentrate around discrete levels
that may be far apart (Klemes 1983). It has also proven
difficult to apply statistical image analysis techniques to
spectral data acquired in this manner (i.c., using an arbi-
trary sampling grid) in order to extract meaningtul infor-
mation with a high degree of accuracy and repeatability.
This observation is embodied in the modifiable areal unit
problem (MAUP). as described by Openshaw (1984).

The MAUP is actually comprised of two sets of interact-
ing problems, the firstassociated with spatial scale and the
second with spatial aggregation (Openshaw 1984). For
example, a variety of different analysis results may be
obtained as the same areal data are iteratively grouped into
larger areal units for analysis. Hence, analysis results are
dependent on scale. Second, at any given spatial scale,
data may be aggregated in a variety of ways. In essence.
the scale problem indicates a failure to understand the
processes or phenomena that occur at different scales and
the aggregation problem indicates a failure to discriminate
the objects of geographical enquiry (Dudley 1992). In
studies of spatial data, including remote sensing studies,
interpretation of those data is a scale- and aggregation-
dependent phenomenon. Upon examination of the scale
and spatial aggregation problems in remote sensing,
Marceau (1992) found that there is ascale and aggregation
level that is specilic to the discrimination and analysis of
cach ground feature of interest in the scene. Itis therefore
necessary o identify an optimal spatial resolution for
analysis. As defined by Marceau et al. (1994a, p. 106),
optimal resolution is, “The spatial sampling grid corre-
sponding to the scale and aggregation level characteristic
of the geographical entity of interest.” This approach will
require a multiscale sampling design for data acquisition,
analysis, and interpretation.

Selecting an Appropriate Spatial Resolution
(Scale)

Two assumptions identified by Duggin and Robinove
(1990) as being implicit in remote sensing data acquisition
and analysis are that data be (i) collected and (i1) analysed
at an appropriate scale to detect and quantify the features
of interest in the image. These are requirements for an
adequate exploration of the spatial character of the surface
features and are intended to ensure that spectral character-
istics or classes in the image correspond to information
classes required by the user. To select an appropriate scale
for data acquisition and analysis, the spatial structures of



the ground surface features and of the images must be
understood. Specifically, itis important to understand the

manner in which images of a scene change as a function of

spatial resolution (Woodcock and Strahler 1987). A suit-

able scale for observations is a function of (i) the type of

environment being studied and (ii) the type of information
required (Woodcock and Strahler 1987), although suit-
able consideration must also be given 1o the techniques
used to extractinformation from the remotely sensed data.

Spatial structure of an image is determined by the relation-
ship between the size of the objects in the scene and spatial
resolution. There are two approaches that can be taken to
examine the spatial structure of a scene (Marceau 1992).
First, detailed field information characterizing the spatial
structure of the surface features can be collected and
compared to the information content of remote sensing
data collected at a variety of spatial resolutions in order to
determine the influence of surface features on information
extraction. It has been shown that when spatial resolution

is considerably smaller or larger than the surface feature of

interest, it is likely that sample pixels for these features
willexhibit high spectral variance; if the spatial resolution
samples the appropriate mixture of feature attributes,
spectral variance will be at a minimum (Woodcock and
Strahler 1987, Marceau et al. 1994a). A reciprocal ap-
proach consists of modeling scenes of a known structure
(discrete elements distributed over a continuous surface)
to derive the spatial structure they portray in digital
images acquired from them (Jupp et al. 1988). Models
have been used to simulate a forest scene in order to
determine optimal resolution (Li and Strahler 1985, Wood-
cock and Strahler 1987); however, these are generally
oversimplified, as they usually assume that scenes are
composed of objects arranged in amosaic that completely
covers the area or objects that are distributed on a continu-
ous background.

Various tools have been developed to measure the spatial
structure of digital images. For example, the spatial struc-
ture of images has been investigated using spatial auto-
correlation (Craig and Labovitz 1980, Campbell 1981,
Labovitz and Masuoka 1984), using one- and two-
dimensional variograms (Woodcock and Strahler 1983),
by plotting local variance as a function of spatial resolu-
tion (Woodcock and Strahler 1987), by determining the
minimal spectral variance of a class (Marceau et al.
1994a), and by overlaying grids on aerial photographs and
counting the number of land-use categories that occur in

cach grid cell (Simonett and Coiner 1971). Using grids of

different sizes, Simonett and Coiner (1971) demonstrated
that the complexity of the scene and spatial resolution
determines the number of pixels that contain multiple
land-covertypes. Woodcock and Strahler (1987) assessed
spatial structure by graphing the local variance in images
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asafunction of spatial resolution. The peak of the variance
generally occurs at a slightly smaller spatial resolution
than the size of the element in the scene. It was noted by
Woodcock and Strahler (1987) that local variance for a
forest stand decreased below spatial resolutions of 3—4 m.
This indicated that assumptions of spectral per-pixel clas-
sifiers were once again valid, but only on a per-tree basis
rather than on a stand basis. Marceau et al. (1994a) used
minimum spectral variance to define the optimal spatial
resolution for each class and found that stand spatial and
structural characteristics were the dominant features con-
tributing to the optimal spatial resolution.

An alternate approach utilizes the semivariogram, which
originates from the theory of regionalized variables
developed by Matheron (1963). The semivariogram is
used to measure the spatial dependence of neighboring
observations for any continuously varying phenomenon.
Hence, itis a technique that can be applied to spectral data
(radiance), a phenomenon for which position in time and
space is known (Woodcock and Strahler 1983). In this
manner, spatial variation in images can be examined in
relation to ground scene and sensor parameters (Wood-
cock et al. 1988a).

The semivariogram plots semivariance against spatial
separation along a given relative orientation (Fig. 4,
Table 15), and provides a concise and unbiased depiction
of the scale and pattern of spatial variability (Curran
1988). In essence, it measures the correlation between
pixels at successively greater distances and will demon-
strate a peak in variance when pixels become independent
of one another. This peak in variance is known as the
‘range of influence’ of the semivariogram. The semi-
variogram has proven useful in remote sensing because it
enables researchers to relate some of the descriptors of the
semivariogram to the spatial characteristics of the scene.
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Figure 4. The shape and description of a typical variogram.




Table 15. Terms and symbols used in the description of the semivariogram.

Term Definition

Lag Distance (and direction in two or more directions) between sampling
pairs.

Sill Maximum level of semivariance.

Range Point on lag axis where semivariance reaches a maximum.

Places closer than the range are related; places further apart are not.

Nugget variance

Point where the extrapolated relationship between the two vari-

ables intercepts the semivariance axis. Represents spatially
independent variance.

Spatially dependent structural variance

Sill minus nugget variance.

(Adapred from Curran 1988.)

For example, the range, which defines the distance at
which pixels are not spatially related, provides a measure
of the size of the elements in the scene and has been
suggested as a useful indicator in selecting the optimal
spatial resolution for discriminating the features embed-
ded in the image semivariogram (Curran 1988; Woodcock
et al. 1988a, 1988b). Woodcock et al. (1988b) calculated
variograms from real digital images and found: (1) the
density of coverage of objects in the scene affects the

height of the variogram; (2) object size affects the range of

influence of the variogram; and (3) the variance in the
distribution of the sizes of objects affects the shape of the
variogram (i.c.. as variance increases the shape of the
variogram curve becomes more rounded).

Atkinson and Danson (1988) used semivariograms to
measure spatial dependence in coniferous and oak
(Quercus spp.) plantations. They found the range of the
variogram was related to stand age and species, and were
able to determine the optimal spatial resolutions for even-
aged stands. Cohen etal. (1990) found the ranges for I-m
spatial resolution data were related to the mean tree
canopy sizes of the stands. In contrast, semivariograms
based on 10-m and 30-m pixels contained significantly
less useful information. However, Bowers et al. (1994
were able to measure differences in semivariogram char-
acteristics for thinned, unthinned, damaged, and undam-
aged balsam fir (Abies balsamea [L.] Mill.) stands using
SPOT panchromatic data. These spatial characteristics
were superior to spectral measures for examining damage
incidence and forest structure (stems/hectare). Lathrop
and Pierce (1991) used semivariogram analysis of forest
canopy transmittance measurements and Landsat TM

near-infrared/red ratio data to examine the scale of

variation in canopy structure and to determine the most

appropriate scale at which to sample transmittance. This
analysis depicted the similarity between the two sets of
data with respect o spatial auto-correlation structure. The
range of the semivariogram was used to aggregate the
Landsat TM and attenuation data sets for regression analy-
sis by averaging segments of the transect (where seament
length equals semivariogram range). It was discovered
that by averaging within an appropriate landscape unit
(c.g.. hillslopes), large scale variability of measurements
(due to small forest gaps) was reduced.

Remote Sensing at Multiple Spatial Resolutions
(Scales)

An important question surrounding the selection of an
appropriate spatial resolution was suitably phrased by
Openshaw and Taylor (1979, p.143), “What objects at
what scales do we want to investigate.” Information is a
scale-dependent phenomenon. Often it is assumed that
just one scale will provide the desired results to acomplex
problem. This assumption requires examination and must
be used with caution since the data in a remolte sensing
image arc nonhierarchical inaclassification sense (Everett
and Simonett 1976). Forexample, Marceau et al. (1994b)
examined a natural forest environment at a variety of
scales and concluded that there is no unique spatial reso-
lution at which all geographic entities could be discrimi-
nated. Everett and Simonett (1976) described the
environmental modulation transfer function to formalize
the notion that applying a single resolution to many
environments will not produce auniform class of informa-
tion for all environments. Environments are too complex
over space and time to be reduced to a single spatial
resolution (scale). Spatial resolutions (scales) are fre-
quently imposed on nature, often without necessarily
knowing if those scales reflect natural patterns/forms/

31



functions. However, as researchers into the character of

nature, we must scarch for those scales of nature that exist
and try to understand their interrelationships and patterns
(Klemes 1983).

In many remote sensing studies, it has been observed that
there are dramatic inconsistencies in the classification
results between one class and another, thereby leading to
poor overall accuracies. Intuitively, classes that demon-
strate poor accuracies have not been sampled at an appro-
priate resolution or they are not separable at any particular
resolution (i.e., the class label does not represent the
spatial structure of the class). It has been observed that the
utilization of a single scale of remotely sensed data tends
to cause the image to operate as a spatial-frequency filter
(Clark 1990). Patterns higher in frequency than the spatial
resolution of the data and lower in frequency than the size
of the scene are inherently filtered out. In this case, only a
subset of the natural variation of the surface is captured.
Remote sensing spatial resolutions (scales) must be
matched to the frequency of variation in nature, variations
which do not occur at a single spatial resolution. Clark
(1990) used multiple scales to map ice-flow landform

features that resulted in radically new interpretations of

the dynamics and behavior of the Laurentide Ice Sheet.
Analysis of multiple scales (a geographer's strength ac-
cording to Stone [1972]) may be a more appropriate
approach for identifying forest classes from remote sens-
ing data,

Summary

From the preceding discussion on spatial resolution (scale),
it is evident that more attention must be paid to the attri-
butes of surface features and how these attributes are
characterized in image data. Duggin and Robinove (1990)
expressed concern that although remote sensing analysts
are generally very analytical with regard to the interpreta-
tion procedures applied to quantitative analysis of digital
image data, there is less attention paid to image data selec-
tion, sensor design and calibration, and optimal environ-
mental conditions for data acquisition. In fact, there is
generally a poor understanding of the assumptions in-
volved in linking ground-level attributes with the spatial
and spectral measurements recorded by the sensor. This
must be done at a detailed level to isolate and understand
the major components contributing to spectral reflectance
at smaller scales. With this knowledge. sampling systems
can be designed to optimize the segregation of various
levels of features in a scene. This approach identifics a re-
quirement for characterization of surface features at vari-
ous spatial resolutions (scales) in order to determine the
effect of spectral and spatial aggregation on surface fea-
ture extraction. Analysis of high spatial and spectral reso-
lution data will improve our understanding of the spatial
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and spectral components of a forest canopy and their
relative effects.

CONCLUSIONS

Currently, aerial photographs, dated map products, and
intensive field surveys provide the majority of informa-
tion for forest mapping and monitoring and, in turn, for
management and planning. However, remote sensing of
forest resources offers potential for assisting these tradi-
tional methods for a variety of mapping scales. As sensor
technologies and data-analysis techniques improve, the
potential for remote sensing data to provide information
on forest ecosystems and ecosystem processes from local
to global scales will improve. Currently, data from satel-
lite sensors, such as Landsat TM and SPOT, are used
operationally to provide generalized forest-cover map-
ping. However, this technology is used only by a few
select government agencies and consulting firms. For
remole sensing potential to be fully realized, this type of
technology must become more accessible to forest man-
agers.

Inthis review, the requirement for detailed forest ecologi-
cal data in support of integrated forest resource manage-
ment has been identified. Traditional forest inventories
fortimber management are no longer sufficient as increas-
ing demands are placed on forest resources. An integrated
forest site management approach that incorporates the
biotic and abiotic components of the ecosystem and their
ecological relationships is required. This detail is neces-
sary for multiuse planning for ecological sustainability
and the maintenance of biodiversity, and for the derivation
of more transparent site factors, particularly those related
to growth and yield modeling and current forest manage-
ment practices.

