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ABSTRACT 

Today, forests are viewed as more than just sources of timber. Although 

commercial timber production remains the primary use of Ontario's for 

ests, their importance is currently recognized for a variety of nontimber 

values (e.g.. recreation, wilderness, fish and wildlife, water, aesthetics, 

education, maintaining biodiversity, and regulating global climate). Thus, 

the forest has become a multinse resource that requires an integrated forest 

site management approach to evaluate the biotic and abiotic elements of the 

ecosystem, as well as the ecological relationships within and between eco 

systems. One of the objectives of this report is lo provide a brief history of 

forest management in Ontario and to describe how it has evolved to recog 

nize the importance of ecosystem elements and ecological parameters for an 

integrated, multiuse management approach. 

A second objective is to review remote sensing methodologies that have 

been applied within a forestry context. Although ecosystem parameters are 

easily measured on the ground, detailed ecosystem mapping and monitoring 

of large tracts of boreal forest have proven elusive. Remote sensing offers 

potential for the mapping and monitoring of ecosystems at a variety of 

spatial resolutions (scales). During this review, the relationships between 

data collection and analysis techniques become a focus for successful forest 

information extraction from remote sensing data. As arcsult, the impact that 

spatial resolution of remote sensing data has on ecosystem information 

extraction is also discussed. Here, spatial resolution of remote sensing data 

is considered analogous to the scale of the observations, and is therefore 

viewed as surrogate for scale. This focus is particularly pertinent since the 

spatial resolution (scale) of remote sensing data for information extraction 

is currently an important research issue. 



RESUME 

De nos jours, on considers let forets comme plus qu'une simple source de 

bois. Bien que les foiets de 1'Ontario soient surtout exploiters pour leur 

bois, on recommit maintenant leur importance a d'autres egards : loisirs, 

espaces naturels, faune (y compris le poisson). flore, eau. estbetique, 

education, maintien de la biodiversite et regularisation du climat planelaire. 

Laforei est done devenue une ressource ii usages multiples, el une approche 

d'amenagement integre cst requise pour cvaluer ses elements biotiques el 

abiotiques ainsi que les relations ecologiques a 1' interieur des ecosystemes 

et entre les ecosystemes. Ce document a, entre autres, pour but de faire 

brievementl'historiquederamciiagementforestieren Ontario etdedecrire 

son evolution vers une approche d'amenagement integre et polyvalent qui 

reconnait rimporiance des divers elements des ecosystemes et des 

parametres ecologiques. 

Le document a aussi pour objet d'examiner les methodes de teledeteclion 

utilisees en foresteric. S'il est facile de mesurer au sol les parametres des 

ecosystemes. la cartographic et la surveillance detaillees des ecosystemes 

sur de vastcs etendues de la foret boreale se sont revelees des laches 

pratiquement irrealisables. La teledctection presente des possibilites pour 

la cartographie et la surveillance des ecosystemes a diverses resolutions 

spatiaies (echelles). Nous meltons ['accent sur les rapports entre les tech 

niques de collecte et d'analyse des donnees comme un aspect important a 

considererpourrextractionreussiederenseignementssurlcsforetsapartir 

des donnees de teledetcction. En consequence, nous examinons egalement 

l'incidence dc la resolution spatiale des donnees recueillies par 

teledetection sur Pextraction de renseignements concernant les 

ecosystemes. Nous considerons la resolution spatiale des donnees de 

teledetection comme analogue de Tcchelle des observations. Notre interet 

pourcet aspect est particulierement pertinent, etant donne que la resolution 

spatiale (echelle) dcs donnees de teledetection pour ['extraction de 

renseignements est actuellement un domains de recherche important. 
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REMOTE SENSING FOR FOREST 

ECOSYSTEM CHARACTERIZATION: A REVIEW 

INTRODUCTION 

Although commercial timber production remains the ma 

jor resource use of Canada's forests, additional demands 

on forested land now include nontimber values such as 

recreation, wilderness, fish and wildlife, water, and aes 

thetics. Forests arc also becoming valued for education, 

maintenance of biodiversity, and regulation of the global 

ecosystem. An improved understanding of forest resources 

and the interactions among them is necessary to view 

these values in an integrated manner. Including these 

disparate demands within a truly integrated management 

system will require further development of forest resource 

databases (Forestry Canada 1990). 

To achieve an integrated management system for the long 

term, detailed knowledge of the structural characteristics 

of the forest is required, complemented by an understand 

ing of the relationships between those characteristics and 

the environment. Hence, there is a requirement Eo dehne 

the forest both from an ecosystem (unit) and an ecological 

(process) perspective. A wide variety of information can 

be accumulated from studying these characteristics and 

the relationships between them. This information needs to 

be organized and simplified in a manner that facilitates 

enhanced decision making at a variety of levels. From an 

ecological perspective, this organization has traditionally 

been done using quantitative analyses for classification. 

A forest classification system must be based on ecological 

principles. For ease in applying the classification, it needs 

to be based on readily identifiable (or inferred) features of 

the land foreasy identification in the field. In addition, use 

of an hierarchical classification system can support deci 

sion making at several administrative or geographic levels 

through the aggregation ordisaggrcgation of the elements 

of the classification (Driscoll et al. 1984). 

In this report the development of ecological land (forest) 

classification for Ontario is discussed, beginning with the 

pioneering work of G.A. Hills and colleagues on forest 

site characteristics. In his works, Hills stressed the physi 

ographic characteristics of ecosystems since these are 

generally stable and largely in control (if vegetation devel 

opment (Burger and Picrpoint 1990). Hills' 'total site 

type' incorporated both the physiographic and bintic ele 

ments of ecosystems and provided the foundation upon 

which subsequent forest ecosystem classifications for 

Ontario would be based (Hills and Pierpoint 1960). 

Detailed hierarchical forest ecosystem classifications have 

now been developed and implemented for large portions 

of northern Ontario (e.g., Jones et al. 1983. Sims et al. 

1989). These hierarchical classifications are primarily 

designed for field-level mapping and consequently are 

difficult to implement for the large tracts of forested land 

characteristic of northern Ontario. They are also designed 

for mature forest stands (>50 years) and do not apply to 

recently disturbed or regenerating sites, or to other land-

cover types within the boreal forest. Although climax or 

near-climax stands arc likely to be more spectrally 'unique', 

climax stands alone do not provide managers with suffi 

cient data to manage the forest for multiple uses. For truly 

integrated resource management, these additional compo 

nents of the boreal forest need to be considered. 

Remote sensing and digital image analysis techniques 

offer potential for assisting in the analysis of large forest 

tracts for identification of appropriate ecosystem classes, 

particularly within an hierarchical classification scheme. 

Remote sensing data are generally collected at a single 

spatial resolution whereas nature's elements exist at a 

variety of scales. It is difficult to identify a single spatial 

resolution (scale) of remote sensing data that will provide 

the most suitable level of in formation for extracting forest 

ecosystem characteristics. It is anticipated that multiscale 

remote sensing data will provide suitable information at a 

variety of levels for forest ecosystem classification. 

In this report, the evolution of forest ecosystem classifica 

tion is discussed in relation to site and stand characteris 

tics. The role of remote sensing forecological and forestry 

applications is also reviewed along with some of the major 

issues in digital image classification. As well, the issues of 

spatial resolution (scale) are discussed, particularly with 

respect to the relationship between surface features (i.e.. 

objects and phenomena that contribute to spectral reflec 

tance) and spatial resolution, and how this relationship 

affects classification accuracy. Spatial resolution is con 

sidered analogous to the scale of the observations (Wood 

cock and Strahler 1987) and will be used as a surrogate for 

scale (Csillag 1991, Lam and Quattrachi 1992). 

FOREST RESOURCE MANAGEMENT 

Recently, forest management has emphasized the need to 

understand and describe the ecological relations of for 

ests. Treatment of Canada's forests in this manner pro 

vides additional information about the relationships 

between forests and their environment—information 

necessary forsuccessful integrated resource management. 

This emphasis on ecosystems also provides a better under 

standing of forest contributions and/orresponses to global 



environmental change, li is important that resource man 

agers examine closely ihc factors that dictate how foresis 

develop. These factors will vary across Canada, particu 

larly with respect to climate, physiography, and soils. In 

addition, management practices will vary between prov 

inces according to utilization pressures, data collection, 

and standards for forest management practices. The eco 

system approach is being adopted across Canada, as forest 

managers begin lo examine forested lands from an ecosys 

tem perspective (e.g.. Klinkaet al. 1979. Corns and Annas 

1986, Stanek and Orloci 1987, Mcidingerand Pojar 1991. 

Banner et al. 1993). The following sections briefly de 

scribe the evolution of information requirements for forest 
management from an Ontario perspective. 

Forest Resources Inventory (FRI) 

In the past, emphasis has been placed on managing 

Canada's forest resources for timber and fiber production. 

In response to managers' requirements regarding limber 

volume and yield estimates, an inventory of forest stands 

was implemented by the Ontario Departmentof Lands and 
Forests. This group established the Fores! Resources 

Inventory (FRI) section within the Timber Management 

Division in 1946. One of the primary objectives of this 

inventory was [o determine the total quantities and the 

locations of merchantable timber in the province by spe 

cies and products. From a management perspective, the 

main concern at the time was that of sustainable yield. 

In 1921, aerial sketching was introduced in Ontario as a 

means of forest mapping; the first aerial photography for 

this purpose was acquired in 1926. Over lime, aerial 

photography, combined with ground sampling, became 

the basis for the FRI program. The first document outlin 

ing the forest resources inventory procedure for Ontario 

was published in 1960. with subsequent editions in 1965 

and 1978 (Ontario Ministry of Natural Resources 1978]. 

Of primary importance in the inventory is the measure 

ment of parameters that are related directly to timber har 

vesting (e.g.. volume estimates). To obtain general statis 

tical data on forest stands, the forest is stratified using 

airphoto analysis techniques. Then, sufficient ground sam 

ples are located in each stratum to meet a predetermined 

level of accuracy within the stratum, and for the forested 

area as a whole (Ontario Ministry of Natural Resources 

1978. Schreuder and Bonner 1987). Field-based and air 

photo interpretation data arc correlated to extrapolate 

statistics for similar stands not sampled in the field. 

Parameters measured in the field include species compo 

sition, basal area, age, height, site class, and stocking. For 

est stands are classified for yield forecasting based on a 

'site class' parameter* PI onski 1974), an expression of site 

quality determined by the height of dominant or codomi-

nanl trees at a specified age (Bonnorand Morrier 1981). 

While this provides valuable information for estimating 

volume and forecasting yield, it is not satisfactory for 

prescribing harvesting and silviculture activities(i'icrnoint 
1986). 

Vegetation Ecology: An Introduction 

To manage forests effectively, the forest manager must 

have a thorough understanding of forest ecology and for 

est ecosystems. In response to this requirement, forest site 

information is becoming more vital Tor detailed manage 

ment of forest tracts at both the regional and local levels 

(Bonnorand Monier 1981). This section presents a gen 

eral outline of forest ecology, followed by a brief descrip 

tion of forest ecology research in site classification for the 

boreal forest of northern Ontario. 

Muellcr-Dombois and Ollenberg (1974) describe vegeta 
tion ecology as: 

"the study of both the structure of vegetation and 

vegetation systematics. This includes the investi 

gation of species composition and the sociological 

interaction of species in communities, It further 

includes the study of community variation in the 

spatial or geographic sense, and the study of com 

munity development, change, and stability in the 

time sense. Vegetation ecology is concerned with 

all geographic levels of plant communities, from 

broad physiognomic formations in the sense of 

bionics... to the very fine floristic patterns occur 

ring on an area less than a square meter in size. 

Vegetation ecology is very much concerned with 

correlations between environment and vegetation, 

and with the causes ofcommunity formation" (p. 9) 

As defined above, the ecosystem approach to forest man 

agement deals with the composition, development, geo 

graphic distribution, and environmental relationships of 

plant communities. The emphasis in this paper focuses on 

vegetation systematics; that is, the classification of typical 

vegetation communities. However, vegetation systemat-

ics is no longcrconsideredan end in itself, as environmen 

tal cflects on vegetation development must also be 

considered. An ecosystem concept emphasizes this point 

in that an organism and its environment form a functional 

system in nature (Tanslcy 1935). 

Ecosystems are defined based upon both structural and 

functional aspects (Mueller-Dornbois and Ellenberg 1974). 

A lores! ecosystem, then, can be described, i n part, accord 

ing to the vegetation of its component strata, e.g.. tree 

layer, shrub layer, herb layer, and ground layer as defined 

by environmental factors such as climate, physiography, 

and soils. In addition, ecosystems arc open systems thai 

have inputs and outputs, and experience a specific set of 

responses and processes (Ovington 1962). The ecosystem 



concept cannot replace established vegetation and plant 

community concepts (Mueller-Dombois and Ellenberg 

]974)as these arc still necessary tocharacterize particular 

ecosystems in space (i.e., geographically} and over time. 

The ecosystem concept, however, emphasizes the need to 

consider all of those components that serve to define and 

functionally regulate ecosystems. 

In classifying ecosystems, the vegetation ccologist aims 

lo integrate vegelation and environment. Depending on 

the emphasis of the particular study, ecosystem bound 

aries can result from plant community boundaries 

(Sukachev 1945). soil or landrorm boundaries (Hills 1960), 

or by a combination of vegetation and environment! 

characteristics, as preferred by Rowe el al. (1961). The 

combined approach has been successful in providing 

ecological data for applied research in forest and site 

evaluation studies where the ecosystem components can 

be employed as indicators of the more transparent site 

factors,particular]yforgrawthandyicldstudies(Mueller-

Dombois and Ellenberg 1974). Ecosystem classification 

organizes the knowledge of particular environments, and 

provides a common scientific basis for the management of 

renewable resources (Klinka et al. 1980). This process 

must be initiated by a detailed examination of ecosystem 

site parameters. 

Forest Site Characteristics 

The Society of American Foresters has generally defined 

site as an area, considered as to its ecological factors and 

with reference to its capacity lo produce forests or other 

vegetation: it is the ultimate expression of the combination 

of biotic. climatic, and soil conditions of a (usually) very 

localized geographic area (Society of American Foresters 

1950). A site region has been characterized by Hills 

(1960) as a very broad geographic area in which the same 

vegetation succession will occur on the same physiographic 

site, providing the type and degree of disturbance arc the 

same. This provides a managemeni framework for the 

forester whereby silvicultural treatments will be relatively 

consistent The four major descriptors of a site region are 

climate, physiography, vegetation (i.e., forest), and soil. 

All are closely interrelated, insomuch as change in one 

will impact the others (Fig. 1), Hills developed a series of 

site region maps for Ontario, initially defining seven 

regions based on lemperature regime (Hills 1952), and 

later incorporating effective humidity to identify addi 

tional site regions (Hills 1958, Hills 1960). Forest species 

may occur in several ecoregions. but may exist in associa 

tion with different physiographic conditions within differ 

ent regions. 

In a regional context, climate is one of the major factors 

affecting forest development, both directly and in relation 

to its influence un soil features and development, and on 

Figure I. The four majordescriptors affecting a she region. 

topographic variables (e.g.. insolation resulting from slope 

and aspect I. At the site region scale, macroclimatc is con 

sidered lo be relatively uniform, since these regions are 

established by comparing natural successions of vegeta 

tion on similar landlbrms, rather than by using meteoro 

logical data (Hills I960). The sile region thereby is 

instrumental in forest management, since it represents an 

area thai will respond similarly lo natural disturbances and 

forestry practices within similar combinations of land-

forms and forest types (Hills I960). 

For the many interests ineoiporated into integrated re 

source management, a concept of site is required that can 

be lied to a common frame of reference. To achieve this, 

it is necessary to look upon site as a total environment; an 

integrated complex of all the features within a defined area 

(Hills 1952). Howevcr,Hills( 1952) stressed that a site can 

be characterized by a select number of site components. 

Due to their stability, he selected physiographic features 

as the primary basis for representing a site. 

The management of forest resources is also dependent 

upon a knowledge of the biological productivity of the 

land (Hills 1961). Ecological principles are used to rate 

physiographic sites for potential biologic productivity. 

Factors that affect forest growth are identified in Table I. 

ll must he remembered, however, that direct correlations 

between absolute levels of these factors and forest growth 

cannot be established since they are all interrelated, and 

the effect of each will vary according to changes in the 

other factors (Hills I960). This knowledge of site pro 

vided the basis for determining the capability of areas for 

forest production (e.g., limber-use capability [Hills 1961]). 

This theme extended to the Canada Land Inventory and 

Ontario Land Inventory of ihe 1960s and 1970s (Depart 

ment of Forestry and Rural Development 1965, 1%6; 

Ontario Ministry of Natural Resources 1977). The pur 

pose of these inventories was to collect a mass of infor 

mation on the land's characteristics and to classify the 

land according to its capabilities in each of four sectors: 



Table I. Factors affecting forest growth. 

-Soil Nutrient elements 

Toxic elements 

Soil moisture 

Soil aeration 

Soil structure 

Soil reaction (pH) 

Climate Atmospheric features 

Vegetation Forest 

Fauna 

Saprobes 

Human 

Includes elements that arc no! nutritive or toxic, but control the degree of 
availability of nutrients to the plant, 

Many of these are directly related to the soil profile, while others are more 

closely related to broader land features (e.g.. topography, geologic 

materials, and groundwater). 

Includes atmospheric features, such as sunlight, heat, water, and carbon 

dioxide, supplied to the above-ground portion of the forest vegetation; 

provides mixing of oxygen, carbon dioxide, and heat to the organisms both 
above and below the soil surface. 

Includes all the higher plants that synthesize material from sunlight. 

Includes all the animals that consume, cither directly or indirectly, the prod 
ucts synthesized by plants. 

The group of non-green organisms that reduce organic matter (e.g.. micro 
organisms, fungi). 

Human disturbance may be either {I) occasional and/or irregular (e.g.. for 

est Ore) or (2) sustained or regular (e.g.. planned logging operations, silvi-

cultural treatments). 

(Adaptedfrom Whittaker 1957. Hills I960.) 

agriculture, forestry, recreation, and wildlife. The limita 

tions prescribed to assess forestry capability were climate, 

soil moisture, permeability and depth of rooting zone, soil 

fertility, toxicity, sternness, and inundation (Department 

of Forestry and Rural Development 1966). 

Ecological parameters that are important for silviculture 

include soil fertility, slope, soil texture, parent material, 

drainage, and aspect. With these parameters, it is possible 

to predict the type {if regeneration and its potential growth 

(Levac 1991). These parameters can only be obtained 

through detailed examination of site type, examination of 

the forest environment from this perspective provides a 

basis for the initiation of forest classification. 

Land (Forest) Classification: The Canadian 

Perspective 

Forests have been defined from two major perspectives: 

the geographic and the ecologic (Hills I960). An example 

of the former includes Rowe (1972) based on Halliday's 

(1937) forest classification for Canada. The forest regions 

defined by this work are based on forest characteristics 

only, and even though climate and physiography may be 

described, strong ecological links between the forest and 

these factors arc not implicit. The ecological approach to 

defining the spatial distribution of forests is based on 

ecosystem characteristics, structure, and function. These 

define the forest-environment relationships to provide a 

sound basis for forest management (Hills 1960), which 

can be applied at a variety of scales. In essence, the 

landscape is perceived as a series of ecosystems, variable 

in size and nested within one another in a.spatial hierarchy 

(Roweetal. 1961), 

The Canada Land Inventory (CLI) was initiated in the 

early 1960s and provided the foundation for subsequent 

ecological surveys. It was a cooperative, federal-provin 

cial program administered under the Agricultural Reha 

bilitation and Development Act (ARDA) of June 1961. 

The CL! represents a reconnaissance survey of land capa 

bilities and uses (for forestry, agriculture, recreation, and 

wildlife) designed to provide necessary information for 

resource and land-use planning at the municipal, provin 

cial, and federal levels. It was not designed as a manage 

ment tool since it does not provide the detailed information 

required for management of individual parcels (Environ 

ment Canada 1978). Also, since it did not treat the various 

components within an integrated framework, it was not a 

true ecological classification (Karpuk 1978). For forestry, 

the objectives were directed toward providing a classifica 
tion system rating the potential (product!vc| capability of 

the land under indigenous tree species growing at full 



stocking and under good management (Rees 1977). In 

Ontario, silc regions as defined by Hills (I960) may be 

used as bases for the description of forest capability 

classes (Boissonneau et al. 1972). 

The subsequent development of an ecological (biophysi 

cal) land classification in Canada was based on a need for 

baseline daia for the interpretation of the Canada Land 

Inventor (Wiken and Ironside 1977). It was initiated in 

1964 by the National Committee on Forest Land f NCFL). 

which established the Subcommittee on Biophysical Land 

Classification to study alternatives for a rapid, inexpen 

sive approach to land survey. This subcommittee pub 

lished guidelines outlining a methodology to classify and 

map ecologically significant units of land, as depicted by 

their inherent biological and physical characteristics 

(Wiken and Ironside 1977). These included parent male-

rial, landform, hydrology, vegetation, climate, and fauna 

(Wiekware and Rubec 1989). The objective of this inter 

disciplinary survey was to map and describe ecologically 

distinct areas of the earth's surface at a variety of spatial 

scales. The resulting interpretive maps were based on 

biophysical and physical characteristics defining criteria 

at each level of generalization (Wiekware and Rubec 

1989). 

Initially, a four-level biophysical land classification sys 

tem was proposed to divide the natural environment into 

land units that were a combination of landforms and 

landform patterns, soils, and vegetation (Lacate 1969) 

(Table 2). Each hind unit within a particular level is a more 

detailed subdivision of the previous level. Since this 

system was based on classification of vegetated environ 

ments, it was well-suited to inventories of forest and 

forest-tundra regions. These four levels of generalization 

were applied in a Dumber of ecological land surveys 

(Cimbarzevsky 1978). The basic mapping unit was that of 

■land type", which distinguishes an area by its surficial 

deposits. Forests were then mapped within each land lype. 

Over the last two decades, numerous ecological land 

surveys have been performed in a variety of environments 

Table 2. Levels of generalization for ecological land survey. 

Level of generalization 

Common scales of mapping Definitions 

Ecoregion 

Land region* 

Site region** 

1:3 000 000 to 1:1 000 001) 

Land district-1 

Site district** 

1:1 000 000 to 1:500 000 

Ecodi strict 

1:500 000 to 1:125 000 

Ecosection 

Land system* 

Land type** 

1:250 000 to 1:50 000 

Ecosite 

Land type* 

Situ type** 

1:50 000 to 1:10 000 

Ecoeleinent 

1:10000 to 1:2 500 

A part of an ecoprovince characterized by a distinctive ecological 

response to regional climate, as expressed by vegetation, soils, water, and 

fauna: characterized by regional climate reflected in the vegetation, but is 

heterogeneous in terms of other ecological phenomena. 