To simplify the myriad of forest and site parameters. as
well as the energy processes flowing between them, a
method of classifying forest ecosystems was developed.
A forestecosystem classification (FEC) (Jonesetal. 1983,
Sims et al. 1989) is a hierarchical classification scheme
thatis well developed for field evaluation of forest sites at
the stand level, but is not practical for classifying forest
ecosystems over large areas. A remote sensing method for
classifying forest ecosystems for large areas, with a mini-
mal amount of ground information, is required to extrapo-
late the FEC to large portions of Ontario’s forests.

To evaluate the effectiveness of remote sensing data for
forest ccosystem classification, a number of issues must
be addressed. First is the suitability of the information
classes for spectral classification. This requires an under-
standing by the analyst of all the different types of resolu-
tion—spatial, spectral, temporal, and radiometric. In
particular, the information content of remote sensing



images is a direct function of measurement scale, as
determined by the spatial resolution of the sensor. Condi-
tions must be selected that maximize the spectral separa-
bility between classes. However, as first emphasized by
Townshend (1981}, there continues to be a substantial
need for basic research on the spatial, spectral, and tempo-
ral properties of many types of vegetation. Until these
properties are better understood, itis difficult to determine
optimal conditions for remote sensing data collection and
subsequent analysis. Likewise, there is a need for in-
creased understanding of the spectral properties of differ-
ent ecosystem types at various spatial, and temporal
scales. This will lead to the collection of remote sensing
data at the appropriate spectral, spatial, and temporal
resolutions for optimal ecosystem analysis and interpreta-
tion.

If itis determined that the information classes of particular
interest are not spectrally (or texturally) separable, then
they must be modified to more closely approximate the
character of the data. However, FEC classes are based on
ecological principles so it may be possible to assume that
they represent distinet levels in nature. As an integrated
unit of physiography, soils. climate, and vegetation, they
may be unique at a particular level in a hierarchy that
corresponds 1o a given spatial resolution. Also, the FEC is
hierarchical. and presents greater opportunities for corre-
lating remote sensing data at various scales with particular
levels in the hierarchy.

Closely associated with this issue is the selection of

remote sensing data with appropriate resolutions, particu-
larly spatial resolution, for the extraction of forest ecosys-
tenmt information. It has been argued in this paper that
single spatial resolution (scale) remote sensing data are
not sufficient to appropriately sample the scales that arc
encountered in nature. Although it is dependent on the
-ariable being measured, surface parameters often exhibit
multiple scales of variations and thereby portray different
environmental controls and processes at different scales
(McGwire et al. 1993). Therefore, the scale at which re-
mote sensing data are collected and analysed is a signifi-
cant controller on the relevance of the results. One cannot
presume that a single arbitrary spatial resolution can
satisfactorily sample the information categories that have
been imposed on nature. As Paul Kopper wrote: "It is
important always to keep in mind that we are students of
nature, of forms not created by us, hence not subjectto our
control. To project human notions...on naturc is not sci-
ence” (from Klemes 1983, p. 1). Klemes (1983, p. 1) went
on to argue that: “Levels of scale at which meaningful
conceptualization of physical processes is possible are not
arbitrary and their range is not continuous.” Hence, sur-
face features and aggregations of surface features may be
recognized at different scales. However, it is logical that

objects within a scene (or agglomerations of objects) can
be diseriminated at an appropriate spatial resolution that
corresponds to their intrinsic spatial and spectral character
(Marceau et al, 1994b). Itis therefore more appropriate o
operate under the assumption that multiple scales of
remote sensing data are required, first to understand the
nature of the scene, and second to extract useful informa-
tion. The structural characteristics of the objects on the
surface must first be modeled using high spatial resolution
data. This will provide baseline information, through
geoslatistical analysis, for selecting the most appropriate
resolutions for separating the objects and aggregations of
objects in the scene.

A second consideration falls under the category of data
improvements. This involves modifying the raw spectral
data so that they are more suited to information extraction.
An example of this type of data improvement is the gen-
eration of texture features from spectral data. This form of
feature processing attempts to quantify the textural infor-
mation within the spectral data, and may become more
prevalent at higher spatial resolutions as stand structural
characteristics begin to dominate the scene. Texture fea-
tures provide additional information layers for classifica-
tion. Another form of dataimprovementis the incorporation
of ancillary data into the analysis process. Combining
clevation data and its derivatives (e.g., slope, incidence
angle) with spectral data in a classification is an example
of this type of data improvement. Since these variables
tend to be highly correlated with vegetation types (particu-
larly in high-relief environments) they may prove useful
for the discrimination of certain cover classes. These tech-
niques often improve classification accuracy when com-
pared to using spectral data alone.

Third, the testing of new classification algorithms, which
incorporate textural and contextual information. may
provide more accurate classification results than do tradi-
tional approaches. Also. classifiers that are not restricted
by statistical assumptions are now available. These clas-
sifiers allow the analyst to incorporate a variety of data
types (e.g., nominal, ordinal, interval, and ratio). This
allows data integration from a varicty of sources.

Based on this review, it is recommended that a systematic
approach to forest ecosystem classification with remote
sensing data be initiated. This should start with a detailed
analysis of stand structural characteristics recorded at
various levels of spatial aggregation. Second, data im-
provements in the form of feature processing (e.g., tex-
ture, principal components) and addition of ancillary
qariables is required to optimize class discrimination.
Third, evaluation of nontraditional classification algo-
rithms that incorporate spectral and spatial characteristics
are expected to improve classification accuracies. It 1s



anticipated that careful examination, testing, and evalua-
tion of these three issues will provide reliable methodolo-
giesand approaches to forest ecosystem mapping at several
levels or scales.

ACKNOWLEDGMENTS

This research was funded by a Centre of Excellence Grant
from the Province of Ontario to the Institute for Space and
Terrestrial Science. Funding for the printing of this pub-
lication has been made available through the Northern
Ontario Development Agreement, Northern Forestry Pro-
gram. The authors would like to thank Dr. Richard Sims
of the Canadian Forest Service—Sault Ste. Marie for his
thoughtful review of the original manuscript.

REFERENCES

Abuelgasim, H.H.; Strahler, A.H. 1994. Modeling bi-
directional radiance measurements collected by the
Advanced Solid-State Array Spectroradiometer
(ASAS) over Oregon transect forests. Remote Sen-
sing of Environment 47:261-275.

Ahern, F.I.; Bennett W.I.; Kettela, E.G. 1986. An initial
evaluation of two digital airborne imagers for sur-
veying spruce budworm defoliation. Photogram-
metric Engineering and Remote Sensing
52(10):1647-1654.

Ahern, F.J.; Erdle, T.A.; MacLean D.A.; Kneppeck, 1.D.
1991a. A quantitative relationship between forest
growth rates and Thematic Mapper reflectance
measurements. International Journal of Remote
Sensing 12(3):387-400.

Ahern, F.I.; Sirois, J.; McColl, W.D.; Gauthier, R.P.;
Alfoldi, T.T.; Patterson, W.H.; Erdle, T.A. 1991b.
Progress toward improving aerial defoliation survey
methods by using electronic imagers. Photo-
grammetric Engineering and Remote Sensing
57(2):187-193.

Anderson, I.R.; Hardy, E.; Roach J.; Witmer, R. 1976. A
land use and land cover classification scheme for use
with remote sensor data. United States Geological
Survey, Washington, DC. USGS Professional Paper
964. 28 p.

Arai, K. 1991. Multi-temporal texture analysis in TM
classification. Canadian Journal of Remote Sensing
17(3):263-270.

Arai, K. 1993. A classification method with a spatial-
spectral variability. International Journal of Remote
Sensing 14(4):699-709.

34

Ardanuy, P.E.; Han, D.; Salomonson, V.V. 1991. The
Moderate Resolution Imaging Spectrometer
(MODIS) science and data system requirements.
IEEE Transactions on Geoscience and Remote
Sensing 29(1):75-88.

Ardo, J. 1992. Volume quantification of coniferous forest
compartments using spectral radiance recorded by
Landsat Thematic Mapper. International Journal of
Remote Sensing 13(9):1779-1786.

Asrar, G.: Fuchs, M.; Kanemasu, E.T.; Hatficld, J.L.
1984. Estimating absorbed photosynthetic radiation
and leaf area index from spectral reflectance in
wheat. Agronomy Journal 76:300-306.

Atkinson, P.; Danson, F. 1988. Spatial resolution for re-
mote sensing of forest plantations. p. 221-223 in
IGARSS "88 Symposium (International Geoscience
and Remote Sensing Symposium): Remote sensing.
moving toward the 21st century. 12-16 September
1988, Edinburgh, Scotland. European Space Agency,
Paris, France. 3 volumes. 1858 p.

Babey, S.K.; Anger, C.D. 1989. A Compact Airborne
Spectrographic Imager (CASI). p. 1028-1031 in
IGARSS "89 (International Geoscience and Remote
Sensing Symposium): 12th Canadian Symposium
on Remote Sensing: Remote sensing, an economic
tool for the nineties. 10-14 July 1989, Vancouver,
British Columbia. Published by IGARSS '89.
5 volumes. 3001 p.

Badhwar, G.D.; Henderson, D.E.; Johnson, W.R.;
Sestak, M.L.; Woolford, T.; Carnes, J.G. 1984.
Comparison of simulated thematic mapper data and
multispectral scanner data. Remote Sensing of
Environment 14:247-255.

Badhwar, G.D.; MacDonald, R.B.; Hall, F.G.; Carnes,
J.G. 1986a. Spectral characterization of biophysical
characteristics in a boreal forest: Relationship
between thematic mapper band reflectance and leaf
area index for aspen. IEEE Transactions on
Geoscience and Remote Sensing 24(5):322-326.

Badhwar, G.D.; MacDonald, R.B.; Mehta, N.C. 1986b.
Satellite-derived leaf-area-index and vegetation maps
asinputto global carbon cycle models—a hierarchical
approach. International Journal of Remote Sensing
7(2):265-281.

Bajesy, R.; Liebermann, L. 1976. Texture gradient as a
depthcue. Computer Graphics and Image Processing
5:52-67.



Baker. J.R.; Briggs, S.A.; Gordon, V.; Jones, AR.
Settle, J.J.; Towshend, J.R.G.; Wyatt, B.K. 1991.
Advances in classification for land cover mapping
using SPOT HRV imagery. International Journal of
Remote Sensing 12(5):1071-1085.

Baldwin, K.A.;Johnson, J.A.; Sims, R.A.; Wickware, G.M.
1990. Common landform toposequences of north-
western Ontario. Forestry Canada, Ontario Region,
Sault Ste. Marie, ON. COFRDA Rep. 3303. 26 p.

Banner, A.; MacKenzie, W.; Hacussler, S.; Thomson, S.;
Pojar, 1.; Trowbridge, R. 1993. A field guide to site
identification and interpretation for the Prince Ruper
Forest Region. British Columbia Ministry of Forests,
Crown Publications Inc., Victoria. BC. Land
Management Handbook 26.

Baret, F.; Guyot, G. 1991. Potentials and limits of
vegetation indices for LAI and APAR assessment.
Remote Sensing of Environment 35:161-173.

Bauer, M.E.. Burk, T.E.; Ek. A.R.; Coppin, P.R.
Lime, S.D.: Walsh, T.A.; Walters, D.K.; Befort, W.;
Heinzen,D.F. 1994, Satellite inventory of Minnesota
forest resources. Photogrammetric Engineering and
Remote Sensing 60(3):287-298.

Benediktsson, J.A: Swain, P.H.; Ersoy. 0.K. 1990. Neural
network approaches versus statistical methods in
classification of multisource remote sensing data.
IEEE Transactions on Geoscience and Remote
Sensing 28:540-552.

Benediktsson, J.A.; Swain P.H.; Ersoy, O.K. 1993,
Conjugate-gradient neural networks in classificaion
of multisource and very-high-dimensional remote
sensing data. International Journal of Remote Sensing
14(15):2883-2903,

Birth, G.S.; McVey, G. 1968. Measuring the color of
growing turf with a reflectance spectrophotometer.
Agronomy Journal 60:640-643.

Bischof, H.: Schneider, W.; Pinz, A.1. 1992, Multispectral
classification of Landsat-images using ncural
networks, IEEE Transactions on Geoscience and
Remote Sensing 30(3):482-490.

Boissonneau, A.N.: Williams, J.R.M.; Zoltai, 5.C.;
Crombie, G.N.; McNeely, H.A.; Bates, D. 1972. p.
31-43 in The Canada Land Inventory: Land
Capability Classification for Forestry. Environment
Canada, Ottawa. ON. Report No. 4.

Bonan, G.B. 1993. Importance of leaf area index and for-
est type when estimating photosynthesis in boreal
forests. Remote Sensing of Environment 43:303—
314,

Bonnor, G.M.; Morrier, K.C. 1981. Site classification
from air photos in a forest inventory. The Forestry
Chronicle 57(12):26-27.

Boochs, F.; Kupfer. G.; Dockter, K.; Kuhbauch, W. 1990.
Shape of the red edge as vitality indicator for plants.
International Journal of Remote
[1(10):1741-1753.

Sensing

Borry, EC.: De Roover, B.P; De Wull, R.R.; Goossens, R.E.
1990. Assessing the value of monotemporal SPOT- |
imagery for forestry applications under flemish con-
ditions. Photogrammetric Engineering and Remote
Sensing 56(8):1147-1153.