Characterized by a distinct relief pattern, geology, geomorphology. and 

associated regional vegetation; range of parent materials. 

A part of an ecoregion characterized by a distinctive pattern ol relief, 

geology, geomorpliology. vegetation, soils, water, and fauna. 

A part of an ecodistrict throughout which there is a recurring pattern 

of terrain, soils, vegetation, water bodies, and fauna. 

A part of an ecoseelion having a relatively uniform parent material, 

soil, and hydrology, and achronosequence of vegetation. 

A part of an ecosiie displaying uniform soil, topographical, vegeta 

tive, and hydrological characteristics (e.g., plant community). 

{Adaptedfrom Hills 1958, Lacate 1969. Karpuk 1978, Environmental Conservation Task Force 1981. Rubec 1983, 

Wiken 1986, Wiekware and Rubec 1989.) 

* Represent levels of generalization defined hy Lacate (1969). 

** Represent levels of generalization defined by Hills (1958). 



within Canada. Ii was observed (hut Lacate's original four 

levels ol generalization often proved inadequate and as a 

result these were modified to suit specific environmental 

conditions. For instance. Thief 1974) observed that Lacate's 

system was more land oriented than an integrated land and 

water system. As aresult, the levels of generalization have 
evolved over the past 20 years. This evolution is not only 

in response to a range of different environmental condi 

tions, but also to new mapping technologies that have 

become available over the last two decades, including 

remote sensing technologies (Lcgge ct a!. 1974). These 

levels of generalization arc presented in Table 2. A sum 

mary of the major developments in forest classification is 

outlined in Table 3. 

Forest Ecosystem Classification 

The pioneering work of G.A. Hills and his colleagues in 

developing an ecological framework for recognizing and 

describing forest sites in Ontario, along with oilier 

landscape-level and stand-level studies, spawned the de 

velopment ol'a series of forest ecosystem classifications 

(FECs) for northern Ontario. The goal of existing FECs is 

to permit the "accurate, consistent and practical descrip 

tion offorest ecosystems so that existing and new manage 

ment knowledge can be organized, communicated and 

used more effectively" (Sims and Uhlig 1992, p. 68). 

Forest ecosystem classifications aim to contribute to the 

organization of silvicultural practices, and to knowledge 

about and the application of integrated forest manage 

ment. The framework upon which FEC systems are based 

incorporates those components offorest sites that contrib 

ute to forest development (i.e.. canopy and undcrstory 

vegetation, soils, landform, general climatic regime, and 

regional physiography (Fig. 2) (Sims and Uhlig 1992). 

Studies that demonstrate the applicability of FECs to 

forest management include those by Towill et al. (19KH), 

Raccy et al. (1989). and Wickware (1989). 

Forest ecosystem classifications are primarily intended to 

be applied at ihe stand level, and to provide information 

about those local forest stands, vegetation, soil, and site 

conditions that the forest manager requires to develop 

management plans and strategies. It is proposed that this 

field-level information be integrated with other scales of 

forestry and planning information (Sims and Uhlig 1992). 

The basic units of FECs arc Vegetation Units and Soil 

Units, which are determined through a "key" system 

(Sims clai. 1989) (Fig. 2). To adapt to a broader level for 

certain management purposes, these field-level units can 

be integrated to create ecological units (Hi I Is and Pierpoint 
I960), which are also termed operational groups (OGs] 

(Jones et al. 1983|. treatment units (TUs) (Sims et al. 

1989), or site types (STs) (Merchant et al. 1989) (Figs. 2 

and 3). These aggregations of FEC soil and vegetation 

types possess similar species composition, productivity, 

and macroclimatic or ecological properties (Racey et al. 

1989). and can be used with existing forest management 

knowledge to improve management interpretations and 

decisions (Sims and Uhlig 1992) (Figs. 2 and 3). 

Forest ecosystem classifications have been completed for 
the Clay Bell (Jones et al. 1983). for northwestern and 

north central Ontario (Sims el al. 1989). and for sites 

supporting red pine {Finns resinosa Ait.] and white pine 

il\ sirobus I..) stands in the Algonquin Region of central 

Ontario (Merchant el al. 19K9). FECs are currently under 

development for the Centra] and Northeastern regions. An 
extensive FHC computerized database has been devel 

oped that incorporates detailed soil. site, and vegetation 

information from mature or harvestable lores! stands. 

This database has been used to acquire a better under 

standing of the nature, distribution, and relationships of 

site and vegetation in northern Ontario (e.g.. Baldwin 

et al. 1990, Sims et al. 1990. Sims and Baldwin 1991. 

Walsh and Wickware 1991). 

There are a limited number of resource survey databases 

available in Ontario, each providing only a part of the 

information required for silviculture or integrated re 

source management (Sims and Uhlig 1992). A compre 

hensive summary of resource inventories for Ontario has 

been published by Pierpoiut and Uhlig (1985). Some of 

these are outlined in Table 4. along with an interpretation 

of their overall ability to provide information for inte 

grated resource management. Note that the FEC provides 

more information related to the forest stand and site, and 

is therefore a more amenable application to integrated 

resource management. 

Summary 

Forest information requirements in Ontario have evolved 

Irom primarily inventory data to integration of site and 

forest conditions for a more comprehensive approach to 

forest ecosystem characterization. The importance of de 

scribing a forest from a more holistic viewpoint has been 

recognized by resource managers as a requirement for 

integrated resource management. Although forest ecosys 
tem classification cannot solve land-use problems, it pro 

vides a hasis for improved forest productivity and integrated 

management at a time when forest resources are under 

increasing pressure (Klinka et al. 1980). 

Forests of the future will be more planned, managed, and 

regulated in a conscious effort to maintain biological 

diversity and support a range offorest values, not just lim 

ber resources. At the same time, some areas will be more 

intensely managed for timber and fiber production (For 

estry Canada 1990). It is proposed that ihese objectives 

can be achieved through the maintenance of ecosystems at 



Table 3. An evolution of land classification in Oniario. 

Referenee(s) Synopsis 

Landscape level 

Halliiiay 1937 

Rows 1972 

Hills 1952. Hills 1958. 

Hills i960, Hills and 

Pierpoinl 1960 

Department of Forestry 

and Rural Development 

1965, [966 

Ontario Ministry of 

Natural Resources 1977 

Lacatc 1969. 

CO-LC 1976 

Produced the original work 'Forest Regions of Canada"; a comprehensive description of 

areal distribution of Canada's forests. 

Revised the work of Halliday's 'Forest Regions of Canada'. 

Development of the 'Ontario Site Classification System"; an hierarchical classification 

that emphasized physiographic characteristics of sites and was organized as a multilevel 

framework for forest management. 

Stemming from the mapping techniques developed hy Hills et al.. the 'Canada Land 

Inventory' (CLI) was developed. It evaluated land capability across Canada at scales of 

1:250 000 and smaller. 

Similar to the CLI. the Oniario Laud Inventory (OLI) was developed as a land capability 

evaluation program for extensive portions of the province. 

Also based on Hills' work, techniques were adapted for an extensive set of land-

classification surveys conducted in northern Canada during the 1960s and 1970s ('Eco 

logical Land Classifications'); these programs were intended to provided multiple-

resource inventories of northern terrain or broad-area treatments at a regional or pro 

vincial level. 

Wick ware and Ruhcc 1989 'Eeoregions of Ontario' isa synthesis and integration of a wide range of environmental 

information lor Ontario within the national ecological database framework developed 

bv the CCELC since 1976. 

National Vegetation 

Working Group 1990 

State of Environment 

Reporting (SOER) 

Group of Environment 

Canada. Ottawa. 1994 

The proposed "Canadian Vegetation Classification System" uses a combination of 

physiognomic, structural dominance, and fioristies criteria in a seven-level hierarchy. 

Ongoing activities of the SOER Group to develop a nationally acceptable set of 

Ecozoncs and Ecoregions based upon climate, physiography, vegetation, and broad soil/ 

Lmdform patterns; in Ontario, Hills" site regions are prominent in the definitions of 

main terrain units. 

Stand level 

Hills ctal. I960 

{from Sims and 

Uhlig 1992} 

Zoltai 1965, 

Zoltai 1974 

Jones etal. 1983 

Merchant et al. 1989, 

Simseial. 1989 

Examined forest succession patterns as they relate to physiography in the northern Clay 

Belt (soil moisture regime, depth to bedrock, landiomi. and humus types were recorded 

for each vegetation type). 

Hills' approach was applied to an area in northwestern Ontario where 24 land types 

were identified based on geologic material, soil texture, soil depth, stoniness, and com 

mon overstories. 

The first in a series of forest ecosystem classification (FEC) programs was completed 

for the northern Clay Belt. 

FEC completed for the Algonquin Region and northwestern Ontario; underway in oilier 

parts of the province. 

(Adaptedfrom Hills 1960. Rowe 1972, Sims and Uhlig 1992.) 
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Figure!. Ecological relationships determining forest production (Adapted from Hills and Pierpoint 1960, Ravey et al. I9S9). 

* Analogous terms for the NWO FEC (from Sims ami Uhlig 1992), 

llie landscape and stand levels. However, this can only be 

successful when forest resource managers have the neces 

sary resource information need to effectively evaluate 

multiple uses. 

REMOTE SENSING IN FORESTRY 

Remote sensing is the science of deriving information 

about an ohject from measurements made at a distance. 

The quantity most frequently measured in present-day 

remote sensing systems is the electromagnetic energy 

emanating from objects of interest as opposed to other 
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System and Supply Models 

Interpretive. 
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Figure, 3 Organization of FEC soil and vegetation types (with the input of 

management information and knowledge; management interpretation may 

be developed iieralively (from Sims and Uhlig 1992). 

possibilities (e.g., seismic waves, sonic waves, and gravi 

tational force) (D.A. Landgrcbe. in Swain and Davis 

1978). Remote sensing of electromagnetic energy in the 

visible :ind near-infrared portions of the spectrum at high 

and medium spatial resolutions (i.e.. 1 m to 80 m) will be 

the primary focus of attention in the following sections. 

These are the primary data used for analysing vegetation 

at site and landscape scales. 

Remote sensing in forestry can be divided into two major 

components: data acquisition (using sensors io record 

variations in the way earth's surface features reflect or 

emit electromagnetic energy) and information extraction 

(data analysis using visual or digital techniques). Both 

these components ate closely related, in that the method 

by which remote sensing data are collected has a direct 

impact on the type of information that can be extracted. As 

a result, most remote sensing data are collected in a 

specific manner to optimize information extraction. 

Remote Sensing of Forests 

Remote sensing data used in forestry studies range from 

coarse-resolution weather satellite data (>lkm) to high 

spatial and spectral resolution dala acquired with airborne 

sensors (<10m). Medium- and coarse-resolution earth 

resources satellite dala with spatial resolutions ranging 

from 10 m to 80 m provide large-area 

coverage and are suitable for measuring 

coarse biophysical parameters or for seg 

menting the forest into general Tores! types. 

Meanwhile, high-resolution airborne and 

satellite remote sensing dala (i.e.. spatial 

resolutions <10m) are primarily used in 

specific case studies or for research where 

detailed information on forest stand and 

structural characteristics is examined. 

Satellite Remote Sensing 

With the launch of the first Earth Resources 

Technology Satellite (ERT.S-1) in 1972 

(later renamed Landsat-1), a new era began 

with respect to land resource mapping. 

Never before was systematic, repetitive, 

medium-resolution (i.e., 80 in) mullispec-

tral data available for the earth's surface. 

The Multispectral Scanner (MSS) has been 

carried by each oi the five satellites launched 

in the Landsat series to date. Landsat-4. 

launched in 1982, carried a second scan 

ner, the Thematic Mapper (TM). Currently. I.andsat-5 

carries both of these multispectral scanners. The Landsat 

program has provided data for over two decades and 

Landsat-5 continues to he in operation. The spectral, 

spatial, and temporal characteristics of Landsal sensors 

are outlined in Table 5. In 1 lJo'6, France launched the first 

of a series of earth-observation SPOT ("La Systeme Pour 

I'ObservationdclaTerre" ["Earth-Observation System"]) 

satellites. These satellites incorporate linear-array detec 

tors' to acquire data at higher spatial resolutions than does 

Landsat (Table 5). 

A number of studies have been carried out to compare data 

acquired from different satellite sensors used in forest 

research. Lulla (1983) provides a useful summary of 

studies where Landsal MS.S dala were used for vegetation 

analysis and mapping. In comparing Landsat MSS and 

'I'M data for forest-species identification, Evans and Hill 

(1990) found that TM performed slightly better than did 

VISS fordiseriniinatini! among pine species, but it was not 

significantly belter for separating pine and hardwood 

stands. However. Williams and Nelson (1986) achieved 

a 20 percent improvement in the mapping of detailed 

Level III (Anderson et al. 1976) forest cover with TM data 

as opposed to MSS. This is the most detailed level of 

1 Linear arrays normally consist of a series of charge-coup led devices (CCDs) positioned end-to-end. Each detector dement is 

dedicated io sensing a defined range of electromagnetic energy fora single ground resolution cell along any given scan line. The data 

for each scan line arc electronically complied by sampling each element along the array (Lillesand and Kieier 1OT4). This technology 

eliminate.1; the need for a rotating mirror io scan across the ground surface, thereby increasing the amount of lime that electromagnetic 

energy can be collected by a detector element. 



Table 4. An estimate of the abilities of existing resource inventories in Ontario to meet some of ihe information re 
quirements lor integrated resource management.* 

FRI FEC Agriculture 

soil survev 

OLI -SO/NO 

EGTS 
Planning horizon 

Short-med. term (1-5 yr.) 

Long-term (5-20 yr.) 

Normal scale/resolution 

Extent of coverage in Ontario 

Species composition 

Working group 

Stand density and .spacing 

Present productivity 

Potential site quality 

Product type/product amount 

Noncommercial forest types 

Depth of mineral soil 

Depth/type of organic matter 

Soil moisture regime 

Soil texture 

Macro/microtopography 

Surfkial geology/1 and forms 

Wildlife browse prediction 

Fisheries concerns 

Competition prediction 

Wind firm ness 

FRI = provincial Forest Resources Inventory (Obsborne 1989); FEC = Forest Ecosystem Classification; OLI = 

Ontario Land Inventory (Ontario Ministry of Natural Resources 1977); SO/NO KGTS - Southern Ontario -

Northern Ontario Engineering and Terrain Survey Maps (e.g.. Mollard and Mollard 1981). 

(O = not useful, X = useful. XX = very useful). (From Sims and Ulilig 1992.) 

Anderson etal/si 1976) land cover/land use classifica 

tion system for use with remote sensor data (1:20 000-

1:80 000 scale). Bradbury etal, (1985) compared Landsat 

MSS and TM data for classifying woodland and other 

land-cover types for an area in South Wales. It was found 

thai "I'M data achieved 90 percent classification accuracy 

for woodland and provided suitable accuracy levels for 

identification of some treespecies. In a similar study using 

MSS and simulated TM data over an agricultural area, 

Badhwur ct al. (1984) found that although there was a 

decrease in mixed pixels at field boundaries, there was an 

increase in within-field variability, which may lead to 

poorer classification results. Horler and Ahem (1986) 

found the middle-infrared bands of Landsat TM to be 

particularly useful for analyzing stem density of conifer 

ous forests, especially for forest regeneration sites in 

northwestern Ontario. 

In comparisons of Landsat TM and SPOT mullispectra! 

(XS) data for biophysical analysis. Ripple et al. (199!! 

determined that the near-infrared bands of both sensors 

had strong negative correlations to the logarithm of soft 

wood volume (XS 3, r = -0.89; TM 4, r = -0-83). In 

addition. Ripple et al. {1991) determined that XS and TM 

data sets exhibited high band-to-band correlations. In a 

similar study of forest inventory parameters, Brockhaus 

and Khorram (1992| found thalTM data were more likely 

to be signilicantly correlated with stand parameters, such 

as basal area and age class, than was SPOT data. When 

equivalent bands of the two sensors were used to classify 

six forest classes and one water class in scenes from North 

Carolina, SPOT achieved slightly belter accuracy (74.4 

percent versus 70.8 percent). However, when all TM 

spectral features were included in the class ill cation pro 

cess, overall accuracy increased to 88.5 percent. This 

in 



Table 5. Earth resource satellite systems. 

-1 SPOT consists of two identical High Resolution Visible imaging systems—each of which can operate in either 

three-band multispeclral mode (XS) or single-band panchromatic mode (P). 

Poimable optics (through a range of +/- 27° off-nadir) provide potential for increased temporal coverage. 

(Adaptedfrom Lillesand and Kicfer 1994.) 

would indicate that the spectral resolution of TM is more 

important than the improvement in spatial resolution that 

SPOT XS provides. The importance of the additional 

spectral bands of TM (e.g., mid-infrared) for discriminat 

ing ground features has been confirmed for other sites 

with different environmental conditions (Nelson et al. 

1984, Williams and Nelson 1986. DeGloria and Bensnn 

1987. Chavez and Bowell 1988. Franklin and Wilson 

1991, Joria et:d. 1991). 

Airborne Remote Sensing 

Airborne remolc sensing systems present a versatile alter 

native to spaceborne satellite systems. Airborne systems 

are flexible with respeci to data acquisition parameters 

(e.g., time of acquisition, frequency of coverage, and 

spatial resolution). As a result, they provide the best 

opportunity to collect data thai are optimal for extracting 

specific forest parameters of interest lo Lhe user {e.g., 

damage assessment during insect infestations, monitoring 

regeneration, and analysing forest structural parameters). 

However, the optimal conditions for data collection arc 

not readily known. In addition, certain characteristics of 

high spatial resolution data (e.g., spectral variability, 

bidirectional reflectance) have confounded efforts to ex 

tract forest information digitally from remote sensing 

data. Details of forest stand structure (e.g., density, crown 

closure, understory) create a very complex mosaic of 

spectral reflectance values at high spatial resolutions. A 

review of remote sensing studies using airborne multi-

spectral scanners and imaging spectrometers is presented 

below. An emphasis is placed on Canadian sensors and 

studies. 

Multispectral scanner (MSS) data acquired from aircraft 

can be used as a primary source of information, as supple 

mental data to support more extensive satellite surveys or 

to provide a testing ground for proposed satellite sensors. 

Numerous forestry applications for airborne multispectral 

scanners can be found in the literature. For example, 

airborne MSS have been used for forest studies on a stand 

(Tedleteial. 1981. Irons et al. 1991, Franklin etal. 1991. 

Miller el al. 1991) and single-tree basis (Hughes ct al. 

L986, Yuan et al. 1991), and for estimating biophysical 

parameters such as biomass (Jensen and Hodgson 1985), 

green leaf-area index (Curran and Williamson, 1987), and 

forest-stand parameters (e.g., tree height, crown closure, 

tree and stand vigor, stand age] (Butera 1986, Danson, 

1987). Measurements of these parameters may then he 

used to model additional stand characteristics such as 

basal area and volume (Smith 1986, Hall etal. 1989) For 

example, three canopy-elosure classes (0-25, 25-75, and 

75-100 percent) were modeled using Thematic Mapper 

i; 



Simulator (IMS) data with prediction accuracies of 71, 

74, and 57 percent, respectively (Butera 1986). Two air 

borne sensors, both developed in Canada, have contrib 

uted significantly lo forestry research and arc worth 

discussion. These are the Multi-detector Electro-optical 

Imaging Sensor (MEIS) and the Compact Airborne Spec-

Urographic Imager (CASIj. 

The MEIS was developed in the late 1970s and early 

1980s by MacDonald, Dettwiler and Associates (MDA) 

under contract to the Canada Centre for Remote Sensing 

ICCRS) to assist in the evaluation of linear-array technol 

ogy and to develop remote sensing applications ior this 

technology (Neville el al. 1990). Tiie MEIS became the 

primary sensor of the CCRSeleciro-optical facility before 

being handed over to the private sector for operation. The 

MEIS is a high-performance digital multispectral imager 

that incorporates a linear-array design to improve radio-

metric- and geometric fidelity in comparison to traditional 

optomechanical multispcctral scanners and survey cam 

eras (Till 19R7). The MEIS is an 8-channel imager, with 

the capability of incorporating a variety of lens and filter 

combinations, including continuous for-aft stereo acqui 

sition. Detailed descriptions of the MEIS can be found in 

Zwick et al, (1978), Zwick (1979), McColl et al. (1983], 

and Till ci al. (1983). 

Airborne multispectral scanners have been used for iden 

tifying areas of eastern spruce budworm {Chorisianeurn 

fumiferana [Clem.]) damage (Ahem et al. 1986). and lor 

improved estimation of insect damage on a per-tree basis 

as compared to conventional color infrared photography 

(Kneppeck and Ahern 19891. They have also been used 

successfully in discriminating tree species using principal 

components analysis (Leckie and Dombrowski 1984), 

evaluating forest regeneration (Brand et si. 1991), and 

assessing spruce bud worm damage on a stand (Ahern eta!. 

199 la) and single-tree basis (Leckie et al. 1992). Treitz ct 

al. (1992) reported variable results for identify ing detailed 

ecological classes using 5-m resolution MEIS data in 

conjunction with a parametric classifier. These variable 

classification accuracies were attributed to the large spec 

tral variance of forest stands caused by heterogeneous 

canopies at tliat resolution. 

To date, satellite data have provided relatively poor spa 

tial, spectral, and temporal resolutions for the detailed 

study of forest-stand dynamics. Even with airborne mul-

tispectral scanners, remote sensing data collection is lim 

ited to a specified and finite number of spectral bands. 

However, in the past decade, imaging spectrometers have 

been developed to acquire continuous spectra over land 

and water surfaces. These include the Airborne Imaging 

Spectrometer (AIS) (Vane ct al. 1984). Advanced Solid-

Slate AmiySpcciroradiometcr(ASAS)(IronsetaI. 199]), 

Airborne Visible-Infrared Imaging Spectrometer 

(AVIRIS) (Vane ei al. I9H7, 1993), Eluorescencc Line 

Imager (FLI) (Borstad el al. 1985), Compact Airborne 

Speclrographic Imager (CASI) (Babcy and Anger 1989. 

Borstad et al. 1989), and the proposed Shortwave Infrared 

Full-Spectrum Imager (SES1) (Neville and Powell 1992). 

Research into the development of these airborne sensors 

and analysis of high spectral resolution data (CSao 1993, 

Kruseetal. 1993) will provide a background for develop 

ment of spacebonie imaging spectrometers for the Earth 

Observing System (EOS).3 Some potential sensors are the 

Moderate Resolution Imaging Spectrometer (MODIS] 

(Ardanuy et al. 1991), theHigh-Resolution Imaging Spec-

trometer(HIRIS)(NASA 1987, Goet/and Herring 1989) 

and the European Space Agency's proposed Medium-

Resolution Imaging Spectrometer (MERIS) and High-

Resolution Imaging Spectrometer (HIRIS) (Ianlosca et al. 
1992). The development of high spectral resolution imag 

ing spectrometers will permit improved study oi those 

narrow-band spectral reflectance features that are charac 

teristic of specific vegetation canopies. 