Borstad, G.A .; Edel, H.R.; Gower, ].LER_; Hollinger, A.B.
1985. Analysis of test and flight data from the
Fluorescence Line Imager. Department of Fisheries
and Oceans, Ottawa, ON. Canadian Special Pub-
lication of Fisheries and Aquatic Sciences. 38 p.

Borstad, G.A.; Hill, D.A; Kerr, R.C. 1989. The Compact
Airborne Spectrographic Imager (CASI): Flight and
laboratory examples. p. 2081-2084 in IGARSS "8§9
(International Geoscience and Remote Sensing
Symposium}: 12th Canadian Symposium on Remote
Sensing: Remote sensing, an economic tool for the
nineties. 10-14 July 1989, Vancouver, British
Columbia. Published by IGARSS '89. 5 volumes.
3001 p.

Bowers, W.W.; Franklin, S.E.; Huddak, J.; McDermid, G.J.
1994, Forest structural damage analysis using image
semivariance. Canadian Journal of Remote Sensing
2001):28-36.

Bradbury, P.A.; Haines-Young, R.H.; Mathur, P.M.;
MacDonald, A. 1985. The use of remotely sensed
data forlandscape classification in Wales: The status
of woodlands in the landscape. p. 401-410 in
Advanced Technology for Monitoring and Processing
Global Environmental Data: Proccedings of the
International Conference of the Remote Sensing
Society and the Center for Earth Resources Manage-
ment. 9-12 September 19835, University of London,
England. Remote Sensing Society, Reading, England.

Brand, D.G.; Leckie, D.G.; Cloney, E.E. 1991, Forest
regeneration surveys: Design, data collection, and

analysis. The Forestry Chronicle 67(6):649-657.

%)
Lh



Brass, L. A.; Spanner, M.A_; Ulliman, MLA.; Peterson, D.L.;
Ambrosia, V.G.; Brockhaus, I. 1983. Thematic Map-
per Simulator rescarch for forest resource mapping
in the Clearwater National Forest, Idaho. p. 1323~
1332 in 17th International Symposium on Remote
Sensing of Environment. 9-13 May 1983, Ann Arbor,
Michigan. Environmental Research Institute of
Michigan, Ann Arbor, MI. 3 volumes. 1446 p.

Brockhaus, J.A.; Khorram, S. 1992. A comparison of
SPOT and Landsat-TM data for use in conducting
inventories of forest resources. International Journal
of Remote Sensing 13(16):3035-3043.

Bryant, E.; Dodge, A.G.I.; Warren, S.D. 1980. Landsat
for practical forest type mapping: A test casc.
Photogrammetric Engineering and Remote Sensing
46(12):1575-1584.

Buchheim, M.P.; MacLean, A.L.; Lillesand, T.M. 1985.
Forest cover type mapping and spruce budworm
defoliation detection using simulated SPOT imagery.
Photogrammetric Engineering and Remote Sensing
S1(8):1115-1122.

Buis, I.S.; Acevedo, W.; Wrigley, R.C.; Alexander, D.A.
1983. The role of spatial, spectral and radiometric
resolution on information content. p. 330-338 in
D.C. MacDonald and D.B. Morrison, eds. Machine
Processing of Remolely Sensed Data: 9th Inter-
national Symposium. 21-23 June 1983, Purdue
University, West Lafayette, Indiana. Purdue Research
Foundation, West Lafayette, IN. 430 p.

Burger, D.; Pierpoint, G. 1990. Trends in forest site and
land classification in Canada. The Forestry Chronicle
66(4):91-96.

Butera, M.K. 1986. A correlation and regression analysis
of percent canopy closure versus TMS spectral
response for selected forest sites in the San Juan
National Forest, Colorado. IEEE Transactions on
Geoscience and Remote Sensing 24:122-128.

Campbell, J.B. 1981. Spatial correlation effects upon
accuracy of supervised classification of land cover.
Photogrammetric Engineering and Remote Sensing
47:355-357.

Campbell, J.B. 1987. Introduction to Remote Sensing.
Guilford Press, New York, NY. 551 p.

Canada Committee on Ecological (Biophysical) Land
Classification (CCELC). 1976. In J. Thie and G. Iron-
side, eds. Ecological (Biophysical) Land Classifica-
tion in Canada. 25-28 May 1976, Petawawa, Ontario.
Environment Canada, Lands Directorate, Ottawa,
ON. Ecological Land Classification Series No. 1.
269 p.

Chavez, P.S.J.; Bowell, J.A. 1988. Comparison of the
spectral information content of Landsat thematic
mapper and SPOT for three different sites in the
Phoenix, Arizona region. Photogrammetric
Engineering and Remote Sensing 54(12):1699-1708.

Clark, C.D. 1990. Remote sensing scales related to the
frequency of natural variation: An example from
paleo-ice-flow in Canada. IEEE Transactions on
Geoscience and Remote Sensing 28(4):503-508.

Cohen, W.B. 1991. Response of vegetation indices to
changes in three measures of leaf water stress.
Photogrammetric Engineering and Remote Sensing
57(2):195-202,

Cohen, W.B.; Spies, T.; Bradshaw, G. 1990. Semi-
variograms of digital imagery for analysis of conifer
canopy structure. Remote Sensing of Environment
34:167-178.

Cohen, W.B.; Spies, T.A. 1992. Estimating structural
attributes of Douglas-fir / western hemlock forest
stands from Landsat and SPOT imagery. Remote
Sensing of Environment 41:1-17.

Coleman, T.L.: Gudapati, L.; Derrington, J. 1990. Mon-
itoring forest plantations using Landsat thematic
mapper data. Remote Sensing of Environment
33:211-221.

Congalton, R.G.; Green, K.; Teply, J. 1993, Mapping old
growth forest on national forest and park lands in the
Pacific Northwest from remotely sensed data.
Photogrammetric Engineering and Remote Sensing
39(4):529-535.

Conners, R.W.; Harlow, C.A. 1980. Toward a structural
textural analyzer based on statistical methods.
Computer Graphics and Image Processing 12:224—
256.

Cook, E.A.;Iverson,L.R.; Graham,R.L. 1989. Estimating
forest productivity with thematic mapper and bio-
geographica data. Remote Sensing of Environment
28:131-141.

Corns, I.G.W.; Annas, R M. 1986. Field guide to forest
ecosystems of west-central Alberta. Canadian For-
estry Service, Northern Forestry Centre, Edmonton,
AB. 251 p.

Craig, R.G.; Labovitz, M.L. 1980. Sources of variation in
Landsat autocorrelation. p. 1755-1767 in 14th
International Symposium on Remote Sensing of
Environment. 23-30 April 1980, San Jose, Costa
Rica. Environmental Rescarch Institute of Michigan,
Ann Arbor. ML 3 volumes. 1923 p.



Csillag, F. 1991. Resolution revisited. p. 15-28 in Pro-
ceedings of Auto-Carto 10: 10th International
Symposium on Computer-assisted Cartography.
25-28 March 1991, Baltimore, Maryland. American
Society for Photogrammetry and Remote Sensing
and the American Congress on Surveying and
Mapping, Bethesda, MD. 444 p.

Curran, P.J. 1980. Multispectral remote sensing of vege-
tation amount. Progress in Physical Geography
4:315-341.

Curran, P.J. 1988. The semivariogram in remote sensing:
An introduction. Remote Sensing of Environment
24:493-507.

Curran, P.J.; Dungan, J.L.;: Gholz, H.L. 1992. Seasonal
LATofslash pineestimated with Landsat TM. Remote
Sensing of Environment 39:3-13.

Curran, P.J.; Pedley, ML 1990. Airborne MSS for land
cover classification [I. Geocarto International
5(2):15-26.

Curran, P.J.; Williamson, H.D. 1987. Airborne MSS data
to estimate GLAIL International Journal of Remote
Sensing 8(1):57-74.

Cushnie, J.L. 1987. The interactive effect of spatial reso-
lution and degree of internal variability within land
cover types and classification accuracies. Inter-
national Journal of Remote Sensing 8(1):15-29.

Cushnie, J.L.; Atkinson, P. 1985. Effect of spatial filtering
on scene noise and boundary detail in TM imagery.
Photogrammetric Engineering and Remote Sensing
51(9):1183-1193.

Danson, F.M. 1987. Estimating forest stand parameters
using airborne MSS data. p. 46-54 in Advances in
Digital Image Processing: Proceedings of the 13th
Annual Conference of the Remote Sensing Society.
7—-11 September 1987, University of Nottingham,
Nottingham, England. Remote Sensing Society,
Nottingham, England. 675 p.

Danson, F.M.; Curran, P.J. 1993. Factors affecting the re-
motely sensed response of coniferous forest plan-
tations. Remote Sensing of Environment 43:55-65.

DeGloria, S.D.; Benson, A.S. 1987. Interpretability of
advanced SPOT film products for forest and
agricultural survey. Photogrammetric Engineering
and Remote Sensing 53(1):37-44.

DeWulf, R.R.; Goossens,R.E.; DeRoover, B.P; Borry, F.C.
1990. Extraction of forest stand parameters from
panchromatic and multispectral SPOT-1 data. Interna-
tional Journal of Remote Sensing 11(9):1571-1588.

Department of Forestry and Rural Development. 1963,
The Canada land inventory: Objectives, scope and
organization. Department of Forestry and Rural
Development, Ottawa, ON, Report No. 1. 12 p.

Department of Forestry and Rural Development. 1966.
The Canada land inventory. Department of Forestry
and Rural Development, Information and Technical
Services Division, Ottawa, ON. 6 p.

Downey. 1.D.; Power, C.H.: Kanellopoulos, L; Wilkinson, G.
1992. A performance comparison of Landsat TM
land cover classification based on necural network
techniques and traditional maximum likelihood and
minimum distance algorithms. p. 518-528 in A.P.
Cracknell and Robin A. Vaughan, eds. Remote Sen-
sing from Research to Operation: Proceedings of the
18th Annual Conference of the Remote Sensing
Society. 1517 September 1992, University of Dun-
dee, Dundee, Scotland. Remote Sensing Society,
Nottingham, England. 620 p.

Driscoll, R.S.; Merkel, D.L.; Radloff, D.L.; Synder, D.E..
Hagihara, J.S. 1984, Anecological land classification
framework for the United States. United States De-
partment of Agriculture, Forest Service, Washington,
DC. 56 p.

Duda. R.O.: Hart, P.E. 1973. Pattern Classification and
Scene Analysis. John Wiley and Sons, New York,
NY. 482 p.

Dudley, G. 1992. Scale, aggregation, and the modifiable
arcal unit problem. Operational Geographer9(3):28-33.

Duggin,M.J.; Robinove, C.J. 1990. Assumptions implicit
inremote sensing data acquisition and analysis. Inter-
national Journal of Remote Sensing 11(10):1669—
1694,

Ekstrand, S. 1994, Assessment of forest damage with
Landsat TM: Correction for varying forest stand
characteristics. Remote Sensing of Environment
47:291-302.

Elvidge, C.D.; Lyon, R.J.P. 1985, Influence of rock-soil

spectral variation on the assessment of green biomass.
Remote Sensing of Environment 17:265-279.

Elvidge, C.D.; Chen, Z.. Groenveld. D.P. 1993. Detection
of trace quantities of green vegetation in 1990 AVIRIS
data. Remote Sensing of Environment 44:271-279.

Environment Canada. 1978. The Canada land inventory:
Objectives, scope and organization. Lands Direc-
torate. Ottawa, ON. Report No. 1. 61 p.

37



Environment Canada. 1990. The Canadian vegetation
classification system: First approximation.
W.L. Strong, E.T. Oswald and D.J. Downing, eds.
Canada Committee on Ecological Land Classifi-
cation, National Vegetation Working Group, Ottawa,
ON. Ecological Land Classification Series No. 23.
22 p.

Environmental Conservation Task Force. 1981, Ecological
land survey guidelines for environmental impact
analysis. Environment Canada, Lands Directorate,
Ottawa, ON. Ecological Land Classification Series
No. 13. 44 p.

Ersoy, O.K.; Hong, D. 1990. Parallel, self-organizing,
hierarchical neural networks. IEEE Transations of
Neural Networks 1:167-178.

Evans, D.L.; Hill, J.M. 1990. Landsat TM versus MSS
data for forest type identification. Geocarto
International 5(3):13-20.

Everett, J.; Simonett, D.S. 1976. Principles, concepts and
philosophical problems inremote sensing. p. 85-127
in J. Lintz and D.S. Simonett, eds. Remote Sensing
of Environment. Addison-Wesley, London, England.
649 p.

Fernandez. R.A. 1992, A multilevel multispectral
aggregation network. Unpublished Master of Applied
Science thesis. University of Waterloo, Waterloo,
ON. 120 p.

Fiorella, M.; Ripple, W.J. 1993. Determining successional
stage of temperate coniferous forests with Landsat
satellite data. Photogrammetric Engineering and
Remote Sensing 59(2):239-246.

Foody, G.M.; Cox, D.P. 1994. Sub-pixel land cover
composition estimation using a linear mixture model
and fuzzy membership functions. International
Journal of Remote Sensing 15(5):619-631.