Through field and laboratory studies, a variety of these 

narrow spectral band features have been shown to he 

related to changes in vegetation condition and amount. 

These include physiological characteristics such as chlo 

rophyll amount and/or type (Horleretal. l983;Rocketal. 

1988, 1994; Vogelmannct al. 1993) and canopy chemical 

characierisiicsandiheirrelationiocarbon cycling (Peterson 

el al. 1988: Wessman et al. 1988, 1989). High spectral 

resolution sensors can also be used in the study of bidirec 

tional reflectance characteristics of forest canopies (e.g.. 

Abueigasim and Strahler 1994, Ranson et al. 1994]. An 

understanding of these characteristics is essential for the 

" Radiometric lidclity refers to the sensitivity of a sensor/detector to detect subtle changes in energy flux at the surface that is being 

sensed. Tor digital sensors, radio-metric resolution generally refers to the range of digital values thai a sensor will record lor any given 
surface (e.g.. K bit or 256 grey levels). 

1 The Earth Observing System (EOS) is one of the primary components of the NASA-initiated concept Mission to Plane! Fanli 

(MTPE). The MTPE is an international earth science program aimed at providing the observations, understanding, and modeling 

capabilities needed to assess the impacts o( natural events and human-induced activities on the earth's environment. EOS is the 

centerpiece of NASA's contribution to the program. It includes a scries of polar orbiting platforms for long-term global observations, 

operated in concert with poplar-orbiting andmidinclinatiort platforms developed by Europe andJapaa. The EOS is envisioned iobegin 
in WS and continue for at Icasi 15 years {from Lillesand and Kiefer 1994). in 
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correlalion of remote sensing measurements with bio-

mass, species composition, stand structure, and reflectance. 

Imaging spectrometry data, in conjunction with suitable 

analysis techniques, may provide a basis for quantita 

tively measuring phenologies! change in vegetated terrain 

that results from changes in primary productivity and 

vegetation vigor. The phonological changes may be in 

response lo regional- and/or global-scale environmental 

or climatic changes (Miller el al. 1990a). Two assump 

tions must be satisfied if imaging speclromeiry is to be 

useful in the biophysical analysis of terrestrial ecosystems 

(NASA 1987). First, there must be a strong correlalion 

between canopy characteristics and the rates at which 

processes important to the biosphere occur. Second, these 

canopy characteristics must be successfully measured 

using high spectral resolution remote sensing data. Miller 

etal.( 1990a) identified the most significant bingeophysical 

parameters that can affect plant vigor and primary produc 

tivity in terrestrial ecosystems as (i) leaf chlorophyll 

content, (ii) photosyniheticnlly active radiation (PAR), 

(iii) canopy water content, and (iv) soil nitrogen content. 

The authors proposed that it is possible to derive chemical 

and morphological characteristics from a variety of spec 

tral reflectance parameters that can be measured using 

various remote sensing tools. These include the measure 

ment of red-edge4 spectral position (Holler et al. 1983; 

Rock el al. 19K8: Boochs et al. 1990; Miller ct al. 1990b. 

1991; Elvidgectal. 1993; Vogelmannetal 1993). normal 

ized difference vegetation index (Tucker et al. 1986), 

moisture stress index (Cohen 1991). and shortwave infra 

red reflectance parameters related to canopy chemistry 

parameters (Peterson et al. 198S; Wessman et al. 19S8, 

1989). Further examples of the use of remote sensing data 

in biophysical studies arc discussed later (see Biophysical 

Remote Sensing). 

The FLI. also known as the Programmable Multispectral 

Imager (PMI) and CAS1 systems have contributed a great 

deal to the development and future of imaging spcetrom-

etry technology in Canada (Gower et a!, 1992, Slaen/. 

1992). Both systems are able to collect data in two modes: 

spectral mode, where continuous spectra I or ground reso 

lution elements are collected for up to 28S spectral bands: 

and spatial mode, where a more limited number ofspectral 

bands is recorded, but complete spatial coverage for the 

swath is provided (Table 6). 

The FLI was designed as a prototype instrument for the 

federal Department of Fisheries and Oceans, primarily to 

map ocean and coastal phytoplankton concentrations by 

imaging the emission from solar-induced fluorescence of 

chlorophyll a (Cower et al. 1992). Although the FI-I was 

applied mainly to mapping of chlorophyll fluorescence 

and bathymetry, some terrestrial studies were also per 

formed, particularly the detection and monitoring of chlo 

rophyll rcd-edgc spectral characteristics and associated 

responses to stress (a shift towards the shorter wave 

lengths known as the "blue shift") (Rock ei al. 1988, 

Gower etal. 1989). 

The CASI has been involved in a number of forestry 

studies with encouraging results. Representative studies 

include measuring vegetation red-edge parameters (Miller 

et al. 1991). recording spectral signatures for tree species 

(Gong el al. 1992b). determining surface reflectance aniso-

tropy (Franklin el al. 1991). and identifying forest species 

and stand parameters (Franklin eial. 1991. Gillespieetal. 

1992. Franklin 1994). Palmier and Ansseau (1992) used 

laboratory studies of spectra, specifically the red edge, to 

define spectral bands for CASI data collection to assess 

chlorosis and stress in sugar maple {Acer saccharum 

Marsh.). For forest-cover mapping, it has been demon-

slraied that high-resolution CASI data (2.5 m) were highly 

successful in discriminating lodgepole pine (Pinuseontona 

Dougl.). balsam poplar (Populus bedsamijera L), trem 

bling aspen (Popltlus rrcmitloidcs Mtehx.), and cotton-

wood {Populus trichacarpa Ton'. & Gray) without the 

addition of ancillary variables (Franklin etal. 1991). The 

authors also confirmed the variability of remote measure 

ments of radiance as a consequence of topography and 

viewing-angle changes. This is a significant observation 

and underlies the importance of atmospheric corrections 

for application of remote sensing data in hiophysical 

analysis and classification. 

Forest Information Extraction 

Remote sensing data can be used fora variety of applica 

tions in forestry. The following discussion examines uses 

of remole sensing for monitoring forest change and bio 

physical parameters, and for mapping and classifying 

forest stands. 

Change Analysis 

The repetitive, synoptic coverage of satellite, and to a 

lesser extent, airborne remote sensing systems provides 

for the monitoring of dynamic change in forest environ 

ments. This ranges from dramatic short-term changes 

(e.e.. forest harvesting, flre. insect damage) to more subile 

4 Tht: red edge is the slope of a reflectance spectrum over ihc range 0.68 lo 0.76 urn. Shifts to longer or shorter wavelengths are used 

to document changes in ihc chemical or morphological status or health of plants. For example, trees stressed by high concentrations 

of heavy metals in the soils generally display ;i characteristic shift of the red edge toward shorter wavelenghts, often referred In as the 

blue shift (JJHesand and Kicfer 1994). 
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Table 6, A comparison of the Fluorescence Line [mager (FL1) and the Compact Airborne Spectrographic Imager 
(CASI) sensors. 

Parameler FLI CAS I 

Spectral coverage 430 nm 10 800 nm using 28S detectors: 

pixel size 1.3 nm: spectral resolution 

2.5 nin 

41 K nm io 926 nm using 288 deLectors: sampling 

interval 1.8 nm; spectral resolution 2.9 nm 

Spectral mode 

Spatial coverage 

mode 

Spectra are recorded from 40 directions 

across the swath: bandwidth and look 

direction are under software control. 

70° swath. 5 cameras. 1 925 detectors: 

.spatial resolution 1.3 mrad 

Spectral pixels are grouped to form a 

pushbroom image about I 900 pixels 

wide in each of eight spectral bands: 

band width and spectral position are 

under software control. 

39 spectra of the full 41 S nm to 926 nm range 

are recorded, with 2.9 nm resolution, from 39 

dilfcrent directions across the swath; a full-

resolution image at a predetermined wave 

length is also recorded to assist in track recovery. 

35.53 swath, with standard lens; single camera 

gives 612 pixels; sampling interval 1.2 mrad: 

Spatial resolution 1.6 mrad 

Spectral pixels are grouped to form up to 15 

bands (512 pixels wide); band width and 

spectral position are under software control; the 

number of bands governs the integration lime. 

(Adaptedfrom Gower el al. 1992.) 

long-term changes in forest ecosystems (e.g., succession, 

growth/regeneration, primary productivity). In the latter 

sense, satellite data should prove useful for monitoring 

ecosystem responses caused by environmental change. 

For monitoring change caused by harvesting or insecl 

activity, temporal satellite data can be used to identify 

significant levels of forest canopy alteration. Initially, 

only changed versus unchanged canopies require identifi 

cation (Nelson 1983). Once areas of change have been 

identified, more detailed sampling can be undertaken to 

define the nature of such changes. Landsat TM has be 

come an operational tool for the identification of areas of 

dramatic change, usually caused by harvesting or fire. As 

a result. Landsat TM has been used to update large forest 

databases (Pilon and Wiart 1990. Maclean et al. 1992. 

Mauseial. 1992). 

Insect, disease, and environmental damage Io forest tree 

species has long been of primary interest io forest manag 

ers. Mapping and quaniilieation of forests damaged by 

biotic and abiotic factors is crucial io managing forest 

operations, in particular for the planning of control or re 

medial programs. For instance, in 1985, the eastern spruce 

budwonn (ClwrisJoneura fitmiferniia Clem.l inflicted 

moderate and severe defoliation on 25.2 million hectares 

in eastern Canada, the Great Lakes Stales, and the north 

eastern United States (Leckie et al. 1988b). Early identi 

fication of areas affected by insect damage, and timely 

information on rates of spread/movement, in particular, 

are required as one component of a program to ensure the 

long-term viability of the forest industry in Canada. 

Satellite sensing of insect damage is somewhat limited 

due to low spatial resolution, poor spectral characteristics, 
and restricted acquisition times of existing platforms 

(Nelson 1983, Rene/, and Nemeth 1985). although more 

recent high spatial resolution satellites with pointablc 

optics' (i.e.. SPOT) have demonstrated some success 

(Franklin and Raske 1994). Efforts toward classifying 

levels of damage caused by spruce budwonn have been 

mainly limited to airborne systems (Ahem et al. 1986. 

Leckie and Ostaff 1988, Ahem et al. I991a|. 

Leckie (1987) has provided a useful review of the factors 

affecting defoliation assessment using airborne MSS data 

and of the problems encountered. Research examining the 

spectral characteristics of cumulative damage caused by 

spruce budworm, leading to selection of optimal sensor 

spectral bands, has been carried out by Leckie el a!. 

■ Poimahle optics provide iheopporiunjiy tor side io side off-nagir viewing. The allows for more frequent coverage of a specific area 

as well as For full-science stereoscopic imaging from two different satellite tracks (LiHesand and Kiel'er 1994). 

14 



(1988a, 1988b, 1989). The spectral differences observed 

as a result of defoliation were wide spectral-band features, 

with the blue, red, near-infrared, and middle-infrared 

showing the greatest sensitivity for discrimination. Al 

though current airborne and satellite .sensors operate in 

these bands, there is a potential for optimizing sensor 

spectral bands (Leckie et al. 1988b). Examples of remote 

sensing studies dealing with forest damage assessment are 

presented in Table 7. From examination of these studies. 

it is evident that (i) the ability to remotely detect forest 

damage is related to the actual extent of damage; (ii) high 

spatial resolution data are generally required to quantify 

the changesthaican be detected; and (iii) in general, visual 

assessment in combination with expert knowledge may be 

more successful than digital analysis of high-resolution 

data for monitoring change. 