Foody, G.M.; McCulloch, M.B.; Yates, W.B. 1992, An
assessment of an artificial neural network for image
chassification. p. 498-507 in A.P. Cracknell and
Robin A. Vaughan, eds. Remote Sensing from
Research to Operation: Proceedings of the 18th
Annual Conference of the Remote Sensing Society.
15-17 September 1992, University of Dundee,
Dundee, Scotland. Remote Sensing Society,
Nottingham, England. 620 p.

Forestry Canada. 1990. The state of forestry in Canada:
1990 report to Parliament. Forestry Canada, Ottawa,
ON. 80 p.

38

Forshaw, M.R.B.; Haskell, A.: Miller, P.F.: Stanley. D.I ;
Townshend, J.R.G. 1983. Spatial resolution of remote

sensing imagery. International Journal of Remote
Sensing 4(3):497-520.

Frank, T.D. 1988. Mapping dominant vegetation
communities in the Colorado Rocky Mountain Front
Range with Landsat thematic and digital terrain data.
Photogrammetric Engineering and Remote Sensing
54(12):1727-1734.

Franklin, J. 1986. Thematic mapper analysis of coniferous
foreststructure and composition. International Journal
of Remote Sensing 7(10):1287-1301.

Franklin,J.; Logan, T.L.: Woodcock, C.E.; Strahler, A.H.
1986. Coniferous forest classification and inven-
tory using Landsat and digital terrain data. IEEE
Transactions on Geoscience and Remote Sensing
24(1):139-149.

Franklin, J.; Strahler, A. 1988. Invertible canopy reflec-
tance modeling of vegetation structure in semiarid
savanna. IEEE Transactions on Geoscience and
Remote Sensing 26:809-825.

Franklin, S.E. 1987. Terrain analysis from digital patterns
in geomorphometry and Landsat MSS spectral
response. Photogrammetric Engineering and Remote
Sensing 53(1):39-65.

Franklin, S.E. 1989. Classification of hemlock looper
defoliation using SPOT HRV imagery. Canadian
Journal of Remote Sensing 15(3):178-182.

Franklin, S.E. 1992, Satellite remote sensing of forest type
and landcover in subalpine forest region, Kananaskis
Valley, Alberta. Geocarto International (4):25-33.

Franklin, S.E. 1994. Discrimination of subalpine forest
species and canopy density using digital CASI, SPOT
PLA and Landsat TM data. Photogrammetric
Engineering and Remote Sensing 60(10):1233-1241.

Franklin, S.E.; Blodgett, C.F.; Mah, S.; Wrightson, C.
1991. Sensitivity of CASI data to anisotropic
reflectance, terrain aspect, and deciduous forest
species. Canadian Journal of Remote Sensing
17(4):314-321.

Franklin, S.E.; Connery, D.R.; Williams, J.A. 1994.
Classification of alpine vegetation using Landsat
thematic mapper, SPOT HRV and DEM data.
Canadian Journal of Remote Sensing 20(1):49-56.



Franklin,S.E.: McDermid, G.J. 1993. Empirical relations
between digital SPOT HRV and CASI spectral
response and lodgepole pine (Pinus contorta) forest
stand parameters. International Journal of Remote
Sensing 14(12):2331-2348.

Franklin, S.E.; Moulton, J.E. 1990. Variability and clas-
sification of Landsat thematic mapper imagery in
Kluane National Park. Canadian Journal of Remote
Sensing 16(2):2-13.

Franklin, S.E.; Peddle. D.R. 1989. Spectral texture for
improved class discrimination in complex terrain.
International Journal of Remote Sensing 10(8):1437-
1443,

Franklin, S.E.; Peddle, D.R. 1990. Classification of SPOT
HRYV imagery and texture features. International
Journal of Remote Sensing 11(3):551-556.

Franklin, S.E.; Raske, A.G. 1994, Satellite remote sensing
of spruce budworm forest defoliation in western
Newfoundland. Canadian Journal of Remote Sensing
20(1):37-48.

Franklin, S.E.; Wilson, B.A. 1991. Vegetation mapping
and change detection using SPOT HRV and Landsat
thematic mapper imagery in Kluane National Park.
Canadian Journal of Remote Sensing 17(1):2-17.

Franklin, S.E.; Wilson, B.A. 1992 A three-stage classifier
forremote sensing of mountain environments. Photo-
grammetric Engineering and Remote Sensing
58(4):449-454,

Galloway, M.M. 1975, Texture analysis using gray level
run lengths. Computer Graphics and Image Pro-
cessing 4:172-179.

Gad, B.C. 1993. An operational method for estimating
signal tonoiseratios from dataacquired withimaging
spectrometers. Remote Sensing of Environment
43:23-33.

Gemmel, F.M.; Goodenough, G.G. 1992. Estimating
timber volume from TM data: The importance of
scale and accuracy of forest cover data. p. 297-306
in A.P.Cracknell and Robin A. Vaughan, eds. Remote
Sensing from Research to Operation: Proceedings of
the 18th Annual Conference of the Remote Sensing
Society. 15-17 September 1992, University of
Dundee, Dundee. Scotland. Remote Sensing Society,
Nottingham. England. 620 p.

Gholz, H.L. 1982, Environmental limits on above-ground
net primary production, leaf arca, and biomass in
vegetation zones of the Pacific Northwest. Ecology
63:469-481.

Gillespie, R.T.; Franklin, S.E.: Titus. B.: Pike, A. 1992,
Detection and mapping of Kalmia on regenerating
forest sites using the compactairborne spectrographic
imager. p. 129-132 in J.K. Hornsby, D.J. King and
N.A. Prout, eds. A World of Applications: [5th
Canadian Symposium on Remote Sensing. 14 June
1992, Toronto, Ontario. Ont. Min. Nat. Resour.,
Ontario Centre for Remote Sensing, North York,
ON.

Gillis, M.D.; Pick, R.D.; Leckie, D.GG. 1990. Satellite
imagery assists in the assessment of hail damage
for salvage harvest. The Forestry Chronicle
66(10):463-468.

Gimbarzevsky, P. 1978. Land classification as a base
for integrated inventories of renewable resources.
p. 169—177 in Integrated Inventories of Renewable
Resources: Proceedings of a Workshop. 8-12 January
1978, Tucson, Arizona. USDA Forest Service, Rocky
Mountain Forest Station, Fort Collins, CO. General
Tech. Rep. RM-55. 482 p.

Goel, N. 1988. Modecls of vegetation canopy reflectance
and their use in estimation of biophysical parameters
from reflectance data. p. 1-212 in Remole Sensing
Reviews, vol. 4(1). Harwood Academic Publishers,
New York, NY. 221 p.

Goel, N.;: Grier, T. 1986a. Esumation of canopy parameters
for inhomogeneous vegetation canopies from
reflectance data. I. Two dimensional row canopy.
[nternational Journal of Remote Sensing 7:665-681.

Goel,N.; Gricr, T. 1986b. Estimation of canopy parameters
for inhomogencous vegetation canopies from re-
flectance data. II. Estimation of leaf area index and
percentage ground cover for row canopies. Inter-
national Journal of Remote Sensing 7:1263—1286.

Goel,N.; Grier, T. 1988. Estimation of canopy parameters
forinhomogencous vegetation canopies fromreflec-
tance data. I[II. TRIM: A model for radiative transfer
in heterogencous three-dimensional canopies.
International Journal of Remote Sensing 23:255-293.

Goetz, A.F.H.; Herring, M. 1989. The high resolution
imaging spectrometer (HIRIS) for EOS. IEEE
Transactions on Geoscience and Remole Sensing
27(2):136-143.

Gong, P. 1994, Reducing boundary effects in a kernal-
based classifier. International Journal of Remote
Sensing 15(5):1131-1139,

39



Gong, P.; Howarth, P.J. 1992. Frequency-based context-
val classification and gray-level vector reduction for
land-use identification. Photogrammetric En-
gineering and Remote Sensing 58(4):423-437.

Gong, P.; Marceau, D.J.; Howarth, P.J. 1992a. A com-
parison of spatial feature extraction algorithms for
land-use classification with SPOT HRV. Remote
Sensing of Environment 40:137-151.

Gong, P.; Pu, R.; Miller, J.R. 1992b. Correlating leaf
area index of ponderosa pine with hyperspectral
CASI data. Canadian Journal of Remote Sensing
18(4):275-282.

Goward, S.N.; Haemmrich, K.F.; Waring, R.H. 1994,
Visible-nearinfrared spectral reflectance of landscape
components in western Oregon. Remote Sensing of
Environment 47:190-203.

Gower, J.LF.R.; Borstad, G.A.; Anger, C.D.; Edel, H.R.
1992. CCD-based imaging spectrometry for remote
sensing: The FLI and CASI programs. Canadian
Journal of Remote Sensing 18(4):199-208.

Gower, .LF.R.; Buxton, R.A.H.; Borstad, G.A. 1989, The
FLIairborne imaging spectrometer: experiences with
land and water targets. p. 1024-1027 in IGARSS "89
(International Geoscience and Remote Sensing
Symposium): 12th Canadian Symposium on Remote
Sensing: Remote Sensing, an Economic Tool for the
Nineties. 10-14 July 1989, Vancouver, British
Columbia. Published by IGARSS "89. 5 volumes.
3001 p.

Gurney, C.M.; Townshend, J.R.G. 1983. The usc of con-
textual information in the classification of remotely
sensed data. Photogrammetric Engineering and
Remote Sensing 49(1):55-64.

Guo, L.J.; Haigh, J.D. 1994. A three-dimensional feature
space iterative clustering method for multispectral
image classification. International Journal of Remote
Sensing 15(3):633-644.

Guyot, G.; Guyon, D.; Riom, J. 1989. Factors affecting
the spectral response of forest canopies: A review.
Geocarto International 4(3):3—18.

Hall, R.J.; Morton, R.T.; Nesby, R.N. 1989. A comparison
of existing models for DBH estimation from large-
scale photos. The Forestry Chronicle 65:114-120.

Halliday, W.E.D. 1937. A forest classification for Canada.
Department of Mines and Resources, Ottawa, ON.
Forest Service Bulletin 89.

40

Hame, T. 1984. Landsat-aided forest site type mapping.
Photogrammetric Engineering and Remote Sensing
50(8):1175-1183.

Haralick, R. M. 1979. Statistical and structural approaches
to texture. Proceedings of the IEEE 67(5):786-804.

Haralick, R.M.; Shanmugam, K.: Dinstein, 1. 1973.
Texture features for image classification. IEEE
Transactions on Systems, Man, and Cybernctics
3(6):610-621.

Hardisky, M.A.; Klemas. V.; Smart, R.M. 1983. The
influence of soil salinity, growth form, and leaf
moisture on the spectral radiance of Spartina
alternifloracanopices. Photogrammetric Engineering
and Remote Sensing 49:77-83.

Herwitz, S.R.; Peterson, D.L.: Eastman, J.R. 1989,
Thematic mapper detection of change in the leaf area
index of closed canopy pine plantations in central
Massachusetts. Remote Sensing of Environment
29:129-140.

Hills, G.A. 1952, The classification and evaluation of site
for forestry. Ontario Department of Lands and Forests,
Toronto, ON. Research Report No. 24. 41 p.

Hills, G.A. 1958. Soil forest relationships in the site
regions of Ontario. p. 190-212 in First North
American Forest Soils Conference. 8-11 September
1958. Michigan State University, East Lansing,
Michigan. Michigan State University, Agricultural
Experiment Station, East Lansing, MI. 226 p.

Hills, G.A. 1960. Regional site research. The Forestry
Chronicle 36:401-423.

Hills, G.A. 1961. The ecological basis for land-use
planning. Ontario Department of Lands and Forests,
Toronto, ON. Research Report No. 46. 204 p.

Hills, G.A.; Pierpoint, G. 1960. Forest site evaluation in
Ontario. Ontario Department of Lands and Forests,
Toronto, ON. Research Report No. 42. 63 p.

Hodgson, M.E.; Jensen, J.R. 1987. Interrelationships be-
tween spatial resolution and per-pixel classifiers for
extracting information classes. Part II: The Natural
Environment. p. 130-139 in Proceedings, 1987
ACSM-ASPRS Annual Convention. 29 March-
30 April 1987, Baltimore. Maryland. American
Society of Photogrammetry, Falls Church, VA,

Hopkins, P.F.; MacLean, A.L.; Lillesand, T.M. 1988,
Assessment of thematic mapper imagery for forestry
applications under lake states conditions. Photo-
grammetric Engineering and Remote Sensing
54(1):61-68.



Horler, D.N.H.;: Dockray. M.; Barber, J. 1983. The red
edge of plant leaf reflectance. International Journal
of Remote Sensing 4(2):273-288.

Horler, D.N.H.; F.J. Ahern, 1986. Forestry information
contentof thematic mapper data. International Journal
of Remote Sensing 7(3):405-428.

Hsu. S. 1978, Texture-tone analysis for automated land-
use mapping. Photogrammetric Engineering and
Remote Sensing 11:1393-1404.

Hudson, W.D. 1987. Evaluation of several classification
schemes for mapping forest cover types in
Michigan. International Journal of Remote Sensing
8(12):1785-1796.

Huete, A.R. 1986. Separation of soil-plant spectral mix-
tures by factor analysis. Remote Sensing of Environ-
ment 19:237-251.