Ahem el al. (1991a) identified three areas of research 

required for spruce budworm damage assessment. These 

were (i) identification of optimal cost-effective spatial 

resolutions, (ii)radiometric corrections for large off-nadir 

viewing angles, and (iii) development of reliable methods 

for correcting for variable atmospheric path radiance and 

transmission. As these current limitations arc overcome, 

operational aerial defoliation survey methods using mill-

lispcctral scanner data should become feasible. 

Biophysical Remote Sensing 

In addition to identifying short-term change, remote sens 

ing data can also be used to collect biophysical informa 

tion that can be useful for monitoring and predicting 

long-term changes to ecosystems. In his review article on 

biophysical remote sensing, Jensen (1983) stated that data 

collected by remote sensing (ratio-scaled data) for bio 

physical variables may be more suitable for modeling and 

simulation than are land-use and land-cover information 

(nominal-scaled data), which are often used in modeling 

physical processes. Recent studies using remote sensing 

methods have focused on the study of biogeochemical 

processes, including biogeochemical cycles. For these 

studies, inventories of vegetation characteristics (e.g., 

biomass, primary productivity, photosynlhelic activity) 

and physiologic processes (transpiration flux, leaf mois 

ture content) are essential. 

Characteristics ofa plant canopy (e.g., composition, height, 

density, sociability) are, collectively, strong indicators as 

to the stale of an ecosystem as a whole, and represent the 

physical interface for which optical remote .sensing is able 

to provide quantitative measures. For example, changes in 

water and nutrient availability arc reflected in the amount 

and seasonal duration of leaf area, in addition to changes 

in reflectance (NASA 1987). Conventional forest inven 

tories acquired through the analysis of aerial photographs 

provide a starting point for predicting forest growth by 

characterizing forest stands with respect to species, age. 

stocking, and site quality. However, these standard forest 

inventories fail to describe stands adequately in terms of 

the key determinants to stand growth—the structure and 

quantity of the foliage present in the stand canopy. 

Satellite data provide an attractive potential solution to 

this problem since these data are able to quantitatively 

characterize stand canopies via spectral reflectance at 

frequent intervals (Ahem et al. 1991b). In fact, the first 

five spectra! bands of the Landsat TM sensor (Table 5) 

were designed to sense the biophysical properties of 

vegetation (Lillesand and Kiefer 1994). Some fundamen 

tal biophysical variables that can be measured directly 

include color and spectral signature, vegetation chloro 

phyll absorption characteristics, vegetation biomass, veg 

etation moisture content, soil moisture content, 

temperature, and texture/surface roughness (Jensen 1983). 

As an example, all other conditions being equal a de 

crease in vegetation moisture content will be accompa 

nied by an increase in reflectance in the middle-infrared 

spectral wavelengths. Hybrid variables can be derived 

from fundamental variables (e.g., vegetation stress can be 

derived from vegetation chlorophyll absorption charac 

teristics and moisture content) (Jensen 1983). In addition 

to forest cover type, the most common forest characteris 

tics that have been studied with remote sensing data 

involve stand structure; in particular, crown closure, basal 

area, leaf-area index (LAI), and tree size (Spanner et al. 

1984a. Franklin et al. 1986, Peterson et al. 1986). 

Jensen (1983) warns, however, that in order to extract mean 

ingful information on biophysical properties the nature of 

spatial, spectral, temporal, and radiometric resolutions 

must be understood. These properties arc loosely coupled 

with a number of factors that influence the optical pro 

perties of forest canopies, it is particularly important to 

understand the effects of these parameters on forest can 

opy spectral response in order to quantitatively interpret 

biophysical variables. These factors are summarized in 

Table 8, For example, correcting for atmospheric effects 

increases the slope of the regression line for TM spectral 

radiance and LAI, thereby producing greater sensor sen 

sitivity to LAI (Spanneretal. 1984b, Running ctal. 1986). 

Estimates of ground biophysical variables from spectral 

reflectance measurements can be derived using two types 

of analysis techniques: (i) deterministic or stochastic can 

opy radiation models, or (ii) empirical spectral indices. 

Analytical techniques model the radiative transfer process 

between the land surface and the sensor to invert reflec 

tance measurements to a particular physical parameter 

(Otterman el al. 1987. Goel 1988). Goel (1988) presents a 

useful overview of the factors affecting canopy reflec 

tance (e.g.. incoming solar flux, spectral properties of 
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Table 7. Examples of damage assessment of forests using remote sensing. 

Condition Synopsis 
Reference 

Insect damage 

Spruce hudworni 

Spruce budworm 

Spruce budworm 

Mountain pine 

beetle* 

Eastern hemlock 

looper** 

Mountain pine 

beetle 

Hail damage 

Sugar maple*** 

decline 

Spruce budworm 

Norway 

spruce**** 

defoliation 

Spruce budworm 

Used inultitemporal Landsai MSS data and vegetation difference 

index to identify areas of forest canopy change. 

Due to the date of SPOT simulation data acquisition (IS June 1983), 
spruce budworm damage assessment was limited; able to separate the 

previous years defoliation into two levels (severely defoliated and 
dead trees). 

Evaluated the factors affecting defoliation assessment (radiometric, 

topographic, scene related, etc.) and emphasized that the magnitude 

of these factors can be larger than the range of differences between 
healthy and severely defoliated trees. 

From in situ spectrometer measurements, determined that the most 

effective bands for discriminating dii Cerent levels of defoliation were: 

2030-2210, 660-670, 1560-1620. and 770-790 inn. 

Tested SPOT-enhanced visual products to determine effectiveness in 

detecting insect mortality; areas 1-2 ha in si/e with 80-100 percent 

red crowns could be delected; not suitable for control program. 

SPOT HRV multispectral data were classified to successfully discrim 

inate two classes of eastern hemlock looper damage, moderate/severe 

and light. 

MEIS 1.2-m data was superior to MEilS 3.4-m and conventional aerial 

photography for detection of red crowns through visual interpretation 

in British Columbia; natural color composites were optimal for 

visual assessment. 

Landsat TM imagery was used to assist in the mapping of a forested 

area damaged by hail and to assess damage in planning for an opera 

tional salvage harvest. 

Found a close relationship between sugar maple decline and spectral 

(principal component 2) and texture (contrast) features in aerial multi-

spectral video imagery: based on examination of single-tree canopies. 

7-m resolution MEIS data was acquired to classify cumulative defoli 

ation and three levels of current defoliation (light, moderate, severe); 

a per-pixel MLC based on eight spectral bands achieved 72 percent 

accuracy for six classes relevant to defoliation survey; the majority 

of misclassifications were between adjacent healthy and current 

defoliation classes. 

Found that the decrease in I'M band 4 reflectance was the single con 

sistent spectral effect of moderate defoliation on Norway spruce (ratio 

methods seemed inappropriate when defoliation was the sole symptom 

of decline as opposed to defoliation and chlorosis). 

SPOT muliispectral data along with NDVI and chromaiicity measures 

were used to discriminate four damage classes; discrimination of dam 

age classes was improved when the sample sites were stratified by 

species composition, density, age, and height. 

Nelson 1983 

Buehheimelal. 1985 

Leckic 1987 

Leckieetal. 1988b 

Sirois and Ahern 1988 

Franklin 1989 

Kneppeck and Ahern 

1989 

Gillisetal. 1990 

Yuanet al. 1991 

Ahern et al. 1991a 

Ekstrand 1994 

Franklin and Raske 

1994 

Denctmctotiits ponderoxue [Hopk.] 

** Lambdinafiscellaria [Guen.] 

*** Acer saccharum Marsh. 

**** Picea abies (L.) Karsi. 
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Table S. Factors affecting ihe spectral response of foresi canopies. 

Factors Description Reference 

External 

Size of viewed area Variability of the spectral response of a foresi canopy will depend on Guyot ei al. 1989 

ihe size of the instantaneous field of view. 

Sun elevation Solar radiation penetrates more deeply into a canopy at steep angles; 

bidirectional reflectance increases in ihe visible and decreases in tlie 

near-infrared with increasing sun elevation, particularly with dense 

forest canopies; leaf iransmittance is low in the visible, but up to 

50 percent in ihe near-infrared. 

Zeniih view angle Natural surfaces do not perform as Lambertian refleclors; spectral 

radiance of surfaces varies as a function of view, zenith, and orienta 

tion angles; bidirectional reflectance for continuous canopies is 

wavelength dependent. 

Cloud cover Clouds modify the irradiancc level for a given sun elevation and 

significantly change the proportion of direct and diffuse radiation 

reaching the earth's surface. 

Atmospheric Modify the optical path between the satellite and earlh surface; 

aerosols wavelength dependent; more pronounced at shorter wavelengths. 

Wind speed Affects the geometry of the forest canopy. 

Kimeseial. 1986. 

Guyot etal. 1989 

Curran 1980, 

Stoiir and West 1985, 

Guvolctal. 1989 

Guyot el al. 1989 

Guyot etal, 1989 

Guyot etal, 1989 

Internal 

Orientation of tree 

rows (plantations) 

Soil optical 

properties 

Light penetration varies as a funciion of row direction (a funciion of 

plantation); these structural aspects of plantations are thought lo be 

more directly correlated with spectral response than canopy cover. 

Guyot etal. 1989. 

Danson and Curran 

1993 

Background spectra may confound changes in the spectral response Ranson ci al. 1986, 

of the overstory vegetation; optical properties of soil show an increase Guyot ct al. 1989 

in reflectance from ihe visible lo middle-infrared. 

Canopy geometry 

(closure, density) 

Terrain (slope angle 

and aspect) 

The most significant factor acting on ihe optical properties of forest 

canopies (controls the fractions of overstory and utiderstory visible 

to the sensor). 

Guyot eial. 1989 

Terrain elements account for appreciable variations in response in all Stohr and West 1985 

wavelength bands; slope and aspect can produce a wide range of pixel 

values within one cover class: this effect is linked lo solar elevation 

and azimuth. 

Height, vigor, and 

comparison of 

species 

Density, height, and vigor of vegetation and percent compositon 

of species affect the spectral response of foresi canopies. These 

affects directly impact forest change assessment and classification. 

Wick ware and 

Howarth 1981, 

Riurdan 1982, 

Price 1986 

vegetation elements, canopy architecture, and scattering 

from [he soil or ground-surface features) and how these 

factors can be used to model canopy reflectance. Nemani 

eial. (1993)describe radiation models as rigorous in their 

treatment of radiative transfer in vegetation canopies, but 

they are difficult to parameterize and are often developed 
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lor relatively homogeneous vegetation covers. Conse 

quently, these are more suited to agricultural canopies 

than to heterogeneous forest canopies consisting of spe 

cies mixtures with variations in leaf optical and structural 

properties. Radiative transfer models rarely simulate for 

est heterogeneity or generally require input data lor pa 

rameterization at resolutions that are difficult to obtain. 

Research on invcrtible canopy models lias made signifi 

cant progress (e.g., Li and Strahlcr 19X5, 1986; Gocl and 

Grier 1986a, 1986b. 1988; Franklin and Sirahler 19881 

bui. for forest conditions, such models arc not yet opera 

tional (McGwire et al. 1993). 

The majority of studies that estimate biophysical variables 

from remotely sensed data (Table 9) have used empirical 

techniques lo relate spectral daia and various derivatives 

to biophysical parameters. If biophysical parameters are 

strongly correlated with remotely sensed radiance data, 

then these data can be used 10 predict those biophysical 

characteristics for variable scene and sensor characteris 

tics over large areas. For example, index-based techniques 

have been used to estimate vegetation parameters {e.g., 

LAI, PAR, biomass), or soil attributes (e.g.. composition, 

brightness, moisture) (McGwire et al. 1993). If strong 

correlations could be obtained consistently with these 

biophysical parameters, they would prove useful for moni 

toring long-term environmental changes of such critical 

characteristics as primary productivity. 

Curran (1980) observed that as biomass increases and the 

canopy becomes more complete (i.e., LAI increases), the 

relationship between muilispectral reflectanee and vegeta 

tion amount can be considered linear for the majority of 

cases. Numerous studies have since shown ihe correlation 

between remotely sensed red and near-infrared reflec 

tance of coniferous forest stands to plant biomass (LAI) 

(Tucker el al. 1981; Spanner et al. 1984a; Badhwar et al. 

1986a. 1986b:Franklin 1986;Runningetai. 1986;Peterson 

ct al. 1987; Spanner et al. 1990b). There is a consistent 

negative relationship between red radiance and LAI, and 

a weak or slightly positive relationship between near-

infrared radiance and LAI. As a result of increased green 

vegetation and shadow within the canopy, there is a de 

crease in visible reflectance. An increase in near-infrared 

reflectance should also occur; however, increased shadow 

in a complex canopy acts to suppress such reflectance. 

This influence of canopy is significant, and even in stands 

wilh variable understory, canopy cover is considered the 

most important variable in determining canopy reflec 

tance (Spanner etal, 1990a. Stcnback and Congalton 1990). 

Conversely, in a coniferous forest plantation that is 

managed to maintain a large amount of green vegeta 

tion with little spatial variation, this relation may be 

weaker, as stand structural characteristics (tree density, 

mean tree height, mean tree diameter) become more 

closely correlated with stand spectral response (Herwitz 

etal. 1989, Danson and Curran 1993). For open canopies, 

near-infrared reflectance from understory. particularly 

broadleaved. species dominates the overall reflectance 

(Badhwar etal. 1986a). 

Many of these investigations have suggested that simple 

transformations of band reflectances are more closely 

correlated with plant biophysical qualities (Wiegand el al. 

1991), and are generally less sensitive to external vari 

ables such as ihe solar zenith angle. An example of one of 

these transformations is the "normalized difference veg 

etation index" (NDV!) (Badhwar et al. 1986b), although 

there arc also various derivatives of NDV1 (White 1991, 

Kogan 1990). Along wilh NDVI, the most common veg 

etation indices utilize the information contenl of the red 

and near-infrared canopy reflectance or radiances. This 

transformation is highly correlated with green-leaf hio-

mass (Jensen 1983). Chlorophyll absorption in ihe visible 

portion (0.5-0.7 jjm) of the spectrum is high (rellcciance 

<20 percent), whereas reflectance and transmit tance are 

about equal in the near-infrared portion (40-50 percenl) 

(Smith 1983). This physiological relationship has been 

used to estimate the intercepted photosynthetically active 

radiation (IPAR) of plant canopies (Asrar et al. 1984. 

Sellers 1985, Baret and Guyot 1991, Sellers et al. 1992), 

percent canopy cover (Richardson and Wiegand 1977). 

chlorophyll content (Tucker 1977), and LAI (Asrar et al. 

1984, Baret and Guyot 1991) through the use of various 

ratios(Sel!ers 1985). Nemanietal.(1993)usedthe middle-

infrared band of LandsatTM to correct for underslory and 

background effects on NDVI for estimating LAI. Some of 

these ratios and their applications are described in Table 

10. It must be remembered that these indices are also 

sensitive to the internal and external factors that affect 

spectral refleciance of vegetation (i.e., those described in 

Table 8). However, Goward et al. (1994) found that 

variations in vegetation indices for western Oregon origi 

nate from changes in both canopy spectral characteristics 

and background spectral reflectance, raiher than from 

simple variations in LAI or percent canopy closure. Cau 

tion must therefore be taken when relating changes in 

vegetation indices to vegetation physiognomic properties 

al regional and global scales. 

The use of vegetation indices wilh wide spectral band re 

mote sensing data is not appropnaie for areas of low green 

canopy cover since background rock, soil, ground surface. 

and liner materials produce a range of vegetation index 

values (Elvidge and Lyon 1985, Huele el al. 1985, Huete 

and Tucker 1991). The development of high spectral re 

solution imaging sensors (e.g., AVIRIS,CASI)has led to 

the study of terrestrial materials using new analysis tech 

niques. Once the physical nature of the materials within 

the sensor field of view are determined, quantitative 



Table 9. Examples of biophysical remole sensing of forests. 

Variables} Synopsis Reference 

Structural classes 

(crown closure, 

size class) 

LAI 

LAI 

Canopy closure/ 

basal area 

LAI 

Spectral shift 

(blue shift) 

Forest damage 

(foliar loss 

[percent]) 

Forest 

productivity 

LAI 

Timber volume 

Timber volume 

Timber volume 

Single-tree 

defoliation 

LAI 

Feature selection identified TM simulated bands 4. 7, 5, and 3 as 

optimal for forest structural analysis; moderately successful for 

identifying four crown-closure classes and two size classes. 

Various ratios of red and near-IR were correlated with LAI. 

Strong correlations between LAI and Lundsat TM reflectance of aspen 

{Popiilus spp.) early in the growing season disappeared as the understory 

developed. 

Canopy closure was most closely related to spectral response of TMS 

bands and ratios; basal area showed strong correlations with some 

species, e.g.. red fir {Abies magnified A. Murr.) and lodgepole pine 

{Finns contoria Dougl.). but not white fir (Abies convotor [Cord. 

& Glend.l Lindl). 

A strong positive relationship was detected for the IR/rcd reflectance 

ratio; explained by a strung asymptotic inverse relationship hetween LAI 

and red reflectance and a flat response between LAI and IR reflectance. 

Detected a5-nm shift away from the normal inflection point of the red 

edge reflectance feature towards shorter wavelengths; a result of stress. 

TM shortwave-IR to near-IR band ratios were found lo correlate well 

with L'round-based measurements of forest defoliation. 

TM data, in conjunction with biogeographical and ground plot data, 

were used to successfully model forest productivity at the landscape 

level, but the reliability of single pixel estimates was poor. 

The relationship between LAI of coniferous forests and TM data 

corrected for atmospheric effects and sun-surfaec-sensor geometry 

was affected by canopy closure, understory vegetation, and back 

ground reflectance. 

Vegetation-condition indices generated from shortwave-IR and 

near-IR TM bands showed strong correlations with net annual 

spruce-fir volume change; useful for stand development forecasting. 

A strong relationship (-0.79) was observed between the volume of 

coniferous forest compartments and spectra! radiance recorded by 

Landsat TM, particularly TM band 5 (estimates for compartments 

with small volumes were better than for those with large volumes). 

Found good correlations between stand volume and normalized 

difference of TM bands 4 and 5 for homogeneous stands (however, 

this capability was reduced at low volumes due to spatial inhomogen-

eities and at high volumes due to complete canopy closure). 

A linear relationship existed between visually estimated tree defoli 

ation for trees with >20 percent defoliation and spectral features of 

40-cm MEIS data; NDVl provided the best correlations with defoliation. 

Demonstrated the potential use of Landsat TM data for studying 

seasonal dynamics in forest canopies by obtaining strong correlations 

between LAI and NDVI for September 1988 and March 1989. 

Spanner et al. 

1984a 

Running et al. 1986 

Badhwaret al. 

1986a 

Peterson ctal. 1986 

Peterson et al. 1987 

Rock el al. 1988 

Vogelmann and 

Rock 

Cook ctal. 1989 

Spanner et at. 

! 99f>a 

Ahernet al. 1991b 

Ardo 1992 

Gemincl and 

Goodcnough 1992 

Leckieetal. 1992 

Curran et al. 1992 
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Table 10. Examples of ratio-based indices for biophysical studies, 

Index LandsalTM equivalent Description Origin 
Near-IR / red TM4/TM3 

reflectance ratio 

Normalized 

Difference 

Vegeiaiion Index 

(NDVI) 

(TM4-TM3)/(TM4+TM3) 

Infrared index (TM4-TM5)/(TM4+TM5) 

Moisiure stress 

index 

TM5/TM4 

Responds 10 changes in amount of green 

biomass, chlorophyll content, and leaf-

water stress. 

Responds to changes in amount of green 

biomass, chlorophyll content, and leaf-
water stress. 

Birth and McVey 

I %8. Tucker 

1979 

Rouse ct al. 

1974, Tucker 

1979 

Infrared index more closely tracks changes Hardisky Bt al. 

in plant biomass and water stress than 1983 
NDVI. 

Tracks changes in plant water stress. Rock et al. 1985 

Leaf water -log| 1-(TM4-TM5)] 

content index -log[l-(TM4f'L-TM5ft)] 

ft represents reflectance in the 

specified bands when leaves are 

al their max. relative water content 

Responds to changes in water stress. Hunlctal. 

Mid-IR index TM5/TM7 

lOO(NDVlij-NDVIminj) 

NDVlmaxj-NDVIminj 

Vegetation 

Condition 

Index (VCI) 

Perpendicular 

Vegetation 

Index (PVI) 

Soil Adjusted 

Vegetation 

Index (SAVI} 

Transformed 

Soil Adjusted 

Vegetation Index 

(TSAVI) 

Greenness Gram-Schmidt orthogonalization 

Vegetation Index 

(GV1) 

(TM4 + L1)/(TM3 

Mean Green 

ness Vegetation 

Index (MGVIl 

Principal components analysis 

Shows a strong correlation with soil 

moisture. 

Portrays weather dynamics more effec 

tively than NDVI for nonhomogencous 

areas by removing the influences of 

geographic resources such as climate, 

soil, vegetation type, and topography. 

Attempts to eliminate differences in soil 

background and is most effective under 

conditions of low LAI (arid and semi-

arid environments). 

Incorporates parameters (LI, 1,2) to min 

imize soil-brishtness induced variations. 

Modifications of Huete (1988) SAVI to 

compensate for soil variability due to 

changes in solar elevation, leaf-angle 

distribution, and LAI. 

Greenness vegetation index is a measure 

of the amount of vegetation present relative 

to bare soil. 

Musiek and 

I'elletier 1988 

Kogan 1990 

Richardson and 

Wiegand 1977 

Huete 1988 

Major ctal. 1990, 

Richardson and 

Wiegand 1990 

Kauih and 

Thomas 1976 

Principal components are used to identify Misra and 

the extent of soil and vegetation in the Wheeler 1977 

scene. 

(Adapted from Cohen 1991, Major et al. 1990.) 
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estimates of their abundance can be made using spectral 

mixture analysis methods (Roberts el al. 1993. Foody and 

Cox 1994). For example, spectral mixing methods have 

been used to model the relative contributions of green 

vegetation and soils EG image spectra (Hueie 1986; Smith 

el al. 1990a, 1990b; Gong el al. 1992b: Roberts et al. 

1993). Such methods provide derived quantitative esti 

mates of vegetation and soil abundance (e.g., Smith etal. 

1990a, 1990b), as well as nonphotosymhetic vegetation 

and shade (Roberts el al. 1993). 

Leaf area of closed canopy forests is an important ecologi 

cal parameter used in numerous studies. Leaf-area index 

(LAI) is- a standard expression for the leaf area of a plant 

community and is defined as the total leaf area per unit 

ground co ver(Herwitz etal. 1989). Light interception, gas 

exchange, photosynthesis, and biomass production are all 

closely related to LAI (Peterson el al. 1987, Herwitz et al. 