Huete, A.R. 1988. Asoil adjusted vegetation index (SAVI).
International Journal of Remote Sensing 9:295-309.

Huete. A.R.: Jackson, R.D.; Post, D.F. 1985. Spectral re-
sponse of a plant canopy with different soil back-
grounds. Remote Sensing of Environment 17:37-53.

Huete, A.R.; Tucker, C.J. 1991. Investigation of soil
influences in AVHRR red and near infrared vegetation
index imagery. International Journal of Remote
Sensing 12:1223-1242,

Hughes, J.S.; Evans, D.L.; Burns, P.Y ; Hill, .M. 1986.
Identification of two southern pine species in high-
resolution aerial MSS data. Photogrammeltric
Engineering and Remote Sensing 52(8):1175-1180.

Hunt, E.R.; Rock, B.N.; Nobel, P.S. 1987. Measurement
of leaf relative water content by infrared reflectance.
Remote Sensing of Environment 22:429-435.

lantosca, E.T.; Gray, L.H.; Buxton, R.A.H.; Bézy, ].-L.
1992. Characterization of CCD detector arrays for
ESA’s Earth-orbiting imaging spectrometers. Can-
adian Journal of Remote Sensing 18(4):223-232.

Irons, J.R.; Petersen. G.W. 1981. Texture transforms of
remote sensing data. Remote Sensing of Environment
11:359-370.

Irons, J.R.; Peterson, G.W.; Nelson, R.FF.; Toll, D.L;
Williams, D.L.; Lauy, R.S.; Staufer, M.L.. 1985. The
effects of spatial resolution on the classification of
TM data. International Journal of Remote Sensing
6(8):1385-1403.

Irons, J.R.; Ranson, K.J.; Williams, D.;
Huegel, F.

[rish. R.;
1991. An off-nadir-pointing imaging
spectroradiometer for terrestrial ecosystem studics.
IEEE Transactions on Geoscience and Remote
Sensing 29(1):66-74.

Jensen. J.R. 1983. Biophysical remote sensing. Annals of the
Association of American Geographers 73(1):111-132.

Jensen,J.R.; Hodgson, M.E. 1985, Remote sensing forest
biomass: Anevaluation using high resolution remote
sensor data and loblolly pine plots. Professional
Geographer 37(1):46-56.

Jensen, J.R.; Hodgson, M.E. 1987. Interrclationships
between spatial resolution and per-pixel classifiers
for extracting information classes, Part I: The Urban
Environment. p. 121-129 in Proceedings, 1987
ACSM-ASPRS Annual Convention. 29 March-
30 April 1987, Baltimore, Maryland. American
Society of Photogrammetry, Falls Church, VA,

Jones, R.K.; Pierpoint,G.; Wickware, G.M.; Jeglum, J.K.;
Arnup, RW.; Bowles, J.M. 1983. Field guide to
forestecosystem classification for the Clay Belt, Site
Region 3e. Ont. Min. Nat. Resour., Toronto, ON, 123 p.

Joria, P.E.; Ahearn, S.C.; Connor, M. 1991, A comparison
of the SPOT and Landsat thematic mapper satellite
systems for detecting gypsy moth defoliation in
Michigan. Photogrammetric Engineering and Remote
Sensing 57(12):1605-1612.

Jupp, D.L.B.; Strahler, A.H.; Woodcock, C.E. 1988.
Autocorrelation and regularization in digital images.
I. Basic theory. IEEE Transactions on Geoscience
and Remote Sensing 26(4):463-473.

Kalensky,Z.D.;Moore, W.C.; Campbell, G.A.; Wilson, D.A:
Scot, AJ. 1981, Summary forest resource data from
Landsat images. final report of a pilot study for
northern Saskatchewan. Canadian Forestry Service,
Petawawa National Forestry Institute, Chalk River,
ON. Report PI-X-5. 36 p.

Karpuk, E.W. 1978, Ecological land classification
southeast of Lesser Slave Lake, Alberta, using air-
borne and Landsat remote sensing. McMaster
University, Department of Geography, Hamilton,
ON. 274 p.

Karteris, M.A. 1990. The utility of digital thematic mapper
data for natural resources classification. International
Journal of Remote Sensing 11(9):1589-1598.

41



Kauth,R.J.; Thomas, G.S. 1976. The tassel-cap—a graphic
description of the spectral-temporal development of
agricultural crops as seen by Landsat. p. 41-51 in
Proceedings of Symposium on Machine Processing
of Remotely Sensed Data. 29 June—I1 July 1976,
Purdue University, West Lafayette, Indiana. Institute
of Electrical and Electronics Engineers, New York,
NY. 336 p.

Kershaw, C.D. 1987, Discrimination problems for satellite
images. International Journal of Remote Sensing
8(9):1377-1383.

Kimes, D.S.; Newcomb, W.W_; Nelson, R.F.; Schutt,
J.B. 1986. Directional reflectance distributions of a
hard-wood and pine forest canopy. [EEE Transactions
on Geoscience and Remote Sensing 24:281-293.

Klemes, V. 1983. Conceptualization and scale in
hydrology. Journal of Hydrology 65: 1-23.

Klinka, K.; Nuszdorfer, F.C.; Skoda, L. 1979. Biogeo-
climatic units of central and southern Vancouver
Island. B.C. Ministry of Forests, Victoria, BC. 120 p.
(+ 1:500,000 scale mapsheet).

Klinka, K.; van der Horst, W.D.; Nuszdorfer, F.C.;
Harding, R.G. 1980. An ecosystematic approach to
forest planning. The Forestry Chronicle 56(3):97—
103,

Kneppeck, LD.; Ahern, F.J. 1989. A comparison of
images from a pushbroom scanner with normal color
aerial photographs for detecting scattered recent
conifermortality. Photogrammetric Engineering and
Remote Sensing 55(3):333-337.

Kogan, F.N. 1990. Remote sensing of weather impacts on
vegetation in non-homogeneous areas. International
Journal of Remote Sensing 11(8):1405-1419.

Kruse, F.A.; Lefkoff, A.B.: Boardman, JW;
Heidebrecht, K.B.; Shapiro, A.T.; Barloon, PJ.;
Gocetz, A.F.H. 1993, The spectral iimaging processing
system (SIPS)—Interactive visualization and analysis
of imaging spectrometer data. Remote Sensing of
Environment 44:145-163.

Labovitz, M.L.; Masuoka, E.J. 1984. The influence of
autocorrelation on signature extraction—an example
from a geobotanical investigation of Cotter Basin,
Montana. International Journal of Remote Sensing
5(2):315-332.

Lacate, D.S. 1969. Guidelines for bio-physical land
classification: For classification of forest lands and
associated wildlands. A progress report based on
bio-physical land classification pilot projects and
discussions of the Subcommittce on Bio-physical
Land Classification, National Committee on Forest
Land. Ministry of Fisheries and Forestry, Ottawa,
ON. 59 p.

Lathrop, R.G.. Jr.; Pierce, L.L. 1991. Ground-based can-
opy transmittance and satellite remotely sensed
measurements for estimation of coniferous forest
canopy structure. Remote Sensing of Environment
37:179-188.

Lam, N.S.-N.; Quattracchi, D.A. 1992. On the issue of
scale, resolution and fractal analysis in the mapping
sciences. Professional Geographer 44:88-98.

Lauty, R.S.; Hoffer, R.M. 1981. Computer-based
classification accuracy due to the spatial resolution
using per-point and per-field classification
techniques. p. 384-392 in P.G. Burroff and D.B.
Morrison, eds. 7th Machine Processing of Remotely
Sensed Data Symposium. 23-26 June 1981, Purdue
University, West Lafayette, Indiana. Purdue Research
Foundation, West Lafayette, IN. 728 p.

Leckie, D.G. 1987. Factors affecting defoliation assess-
ment using airborne multispectral scanner data.
Photogrammetric Engineering and Remote Sensing
53(12):1665-1674.

Leckie, D.G.; Dombrowski, A. 1984. Enhancement of
high resolution MEIS II data for softwood specics
discrimination, p. 617-626 in Susan M. Till and
Denes Bajzak, eds. 9th Canadian Symposium on
Remote Sensing. 14-17 August 1984, St. John's,
Newfoundland. Canadian Aeronautics and Space
Institute, Ottawa, ON. 821 p.

Leckie,D.G.; Ostaff, D.P. 1988. Classification of airborne
multispectral scanner data for mapping current de-
foliation caused by the spruce budworm. Forest
Science 34(2):259-275.

Leckie, D.G.; Ostaff, D.P.; Teillet, P.M.; Fedosejevs, G.
1989. Spectral characteristics of tree components of
balsam fir and spruce damaged by spruce budworm,
Forest Science 35(2):582-600.

Leckie, D.G.; Teillet, P.M.; Fedosejevs, G.; Ostaff, D.P.
1988a. Reflectance characteristics of cumulative
defoliation of balsam fir. Canadian Journal of Forest
Research 18(8):1008-1016.



Leckie, D.G.; Teillet, P.M.; Ostaff, D.P.; Fedosejevs, G.
1988b. Sensor band selection for detecting current
defoliation caused by the spruce budworm. Remote
Sensing of Environment 26:31-50.

Leckie, D.G.; Yuan, X.; Ostaff, D.P.; Piene, H.;
MacLean, D.A. 1992, Analysis of high resolution
multispectral MEIS imagery for spruce budworm
damage assessment on a single tree basis. Remote
Sensing of Environment 40(2):125-136.

Lee, J.-H.; Philpot, W.D. 1991. Spectral texture pattern
matching: a classifier for digital imagery. IEEE
Transactions on Geoscience and Remote Sensing
29(4):545-554.

Lee. T.: Richards, J.; Swain, P. 1987, Probabilistic and
evidential approaches for multi-source data analysis.
IEEE Transactions on Geoscience and Remote
Sensing 25(3):283-292.

Legge. A.H.; Jaques, D.R.; Poulton, C.E.; Kirby, C.L.;
Van Eck, P. 1974. Development and application of
an ecologically based remote sensing legend system
for the Kananaskis, Alberta, Remote Sensing Test
Corridor (Subalpine Forest Region). International
Society for Photogrammetry, Banff, AB. 28 p.

Levac, P. 1991. Integrated management of forest re-
sources. p. 144-148 in D.G. Brand, ed. National
Conference on Canada's Timber Resources. 3-5
June 1990, Victoria, British Columbia. Forestry
Canada, Petawawa National Forestry Institute, Chalk
River, ON. Inf. Rep. PI-X-101. 174 p.

Li, X.; Strahler, A. 1983, Geometrical-optical modeling
of a conifer forest canopy. IEEE Transactions on
Geoscience and Remote Sensing 23:705-721.

Li, X.; Strahler, A. 1986. Geometrical-optical bidirectional
reflectance modeling of a conifer forest canopy.
IEEE Transactions on Geoscience and Remote
Sensing 24:906-919.

Lillesand, T.M.; Kiefer, R.W. 1994. Remote Sensing and
Image Interpretation. John Wiley and Sons, New
York. NY. 721 p.

Lulla, K. 1983. The Landsat satellites and selected aspects
of physical geography. Progress in Physical
Geography 7(1)1-45.

Mack. A.R.; Desjardins, R.L.; MacPherson, J.I.;
Schuepp, P.H. 1990. Relative photosynthetic activity
of agricultural lands from airborne carbon dioxide
and satellite data. International Journal of Remote
Sensing 11(2):237-251.

Maclean, A L.: Reed. D.D.; Mroz, G.D.; Lyon. G.W;
Edison, T. 1992, Using GIS to estimate forest resource
changes: A case study in northern Michigan. Journal
of Forestry 90(12):22-25.

Major, D.J.;: Baret, F.; Guyot, G. 1990. A ratio vegetation
index adjusted for soil brightness. International
Journal of Remote Sensing 11(5):727-740.

Marceau, D. 1989. A review of image classification pro-
cedures with special emphasis on the grey-level
cooccurrence matrix method for texture analysis.
University of Waterloo. Department of Geography.
Earth-Observations Laboratory, Waterloo, ON.
Earth-Observations Laboratory Report ISTS-EOL-
TR89-07. 59 p.

Marceau, D. 1992, The problem of scale and spatial
ageregation in remote sensing: An empirical inves-
tigationusing forestry data. Unpublished Ph.D. thesis,
University of Waterloo, Department of Geography,
Waterloo, ON. 180 p.

Marceau, D.J.; Gratton, D.J.; Fournier, R.A.; Fortin, J.-P.
1994a. Remote sensing and the measurement of
geographical entities in a forested environment. 2.
The optimal spatial resolution. Remote Sensing of
Environment 49:105-117.

Marceau, D.J.; Howarth, P.J.; Dubois, J.M.; Gratton, D.J.
1990. Evaluation of the grey-level co-occurrence
matrix method for land-cover classification using
SPOT imagery. I[EEE Transactions on Geoscience
and Remote Sensing 28(4).513-519,

Marceau, D.J.; Howarth, P.1.; Gratton, D.J. 1994b. Remote
sensing and the measurement of geographical entities
in a forested environment. 1. The scale and spatial
aggregation problem. Remote Sensing of Environ-
ment 49:93-104.

Markham, B.L.; Townshend, J.R.G. 1981. Land cover
classification accuracy as a function of sensor spatial
resolution. p. 1075-1090 in 15th International
Symposium on Remote Sensing of Environment.
11-15 May 1981, Ann Arbor, Michigan. Environ-
mental Research Institute of Michigan., Ann Arbor,
MI. 3 volumes. 1556 p.

Martin, L.R.G.; Howarth, P.J.: Holder, G.H. 1988,
Multispectral classification of land use at the rural-
urban fringe using SPOT data. Canadian Journal of
Remote Sensing 14(2):72-79.

Matheron, G. 1963. Principles of geostatistics. Economic
Geology 58:1246-1266.



Maus, P.: Landrum, V.; Johnson, J.; Lachowski, H.;
Platt, B.; Schanta, M. 1992. Utilizing satellite data
and GIS to map land cover change. p. 1-6 in GIS'92:
Working Smarter: Proceedings of the 6th International
Symposium on Geographic Information Systems.
10-13 February 1992, Vancouver, British Columbia.
Polaris Learning Associates, Vancouver, BC. FRDA
Report 173. 300 p.

Mayer, K.E.; Fox, L. 1981. Identification of conifer
species grouping from Landsatdigital classifications,
Photogrammetric Engineering and Remote Sensing
47(11):1607-1614.

McColl, W.D.; Neville, R.A.; Till, S.M. 1983, Multi-
detector Electro-optical Imaging Scanner, MEIS I1.
p. 71-77 in K.P.B. Thomson and F. Bonn, eds.
Proceedings of the 8th Canadian Symposium on
Remote Sensing. 3-6 May 1983, Montreal, Quebec.
L’ Association québecoise de télédétection, Sainte-
Foy, QC. 840 p.

McGwire, K.; Friedl, M.: Estes. I.LE. 1993. Spatial
structure, sampling design and scale in remotely
sensed imagery of a California savanna woodland.
International Journal of Remote Sensing
14(11):2137-2164.

McLeod, S.D.; Running, S.W. 1988. Comparing site
qualtiy indices and productivity in ponderosa pine
stands in western Montana. Canadian Journal Forest
Research 18:346-352.

Meidinger, D.; Pojar. J., eds. 1991. Ecosystems of British
Columbia. British Columbia Ministry of Forests,
Crown Publications, Victoria, BC. 330 p.

Merchant, B.G.; Baldwin, R.D.; Taylor, E.P.;
Chalmers, B.A.; Gordon, A.M.; Jones, R.K. 1989,
Field guide to a productivity oriented pine forest
ccosystem classification for the Algonquin Region,
Site Region Se, first approximation. Ont. Min. Nat.
Resour., Toronto, ON. 131 p.

Miller, J.R.; Elvidge, C.D.; Rock, B.N.; Freemantle, J.R.
1990. An airborne perspective on vegetation phen-
ology from the analysis of AVIRIS data sets over the
Jasper Ridge Biological Preserve. p. 565-568 in
R. Mills, ed. IGARSS "90: Remote Sensing Science
for the Nineties: 10th Annual International Geo-
science & Remote Sensing Symposium. 20-24 May
1990, the University of Maryland, College Park,
Maryland. Institute of Electrical and Electronics
Engineers, New York, NY. 3 volumes. 2488 p.

Miller, J.R.; Hare, EW.; Wu, J. 1990b. Quantitative
characterization of the vegetationred edge reflectance
I. An inverted-Gaussian reflectance model. Inter-
national Journal of Remote Sensing 11(10):1755-
1775

Miller, LR.; Wu,J.; Boyer, M.G.; Belanger, G.; Hare, EW,
1991. Seasonal patterns in leaf reflectance red edge
characteristics. International Journal of Remote
Sensing 12(7):1509-1523.

Misra, P.N.; Wheeler, S.G. 1977. Landsat data from
agricultural sites — crop signature analysis. p. 1473—
1482 in 11th International Symposium on Remote
Sensing of Environment. 25-29 April 1977, Ann
Arbor, Michigan. Environmental Research Institute
of Michigan, Ann Arbor, ML 2 volumes. 1668 p.

Mollard, P.R.: Mollard, I.D. 1981. Kaministikwia Area,
NTS Map Sheet No. S2A/NW. District of Thunder
Bay. Ontario Geological Survey, Toronto, ON.
Northern Ontario Engineering and Terrain Survey
(NOEGTS) Study No. 57. 27 p.

Mueller-Dombois, D.; Ellenberg, H. 1974. Aims and
Methods of Vegetation Ecology. John Wiley and
Sons, Toronto, ON. 547 p.

Musick, H.B.; Pelletier, R.E. 1988. Response to soil
moisture of spectral indices derived from bidirectional
reflectance in thematic mapper bands. Remote
Sensing of Environment 25:167—-184.

National Aeronautics and Space Administration (NASA).
1987. HIRIS High Resolution Imaging Spectrometer:
Science opportunities for the 1990s. Earth Observing
System, Volume Ilc. Instrument Panel Report.
Washington, DC. 74 p.

Nelson, R.F. 1983. Detecting forest canopy change due to
insect activity using Landsat MSS. Photogrammetric
Engineering and Remote Sensing 49(9):1303-13 14,

Nelson, R.F.; Latty, R.S.; Mott, G. 1984. Classifying
northern forests using thematic mapper simulator
data. Photogrammetric Engincering and Remote
Sensing 50(5):607-617.

Nemani, R.; Pierce, L.; Running, S.; Band, L. 1993,
Forest ecosystem processes at the watershed scale:
Sensitivity to remotely sensed leaf area index
estimates. International Journal of Remote Sensing
14(13):2519-2534.

Nemani, R.; Running, S. 1989. Testing a theoretical
climate-soil-leaf area index using a hydrologic equi-
librium of forests using satellite data and ecosystem
simulation. Agriculture and Forest Meteorology
44:245-260.



Neville, R.A.; Gauthier, R.P.; Schwarz, J.W.; Till, S.M.
1990. Calibration of the MEIS multispectral imager.
ISPRS Journal of Photogrammetry and Remote
Sensing 44:305-310.

Neville, R.A.; Powell, 1. 1992. Design of SFSI: An
imaging spectrometer inthe SWIR. Canadian Journal
of Remote Sensing 18(4):210-222.

Ontario Ministry of Natural Resources. 1977, A ready
reference to the Ontario land inventory. Toronto,
ON. 75 p.

Ontario Ministry of Natural Resources. 1978, Forest
inventory procedure for Ontario. Third edition.
Toronto, ON. 31 p.

Openshaw, S. 1984, The maodifiable areal unit problem.
Concepts and techniques in modern geography.
CATMOG Series, Vol. 38. 40 p.

Openshaw, S.; Taylor, P.J. 1979, Amillion or so correlation
coefficients: Three experiments on the modifiable
area unit problem. p. 127-144 in N. Wrigley. ed.
Statistical Applications in the Spatial Sciences. Pion
Ltd., London, England. 310 p.

Osborn. J. 1989. The forest database. p. 155-169 in R.F.
Calvert, B. Payandeh, MLF. Squires and W.D. Baker,
eds. Forest Investment: A Critical Look. 15-16
November 1988, Thunder Bay, Ontario. Forestry
Canada, Ontario Region, Sault Ste. Marie, ON. OFRC
Symposium Proceedings O-P-17. 216 p.

Otterman, J.; Strebel, D.; Ranson, K. 1987. Inferring
spectral reflectances of plant elements by simple
inversion of bidirectional reflectance measurements.
Remote Sensing of Environment 21:215-228.

Ovington, J.D. 1962, Quantitative ccology and the wood-
land ecosystem concept. Advanced Ecological
Research 1:103-192.

Palmier. C.; Ansseau, C. 1992. Remote sensing of physio-
logical disturbances related to sugar maple dieback
in southern Quebec: Potentials of imaging spectro-
metry. p. 133-137 in J.K. Hornsby, D.J. King and
N.A. Prout, eds. A World of Applications: 15th
Canadian Symposium on Remote Sensing. 1-4 June
1992, Toronto, Ontario. Ont. Min. Nat. Resour.,
Ontario Centre for Remote Sensing, North York.
ON.

Peddle, D.R. 1993. An empirical comparison of evidential
reasoning, lincar discriminantanalysis and maximum
likelihood algorithms for alpine land cover
classification. Canadian Journal of Remote Sensing
19(1):31-45.

Peddle. D.R.; Franklin, S.E. 1991. Image texture
processing and data integration for surface pattern
discrimination. Photogrammetric Engincering and
Remote Sensing 57(4):413-420.

Peterson, D.L.; Aber. J.D.: Matson. P.A.: Card. D.H.:
Swanberg. N.: Wessman, C.; Spanner, M. 1988,
Remote sensing of forest canopy and leal biochemical
contents. Remote Sensing of Environment 24:85—
108.

Peterson, D.L.; Spanner, MLA.: Running, SW.; Teuber, K.B.
1987. Relationship of Thematic Mapper Simulator
datato leaf areaindex of temperate coniferous forests.
Remote Sensing of Environment 22:323-341,

Peterson, D.L.; Westman, W.E.; Stephenson, N.J.;
Ambrosia, V.G.; Brass, J.A.: Spanner, MLA. 1986.
Analysis of forest structure using thematic mapper
simulation data. [EEE Transactions on Geoscience
and Remote Sensing 24(1):113-121.

Pettinger. L.R. 1982, Digital classification of Landsat
data for vegetation and land-cover mapping in the
Blackfoot River watershed, southeastern Idaho. U.S.
Geological Survey, Alexandria, VA. 33 p.

Picrpoint, G. 1986. An orientation to site classification
in Ontario. p. 24-28 in G.M. Wickware and W.C.
Stevens, cochairmen. Site Classification in Relation
to Forest Management. 27-29 August 1985, Sault
Ste. Marie, Ontario. Canadian Forestry Service,
Sault Ste. Marie, ON, COJFRC Symp. Proceedings.
O-P-14. 142 p.

Pierpoint, G.; Uhlig, P. 1985, Catalogue of land resource
surveys in Ontario of major value in forest manage-
ment. Ont. Min. Nat. Resour., Toronto, ON. 50 p.

Pilon, P.G.; Wiart, R.J. 1990, Operational forestinventory
applications using Landsat TM data: The British
Columbia experience. Geocarto International
5(1):25-30.

Plonski, W.L. 1974, Normal yicld tables (metric) for
major forest species of Ontario. Ont. Min. Nat
Resour., Toronto, ON. 40 p.

Price, M. 1986. The analysis of vegetation change by
remote sensing. Progress in Physical Geography
10(4):473-491.

Racey, G.D.; Whitfield. T.S.; Sims, R.A. 1989. North-
weslern Ontario forest ccosystem interpretations.
Ont. Min. Nal. Resour., Thunder Bay, ON.
NWOFTDU Technical Report No. 46. 160 p.

£+
h



Ranson, K.J.; Daughtry, C.S.T.; Biehl, L.L.. 1986. Sun
angle, view angle, and background effects on spectral
response of simulated balsam fir canopies.
Photogrammetric Engincering and Remote Sensing
52(5):649-658.

Ranson, K.J.; Trons, I.R.; Williams, D.L. 1994, Multi-
spectral bidirectional reflectance of northern forest
canopies with the Advanced Solid-state Array
Spectroradiometer (ASAS). Remote Sensing of
Environment 47:276-289.

Rees, W.E. 1977, The Canada land inventory in
perspective. Environment Canada, Lands Directorate,
Ottawa, ON. Report No. 12. 40 p.

Rencz, A.N.; Nemeth. J. 1985. Detection of mountain
pine beetle infestation using Landsat and simulated
thematic mapper data. Canadian Journal of Remote
Sensing 11(1):50-58.

Richards, J.A.; Kelly, D.J. 1984. On the concept of
spectral class. International Journal of Remote
Sensing 5(6):987-991.

Richardson, A.J.; Wiegand, C.L. 1977. Distinguishing
vegetation from soil-background information.
Photogrammetric Engineering and Remote Sensing
43:1541-1542.

Richardson, A.J.; Wiegand, C.L. 1990. Comparison of
two models for simulating the soil-vegetation
compositereflectance of adeveloping cotton canopy.
International Journal of Remote Sensing 11(3):447—
459,

Riordan, C.J. 1982. Change detection for resource inven-
tories using digital remote sensing data. p. 278-283
inT.B. Brann,L.O. House IV and H.G. Lund, eds. In-
place Resource Inventories: Principles & Practices:
proceedings, workshop. 9—-14 August 1981, Univer-
sity of Maine, Orono, Maine. Society of American
Foresters, Bethesda, MD.

Ripple, W.J.: Wang, S.; Isaacson, D.L.; Paine, D.P. 1991.
A preliminary comparison of Landsat thematic
mapper and SPOT-1 HRV multispectral data for
estimating coniferous forest volume. International
Journal of Remote Sensing 12(9):1971-1977.

Roberts, D.A.; Smith, M.O.; Adams, J.B. 1993. Green
vegetation, non-photosynthetic vegetation, and soils
in AVIRIS data. Remote Sensing of Environment
44:255-269.

Robinove, C.J. 1981. The logic of multispectral classifi-
cation and mapping of land. Remote Sensing of
Environment 11:231-244,

46

Rock, B.N.; Williams, D.L.; Vogelmann, J.E. 1985. Field
and airborne spectral characterization of suspected
acid deposition damage in red spruce (Picea rubens)
from Vermont. p. 71-81 in S.K. Mengel and D.B.
Morrison, eds. 11th International Symposium on
Machine Processing of Remotely Sensed Data.
25-27 June 1985, Purdue University, West Lafayette,
Indiana. Purdue Research Foundation, West
Lafayette, IN. 370 p.

Rock, B.N.; Hoshaki, T.; Miller, J.R. 1988. Comparison
of in situ and airborne spectral measurements of the
blue shift associated with forest decline. Remote
Sensing of Environment 24:109-127.

Rock, B.N.; Williams, D.L.; Moss, D.M.: Lauten, G.N .-
Kim, M. 1994. High spectral resoltion field and
laboratory optical reflectance measurements of red
spruce and eastern hemlock needles and branches.
Remote Sensing of Environment 47:176—189.

Rouse, I.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.
1974. Monitoring vegetation systems in the Great
Plains with ERTS. p. 309-317 in S.C. Freden. E.P.
Mercanti and M.A. Becker, comps. and eds. 3rd
Earth Resources Technology Satellite-1 Symposium.
10-14 December 1973, Goddard Flight Center,
Washington, DC. National Aeronautics and Space
Administration, Scientific and Technical Information
Office, Washington, DC. 3 volumes. NASASP-35]1.

Rowe, I.S. 1972. Forest regions of Canada. Department
of the Environment, Canadian Forestry Service,
Ottawa, ON. Publication No. 1300. 172 p.

Rowe, 1.S.; Haddock, P.G.; Hills, G.A.; Krajina, V.J;
Linteau, A. 1961. The ecosystem concept in forestry.
p-55-59, Appendix Hin V.J. Krajina. 1960 Progress
Report—Ecology of the Forests of the Pacific
Northwest. University of British Columbia,
Vancouver, BC. 62 p. + appendices.

Rubec, C.D.A. 1983, Applications of remote sensing in
ecological land surveys in Canada. Canadian Journal
of Remote Sensing 9(1):19-30.

Running, S.W.; Peterson, D.L.; Spanner, MA.; Teuber, K.B.
1986. Remote sensing of coniferous forest leaf area.
Ecology 67:273-276.

Sadowski, F.G.; Malila, W.A.; Sarno, J.E.; Nalepka, R.F.
1977. The influence of multi-spectral scanner spatial
resolution on forest feature classification. p. 1279-
1288 in 11th International Symposium on Remote
Sensing of Environment. 25-29 April 1977, Ann
Arbor, Michigan. Environmental Research Institute
of Michigan, Ann Arbor, MI. 2 volumes. 1668 p.



Schowengerdt, R.A.; Wang, H. 1989. A general purposc
expertsystem forimage processing. Photogrammetric
Engincering and Remote Sensing 55(9):1277-1284.

Schreuder. H.T.; Bonner, G.M. 1987. Forest inventories
in the United States and Canada. The Forestry
Chronicle 63(12):431-434.

Sellers, P.J. 1985, Canopy reflectance, photosynthesis
and transpiration. International Journal of Remote
Sensing 6(8):1335-1372.

Sellers, P.J.; Berry, I.A.; Collatz, G.J.; Field, CB.;
Hall, F.G. 1992. Canopy reflectance, photosynthe-
sis, and transpiration. IIL A reanalysis using improved
leaf models and a new canopy integration scheme.
Remote Sensing of Environment 42:187-216.

Simonett, D.S.; Coiner, J.C. 1971. Susceptibility of en-
vironments to low resolution imaging for land-use
mapping. p. 373-394 in 7th International Symposium
on Remote Sensing of Environment. 17-21 May
1971, University of Michigan, Ann Arbor, Michigan.
Center for Remote Sensing Information and Analysis,
Willow Run Laboratories, University of Michigan,
Ann Arbor, MI. 218 p.

Sims. R.AL; Baldwin, K.A. 1991, Landform features in
northwestern Ontario. Forestry Canada, Ontario
Region, Sault Ste. Marie, ON. COFRDA Report
3312. 63 p.

Sims, R.A.; Kershaw, H.M.; Wickware, G.M. 1990. The
autecology of major tree species in the north central
Region of Ontario. Forestry Canada, Ontario Region,
Sault Ste. Marie, ON. COFRDA Report 3302. 126 p.

Sims, R.A; Towill, W.D,; Baldwin, K.AL; Wickware, GM.
1989. Field guide to forest ccosystem classification
for northwestern Ontario. Ont. Min. Nat. Resour.,
Thunder Bay, ON. NWOFTDU Technical Report
46. 191 p.

Sims, R.A.; Uhlig, P. 1992. The current status of forest
site classification in Ontario. The Forestry Chronicle
68(1):64-77.

Sirois. J.: Ahern, F.J. 1988. An investigation of SPOT
HRYV data for detecting recent mountain pine beetle
mortality. Canadian Journal of Remote Sensing
14(2):104-108.

Skidmore, A.K. 1989, Anexpert systemclassifies eucalypt
forest types using thematic mapper data and a digital
terrain model. Photogrammetric Engineering and
Remote Sensing 55(10):1449-1464.

Skidmore, A.K.; Turner, B.J. 1988. Forest mapping
accuracies are improved using a supervised non-
parametric classifier with SPOT data. Photo-
grammetric Engineering and Remote Sensing
54(10):1415-1421.

Smith, J.A. 1983. Matter-energy interaction in the optical
region. p. 61-113 in R.N. Colwell, ed. Manual of
Remote Sensing, Vol. 11. 2nd ed. American Society
ol Photogrammetry, Falls Church, VA. 2 volumes.

Smith, J.L. 1986. Evaluation of the effects of photo
measurement errors on predictions of stand volume
from aerial photography. Photogrammetric
Engineering and Remote Sensing 52:401-410.

Smith, M.O.; Austin, S.LL.; Adams, I.B.: Gillespie, A.R.
1990a. Vegetation in deserts. I. A regional measure
of abundance from multispectral images. Remote
Sensing of Environment 31:1-26,

Smith, M.O.; Austin, S.L.; Adams, J.B.; Gillespie, A.R.
1990b. Vegetation in deserts: 1. Environmental
influences on regional abundances. Remote Sensing
of Environment 31:27-52.

Society of American Foresters. 1950. Forestterminology:
A glossary of technical terms used in forestry. Society
of American Foresters, Washington, DC. 75 p.

Spanner. M.A; Brass,J.A.; Peterson, D.L. 1984a. Feature
selection and the information content of thematic
mappersimulatordata for forest structural assessment.

[EEE Transactions on Geoscience and Remote
Sensing 22(6):482-489.

Spanner, M.A ; Peterson, D.L.; Hall, M.H.; Wrigley R.C ;
Card, D.H.: Running, S.W. 1984b. Atmospheric
cffects on the remote sensing estimation of forest
leal area index. p. 1295-1308 in 18th International
Symposium on Remote Sensing of Environment.
-5 October 1984, Paris, France. Environmental
Research Institute of Michigan, Ann Arbor, ML
3 volumes. 2000 p.

Spanner, M.A; Pierce,L.L.; Peterson, D.L.: Running, S.W.
1990a. Remote sensing of temperate coniferous forest
leal area index: The influence of canopy closure. un-
derstory vegetation and backgroundreflectance. Inter-
national Journal of Remote Sensing 11(1):95-111.

Spanner, M.A; Pierce.L.L.;Running, S.W.; Peterson. D.L.
1990b. The seasonality of AVHRR data of temperate
coniferous forests: Relationship with leaf arca index.
Remote Sensing of Environment 33:97-112.

Srinivasan, A.; Richards, J.A. 1990. Knowledge-based
techniques for multi-source classification. Inter-
national Journal of Remote Sensing 11(3):505-325,

47



Staenz, K. 1992. A decade of imaging spectrometry in
Canada. Canadian Journal of Remote Sensing
18(4):187-197.

Stenback, J.M.; Congalton, R.G. 1990. Using thematic
mapper imagery to cxamine forest understory,
Photogrammetric Engineering and Remote Sensing
56(9):1285-1290.

Stohr, C.J.; West, T.R. 1985. Terrain and look angle
effects upon multispectral scanner response. Photo-
grammetric Engineering and Remote Sensing
51(2):229-235.

Stone, K.H. 1972. A geographer’s strength: The multiple-
scale approach. The Journal of Geography 71(6):354—
362.

Strahler, A.H. 1980. The use of prior probabilities in
maximum likelihood classification of remotely sensed
data. Remote Sensing of Environment 10:505-525.

Strahler, A.; Woodcock, C.E.; Logan, T.L. 1980. Forest
- stratification for timber inventory using registered
digital Landsat and terrain model data in northern
California. p. 413-419 in T.T. Alfoldi, ed. 6th
Canadian Symposium on Remote Sensing. 21-23
May 1980, Halifax, Nova Scotia. Canadian
Aeronautics and Space Institute, Ottawa, ON. 699 p.

Strahler, A.H.; Woodcock, C.E.; Smith, J.A. 1986. On the
nature of models in remote sensing. Remote Sensing
of Environment 20:121-139.

Stanek, W.; Orloci, L. 1987, Somessilvicultural eccosystems
in the Yukon. Canadian Forest Service, Victoria,
BC. Inf. Rep. BC-X-293. 56 p.

Sukachev, V. 1945. Biogeocoenology and phytocoe-
nology. C.R. Acad. Science U.S.S.R. 47:429-431.

Sun, C.; Wee, W.G. 1982. Neighbouring gray level de-
pendence matrix for texture classification. Computer
Vision, Graphics, and Image Processing 23:341-
352.

Swain, P.H.; Davis, S.M., eds. 1978. Remote Sensing:
The Quantitative Approach. McGraw-Hill, New
York, NY. 396 p.

Tansley, A.G. 1935. The use and abuse of vegetational
concepts and terms. Ecology 16:284-307.

48

Teillet, P.M.; Goodenough, D.G.; Guindon, B.:
Meunier, J.-F.; Dickinson, K. 1981. Digital analysis
of spatial and spectral features from airborne MSS of
a forested region. p. 883-903 in 15th International
Symposium on Remote Sensing of Environment.
11-15 May 1981, Ann Arbor, Michigan. Environ-
mental Research Institute of Michigan, Ann Arbor.
3 volumes.

Thie, J. 1974. Remote sensing for northern inventories
and environmental monitoring. p. $1-97 in Canada’s
Northlands: Proceedings of a Technical Workshop
to Develop an Integrated Approach to Base Data
Inventories for Canada’s Northlands. 17-19 April
1974, Toronto. Ontario. Environment Canada, Lands
Directorate, Ottawa, ON. 298 p.

Thie,J. 1976. Anevaluation of remote sensing techniques
for ecological (biophysical) land classification in
northern Canada. p.129-147 in J. Thie and G. Iron-
sides, eds. Proceedings of the First Meeting of the
Canada Committee on Ecological (Biophysical) Land
Classification. 25-28 May 1976, Petawawa, Ontario.
Environment Canada, Lands Directorate, Ottawa,
ON. Ecological Land Classification Series No. I.
269 p.

Thomas, 1.L.. 1980. Spatial postprocessing of spectrally
classified Landsat data. Photogrammetric
Engineering and Remolte Sensing 46:1201-1206.

Till, S.M. 1987. Airborne electro-optical sensors for
resource management. Geocarto International
2(3):13-23.

Till, S.M.: McColl, W.D.; Neville, R.A. 1983. Develop-
ment field performance, and evaluation of the MEIS
[T multi-detector electro-optical imaging scanner.
p. 1137-1146 in 17th International Symposium on
Remote Sensing of Environment. 9-13 May 1983,
Ann Arbor, Michigan. Environmental Resecarch
Institute of Michigan, Ann Arbor, ML 3 volumes.
1446 p.

Toll, D.L. 1985. Landsat-4 thematic mapper scene char-
acteristics of a suburban and rural area. Photogram-
metric Engincering and Remote Sensing
51(9):1471-1482,

Tom, C.H.; Miller, L.D. 1980. Forest site index mapping
and modeling. Photogrammetric Engineering and
Remote Sensing 46(12):1585-1596.

Tom, C.H.; Miller, L.D. 1984. An automated land-use
mapping comparison of the Bayesian maximum likeli-
hood and linear discriminant analysis algorithms.
Photogrammetric Engineering and Remote Sensing
50(2):193-207.



Ton, I.; Sticklen, 1.; Jain, A.K. 1991, Knowledge-based
segmentation of Landsat images. IEEE Transactions
on Geoscience and Remote Sensing 29(2):22-231.

Towill, W.D.; Barauskas, A.: Johnston, R. 1988. A pre-
cut survey method incorporating the Northwestern
Ontario Forest Ecosystem Classification. Ont. Min.
Nat. Resour., Northwestern Ontario Forestry Tech-
nology Development Unit, Thunder Bay, ON. Tech.
Rep. No. 2. 25 p.

Townshend, J.R.G. 1981. The spatial resolving power of
carth resources satellites. Progress in Physical
Geography 5:32-55.

Townshend, J.R.G. 1983. Effects of spatial resolution on
the classification of land cover type. p. 101112 in
R.M. Fuller, ed. Ecological Mapping from Ground,
Airand Space. 25-27 November 1981, Monks Wood
Experiment Station, United Kingdom. Institute of
Terrestrial Ecology. Cambridge, United Kingdom.
[nstitute of Terrestrial Ecology Symposium No. 10.
142 p.

Townshend, J.R.G.; Justice, C.O. 1980. Unsupervised
classification of MSS Landsat data for mapping
spatially complex vegetation. International Journal
of Remote Sensing 1(2):105-120.,

Treitz, P.M.; Filho, O.R.; Howarth, P.J.; Soulis, E.D.;
Kouwen,N. 1993, Classification of agricultural crops
using SAR tone and texture statistics. p. 343-347 in
P. Gagnon and N.T. O'Neill. eds. 16th Canadian
Symposium on Remote Sensing. 7-10 June 1993,
Sherbrooke, Quebec. Centre d’application et de
recherches en t¢lédétection, Sherbrooke, QC. 937 p.

Treitz, P.M.; Howarth, P.J.; Suffling, R.C.; Smith, P.
1992. Application of detailed ground information to
vegetation mapping with high spatial resolution
digital imagery. Remote Sensing of Environment
42:65-82.

Tucker, C.J. 1977, Asymptotic nature of grass canopy
spectral reflectance. Applied Optics 16:1151-1157.

Tucker, C.J. 1979. Red and photographic infrared linear
combinations for monitoring vegetation. Remote
Sensing of Environment 8:127-150.

Tucker, C.J.; Fung, LY.; Keeling, C.D.; Gammon, R.H.
1986. Relationship between atmospheric CO,
variations and a satellite-derived vegetation index.

Nature 319:195-199.

Tucker, C.J.; Holben, B.N.; Elgin, J.H.; McMurtry, J.
1981. Remote sensing of total dry matter
accumulation in winter wheat. Remote Sensing of
Environment 11:171-189.

Vane, G.; Goetz, AF.H.; Wellman, LB, 1984, Airborne
imaging spectrometer: A new tool forremote sensing.

Sensing 22(6):546-549.

Vane, G.;: Chrien, T.G.: Miller, E.A.; Reimer, J.H. 1987.
Spectral and radiometric calibration of the air-
borne visible/infrared 1imaging spectrometer. SPIE
834:91-105.

Vane, G.; Green, R.O.; Chrien, T.G.; Enmark, H.T ;
Hansen, E.G.; Porter, W.M. 1993. The Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS).
Remote Sensing of Environment 44:127-143,

Veronese, V.F.; Mather, P.M. 1992. The incorporation of
collateral information to image classification: AGIS/
RS interface approach toremote sensing. p. 590-599
in A.P. Cracknell and R.A. Vaughan, eds. Remote
Sensing from Research to Operation: Proceedings of
the 18th Annual Conference of the Remote Sensing
Society. 15-17 September 1992, University of
Dundee, Dundee, Scotland. Remote Sensing Society,
Nottingham, England. 620 p.

Vogelmann, J.E;; Rock, B.N. 1988. Assessing forest
damage in high-elevation coniferous forests in
Vermontand New Hampshire using thematic mapper.,
Remote Sensing of Environment 24:227-246.

Vogelmann, L.E.; Rock, B.N.; Moss, D.M. 1993, Rededge
spectral measurements in sugar maple leaves. Inter-
national Journal of Remote Sensing 14:1563-1575.

Walsh, S.A.; Wickware, G.M. 1991, Stand and site con-
ditions associated with the occurrence and distribution
of black spruce advance growth in north central
Ontario. Forestry Canada, Ontario Region, Sault Ste.
Marie, ON. COFRDA Report 3309. 37 p.

Walsh, S.J. 1980. Coniferous tree species mapping
using Landsat data. Remote Sensing of Environ-
ment 9:11-26.

Wang, F. 1990a. Fuzzy supervised classification of re-
mote sensing images. IEEE Transactions on Geo-
science and Remote Sensing 28(2):194-201.

Wang, FF. 1990b. Improving remote sensing image analy-
sis through fuzzy information representation. Photo-
grammetric Engincering and Remote Sensing

56(8):1163-1169.
Wang, F.: Newkirk, R. 1988. A knowledge-based system

for highway network extraction. IEEE Transactions
on Geoscience and Remote Sensing 26(5):525-530),

49



Wang, L.; He. D.C. 1990. A new statistical approach for
texture analysis. Photogrammetric Engineering and
Remote Sensing 56(1):61-66.

Wessman, C.A.; Aber, 1.D.; Peterson, D.L.. 1989. An
evaluation of imaging spectrometry for estimating

forest canopy chemistry. International Journal of

Remote Sensing 10(8):1293-1316.

Wessman, C.A.; Aber, J.D.; Peterson, D.L.; Melillo, J.
1988. Remote sensing of canopy chemistry and
nitrogen cycling intemperate forest ecosystems.
Nature 335:154-156.

Weszka,J.C.; Dyer,R.; Rosenfeld, A. 1976. A comparative
study of texture measures for terrain classification.
IEEE Transactions on Systems, Man and Cybernetics
6:265-285.

Wharton, S.W. 1982. A contextual classification method
for recognizing land use patterns in high resolu-
tion remotely sensed data. Pattern Recognition
15(4):317-324.

White, K. 1991. Progress reports. Remote sensing. Pro-
gress in Physical Geography 15(1):71-76.

Whittaker, R.H. 1957. The kingdoms of the living world.
Ecology 38(3):536-538.

Wickware, G.M. 1989. Forest ecosystem classification
of the Turkey Lakes Watershed, Ontario. Environ-
ment Canada, Lands Directorate, Ottawa. ON.
Ecological Land Classification Series No. 18. 33 p.

Wickware, G.M.; Howarth, P.J. 1981. Change detection
in the Peace—Athabasca Delta using digital Landsat
data. Remote Senisng of Environment 11:9-25.

Wickware, G.M.; Rubec, C.D.A. 1989. Ecoregions of

Ontario. Environment Canada, Sustainable Develop-
ment Branch, Ouawa, ON. Ecological Land
Classification Series No. 26. 37 p.

Wiegand, C.L.; Richardson, A.J.; Escobar, D.E.; Gerber-
mann, A.H. 1991. Vegetation indices in crop assess-
ment. Remote Sensing of Environment 35:105-119.

Wiersma, W.; Landgrebe, D. 1979. The analytical
approach to the design of spectral measurements in
the design of multispectral sensors. p. 331-341 in
[LM. Tendam and D.B. Morrison, eds. 5th Annual
Symposium, Machine Processing of Remotely Sensed
Data. 27-29 June 1979, Purdue University, West
Lafayette, Indiana. Institute of Electrical and
Electronics Engineers, New York, NY. 468 p.

Wiken, E.B. 1986. Ecozones of Canada. Environment
Canada, Lands Directorate, Ottawa, ON. Ecological
Land Classificatoin Series No. 19. 26 p.

Wiken, E.B.; Ironside, G. 1977. The development of
ecological (biophysical) land classification in Canada.
Landscape Planning 4:273-282.

Wilkinson, G.G.; Megier, J. 1990. Evidential reasoning
inapixel classification hierarchy—apotential method
for integrating image classifiers and expert system
rules based on geographic context. International
Journal of Remote Sensing 11(10):1963-1968.

Williams, D.L.; Nelson, R.F. 1986. Use of remotely
sensed data for assessing forest stand conditions in
the eastern United States. IEEE Transactions on
Geoscience and Remote Sensing 24(1):130-138.

Woodcock, C.E.; Strahler, A.H. 1983. Characterizing
spatial patterns in remotely sensed data. p. $39-852
in 17thInternational Symposium on Remote Sensing
of Environment. 9-13 May, 1983, Ann Arbor,
Michigan. Environmental Research Institute of
Michigan, Ann Arbor, ML 3 volumes. 1446 p.

Woodcock, C.E.; Strahler, A.H. 1985. Relating ground
scenes to spatial variation in images. p. 393-449 in
Proceedings of the 3rd Annual Symposium on
Mathematical Pattern Recognition and Image
Analysis. 10-11 June 1985, Texas A and M Univer-
sity, Texas. Texas A and M University, College
Station, TX. 535 p.

Woodcock, C.E.; Strahler, A.H. 1987. The factor of scale
in remote sensing. Remote Sensing of Environment
21:311-322.

Woodcock, C.E.; Strahler, A.H.; Jupp, D.L.B. 1988a.
The use of variograms in remote sensing: [. Scene
models and simulated images. Remote Sensing of
Environment 25:323-348.

Woodcock, C.E.; Strahler, A.H.; Jupp, D.L.B. 1988b.
The use of variograms in remote sensing: II. Real
images. Remote Sensing of Environment 25:349-379.

Yuan, X.; King, D.; Vlcek, J. 1991. Sugar maple decline
assessment based on spectral and textural analysis of
multispectral acrial videography. Remote Sensing of
Environment 37:47-54.

Zoltai, §.C. 1965. Forest site regions 5S and 48, north-
western Ontario. Volume I. Ontario Department of
Lands and Forests, Toronto, ON. Research Report
65. 121 p.



Zoltai, S.C. 1974. Forest site regions 35S and 48§, north-
western Ontario. Volume II. Ont. Min. Nat. Resour.,
Forest Research Branch, Toronto, ON. Research
Report No. 95. 96 p.

Zwick, H.; de Villiers, J.N.; McColl, W. 1978. Laboratory
evaluation of the Prototype MEIS (Multi-detector
Electro-optical Imaging Sensor). Canada Centre for
Remote Sensing, Energy, Mines and Resources,
Ottawa, ON. Research Report 78-5. 24 p.

Zwick, H.H. 1979, Evaluation results from a pushbroom

imager for remote sensing. Canadian Journal of

Remote Sensing 5:101-116.

h



. 1
" I i
i !
- - I
N = 1l " -
i .
) -
: ' 1
i , I
Al . Iz
- I
f
‘. - -
3
i
R I
- : I B
o v S
- 4 . o
s rdd .
. - B =
: - 1 R I
N b3 I
. " v "
- = a “
- it i
e oa N
B I P
= i
lI -
I . 1t
‘ < - - ,
. - [
. .
. .
- I
- - N T
I o -
-
B - =5
- L. *
-
i (3% -
o ] -
i i .
N N
o " |
" .
- i -,
- . =
fa faz e
B ] i g\\ »
] -
i
i -
i e N
- N * ~ - i
== B r
. N
- 1 -
I
I N .
. . R
I B = 5
- [
s
I .
. W1
. N T
o - _=‘ -
.ln >
= = = r
. e "
- D
B - -'
.
1 B - i
" B - “
- & . .
. .
T o
- R n . -
. . =0 -
I
- I .
- f
- . -
®
- i '
o M : "
- : LI ' .
N - I
E
=l "
. =
- .
o I -
' sl
. -
I
~ N
ESEE = =
I = .
f . .
. "
I e -
[
" I i
- . N
- “
- N
. -
- o
» o "
- I- .
.
|.| '_'
] - o -
. o o

[

- - i -
N <, . "
N ad - I.' . N
K - =
. B B

- I - ' -
- s . N
- PO e
& - . i «
153 =
FIER
« 1 m = .
v N B
=
- . . M " “ I
" =
. 1 1 =
- I . & R - T l
Iy * o= _ “m
- = -
S s [ T
N
I
“ B -
. .
. 1 il
¥ I
o 4 D
_ 4
N . B W .
- Vo = A
- -
= H N -
- Iy a
¥ I a
B N =
I - . . R
o N " . - "
= . 5 N
.
S v H o o
= 3
- I - B N
o
B . - <
3 "
- .
- -
- - s
.
- . v
.
3 - B
vt ]
- ‘ r . - -
i = ‘ - T - '
- .
- = N N
= - T -
- .
LY I -
S - ‘ .
- - & L
Lo - .
_d
- - . E N
: . ' B
- alt
& I
s - .
5 S
E . s
. = .
I~ - - - -
) s - - i
- s I .
. e “a ! o -
l‘l R
- LA m= =
o - 1 N
| oo N
N T
. - T
- I N
. - : 0] -
= B =
- =l =
- - I -
b "
I, ¥ =
- .
1 - -
.

bt

RN

~




	Abstract

	Table of Contents

	Introduction

	Forest resources inventory, vegetation ecology: an introduction

	Forest site characteristics

	Table 1 - Factores affecting forest growth

	Table 2 - Levels of generalization for ecological land survey

	Summary

	Table 3 - An evolution of land classification in Ontario

	Remote sensing in forestry

	Table 4 - an estimate of the abilities of existing resource inventories in Ontario to meet some of the information requirements for integrated resource manangement

	Table 5 - Earth resource satellite systems

	Forest information extraction

	Table 6 - A comparison of the florenscence line imager and the compact airborne spectographic imager sensors

	biophysical remote sensing

	Table 7 - Examples of damage assessment of forest ising remote sensing

	Table 8 - Factors affecting the spectral response of forest canopies

	Table 9 - Expamples of biophysical remote sensing of forests

	Table 10 - Examples of ratio based indices for biophysical studies

	Forest Classification

	Table 11 - Forest classification with Landsat MSS

	Table 12 - Relationship between remote sensing systems and ecological land survey mapping scales and levels

	Table 13 - Forest classification with Landsat TM

	Table 14 - Some applications of texture analysis for land cover classification

	the Factor of spatial resolution (Scale) in remote sensing for forestry

	Table 15 - Terms and symbols used in the description of the semivariogram

	Conclusions

	Acknowledgments