1989. Bonan 1993, Nemani et al, 1993). Regional varia 

tions in LAI have been found to be linearly related to site 

water balance (Nemani and Running 1989) and above-

ground net primary production and stand volume (Ghol/. 

1982. McLeod and Running 1988). For global change 

studies, satellite-derived measures of vegetation cover 

type and LAI may be used to provide more accurate esti 

mates of the carbon content and exchange rates of global 

vegetation than are possible with current data (Running el 

al. 1986]. Forinstance, Macket al. (1990)used vegetation 

indices derived from Landsal MSS data in examine the 

relationship between vegetation cover and CO-, flux den 

sity for agricultural and forested areas. 

From the above discussion, it is evident that remote 

sensing has the potential to provide information for the 

dell nit ion and mapping of spatial patterns in ecosystems, 

as well as for theirchange in time. This includes not only 

the monitoring of biophysical variables related to forest 

ecosystem structure and processes, but also the definition 

of forest ecosystem units as presented in the following 

discussion. 

Forest Classification 

Landsal MSS data have become widely used in a variety 

of land resource applications, including forestry. Forestry 

applications initially focused on the enhancement of 

Landsat MSS dala for visual interpretation, but as digilal 

image analysis technique.1; became available, visual analy 

sis was gradually replaced by more automated techniques 

for extraction of foresl information. 

Landsal MSS has been used primarily for generalized 

forest-type mapping (Bryant et al. 1980, Kalensky et al. 

1981. Pettinger 1982). Success has also been achieved for 

forest site-type mapping (Tom and Miller !980, Ilame 

1984) and for species and structural mapping, bul only in 

association with the careful treatment of training statistics 

(Walsh 1980) or the addition of ancillary variables (Strahler 

et al. 1980) (Table II). Classifications have been im 

proved by integrating MSS spectral data with digital 

elevation data and associated geomorphometric variables 

(Strahler etal. 1980, Franklin etal. 1986. Franklin 1987), 

as well as with texture measures (Franklin and Peddle 

1989) (Table II). 

Landsal MSS has proven successful for generalized for 

est mapping due primarily to the large spatial resolution 

(80 m) that averages the spectral characteristics of forest 

structure, thereby reducing variance and spectral overlap 

between broad cover classes. This produces spectral char 

acteristics for general cover types thai often fit the normal 

distribution of parametric classifiers, particularly for areas 

of low relief. The addition of ancillary data (e.g., geo-

murphometric variables) or additional feature processing 

(e.g., texture) provides enhanced classification results. 

In Canada, the use of remote sensing has been integrated 

into Ecological Land Survey approaches in the form of 

multistage sampling procedures for various scales of sur 

vey (Rubec 1983) (Table 12). Landsat MSS has been used 

in many ecological surveys, providing information at the 

ccoregion and ecodistrict levels (Wiekware and Rubec 

1989). The combined use of Landsat transparencies, in a 

multistage approach with other remote sensing data, has 

proven useful in the preficld, field, and postfield activities 

involved in the Ecological Land Survey of numerous areas 

in northern Canada (Rubec 1983). Digilal image analysis 

techniques using Landsat MSS did not provide suitable 

results for mapping ecological land classes at detailed 

levels (initially reported by Thie [1976]). 

Improved spatial, spectral, and radiomeiric character!sties 

of Landsat TM have led to numerous forest siudies for the 

purpose of classifying forest types and structural charac 

teristics. Congallon el al. (1993) stated that the spatial 

resolution of SPOT and Landsat TM arc a major improve 

ment over Landsal MSS. A survey of the literature indi 

cates that more detailed information is available from 

Landsal TM data (Table 13). However, due to the in 

creased heterogeneity of the spectral data representing 

cover classes, the extraction of in formation requires more 

sophisticated analysis and classification techniques. The 

increase in spectral "noise" that accompanies higher spa 

tial resolution data indicates that such noise is usually 

related to variations in structural properties of forest 

communities (Peterson et al. l9Hf>), Hence, TM may pro 

vide researchers with a greater ability to extract stand 

structural characteristics. 

SPOT dala have now come into wide use for land-cover 

and land-use mapping. For foresl mapping, concern has 

recenily been raised regarding the low dynamic range of 
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Table 11. Forest classification with Landsat MSS. 

Variables) Technique* Description Reference 

Spatially complex 

vegetation 

Coniferous species 

(including stand and 

site characteristics) 

(MLC) 

Timber height and 

density (to estimate 

limber volume for 

homogeneous strata) 

Forest Site Index (9) 

Conifer species 

Canopy density 

Crown diameter 

Softwood, hardwood 

regeneration 

Anderson's 

classification 

(Levels I, II, III) 

Forest site types 

Fores! cover types 

(species level for 

conifers) 

UC(MLC) 

controlled 

cl usle ring 

(I) UC; 

(ii) model 

"region type" 

with DTM 

LDA speciral 

and ancillary 

variables 

UC (guided 

clustering) 

Difficult correlating spectral classes and 

gmund classes; small land-cover units and 

rugged lerrain complicated interpretation; 

UC not demonstrated to be superior to SC. 

Twelve surface-cover lypes {merged from 

59 spectntl clusters) were mapped to an 

average accuracy of 88.8 percent; slope angle, 

aspect, and surface cover affected spectral 

variability. 

The authors developed a stratification pro 

cedure for a high relief forest environment 

incorporating tone (MSS), texture, and 

geomorphomciric variables. 

Achieved 97 percent training accuracy when 

combining 19 image and map variables; MSS 

alone achieved 43 percent. 

Townsheud and 

Justice 1980 

Walsh 1980 

Strahlerelal. 1980. 

Franklin et al. 1986 

Tom and Miller 1980 

Guided clustering defined a maximum number Mayer and Fox 198 I 

oflow variance spectral classes; by matching 

spectral curves of known and unknown spectral 

classes it was possible to assign spectral classes 

lo categories. 

SC, UC(MLC) Performed generalized forest-type mapping Kalensky et al. 1981 

(reconnaissance stage) and emphasized a multi 

stage approach. 

modified Successful for mapping at Anderson's Level 1 I'ettinger 1982 

clustering (83.0 percent); detailed mapping at Levels II 

(MLC) and III achieved 52.2 percent accuracy. 

MLC Used a multi-stage process to improve the Maine 1984 

efficiency of mapping site types. 

SC. UC Results indicated thai classification accuracy Hudson 1987 

(MLC) is more dependent on forest composition and 

distribution than on a particular classification 

scheme. 

Mountainous LDA 

landscape classes 

Forest types (within LDA 

a moderate relief 

boreal environment) 

Geomorphometric and MSS data (75 percent); 

MSS data alone (46 percent). 

Texture algorithm improved classification; 

geomorphometric variables provided the 

greatest improvement lo classification. 

Franklin I9S7 

Franklin and Peddle 

1989 

SC = supervised classification; 0C= unsuperviscd classification; MLC = maximum likelihood classification; 

LDA = linear discriminant analysis. 
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Table 12. Relationship between remote sensing systems and ecological land survey mapping scales and levels. 

Remote sensing source Ecological land survey mapping level Mapping scales 

Satellite imagery Ecoicgion 

High altitude photography Ecodistrict 

Moderat'^ high altitude photography Ecosection 

Lov -.ltude photography Ecosilc 

L M' altitude or ground photography Ecoclcmcnt 

1:3 000 000- 1:1 000 000 

1:500 000- 1:125 000 

1:250 000- 1:50 000 

1:50 000- 1:10000 

1:10000- 1:2500 

.From Wickware and Rubee 1989.) 

data acquired over forested regions. This may prevent 

satisfactory classification results (Horry ei al. 1990, De 

Wulfeial, 1990). It has also been noted that there is high 

correlation between SPOT XS Bands 1 and 2. De Wulf 

et al. (1990) had limited success extracting forest-stand 

parameters (e.g., stand density, stand age. average tree 

diameter, stand basal area, average canopy height, and 

stand volume) from both multispeelral and panchromatic 

data and as a result considered SPOT data as L-resoluiion(' 

(Sirahler et al. 1986) with respect to forest canopy struc 

ture. For visual and digital analysis of SPOT mult ispectra! 

data, the date of acquisition is a key element to successful 

forest mapping and analysis: data acquired in the early 

part of the growing season provide superior results (liorry 

et al. 1990). Upon achieving unimpressive classification 

accuracies for vegetation classes using SPOT data (enr-

rectcd for terrain). Baker et al. (1991) noted that spectral 

classification alone may not be sufficient. The inclusion of 

certain geomorphometric variables (Franklin and Wilson 

! 991. Franklin et al. 1994) in a high-relief environment, as 

well as texture features (Franklin and Peddle 1990). gen 

erally improved ihu classification accuracies achieved 

with SPOT multispectral data. 

Information content in an image is expressed by the 

'intensity' of each pixel (i.e.. tone or color) and by the 

spatial arrangement of pixels (i.e., texture, shape, and 

context) in the image (Lee and Philpot 1991). Campbell 

(1987) defines image texture as the apparent roughness or 

smoothness of an image region, usually the result of an 

irregular surface being illuminated from an oblique angle 

and causing a pattern of highlighted and shadowed areas. 

Texture is an important functional attribute of a remotely 

sensed image and is therefore a significant contributor 

to scene information extraction. Although texture has 

long been recognized as an important clue in the visual 

recognition of objects in aerial photographs, conventional 

automated processing traditionally has not exploited this 

component of remote sensing data. 

It is well known that actual landscapes consist of a spec 

trally diverse assemblage of features, which become in 

creasingly complex as spatial resolution increases. Indeed, 

the use of texture explicitly implies that the resolution 

cells are smaller than ihe elements in the scene model, 

because numerous measurements are required for each 

element or class in order to allow the characteristic spatial 

texture to occur (Woodcock and Strahler 1987). To extract 

more information from digital remote sensing data, image 

classification should include information regarding the 

overall pattern of variation that characterizes each cat 

egory. However, Ihe majority of image classification pro 

cedures, particularly in operational use, rely on spectral 

'intensity' characteristics alone, and thus are oblivious to 

the spatial information content of the image. These types 

of per-point classifiers do not perform well in environ 

ments where there is an excess of boundary pixels or 

where there is substantial spectra! overlap between the 

chosen informational classes (Martin et al. 1988). 

Textural algorithms, on ihe other hand, attempt lomeasure 

image texture by quantifying the distinctive spatial and 

spectral relationships thai occur among neighboring pix 

els. For a forested environment, where local variance is 

high, texture measures should be more valid than con 

textual methods because they rely on spatial variation to 

differentiate classes (Woodcock and Sirahler 1987). In 

response to the need to extract information based upon 

the spatial arrangement of digital image data, numerous 

texture algorithms have been developed. These include 

methodologies based upon: (i) structural approaches 

(Conners and Harlow 1980); (ii) spatial-frequency pat 

terns (Bajcsy and Liebennann 1976); (iii) first-order 

statistics (Hsu 1978, Irons and Peterson 1981, Arai 1993); 

6 L-resolution, a term defined by Strahler et al. (1986), indicates Dial ihe spatial resolution cells within the remote sensing image are 

larger than the dements within the ground scene. These elements on the ground are therefore not resolvable. H-resolution, on (he other 

hand, indicates that the spatial resolution cells arc smaller than the elements wiihin the scene: therefore ilie individual elements may 

be resolved. 
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Table 13. Forest classification with Landsat "I'M. 

Variable(s) Technique' Description Reference 

Alpine and subalpine 

communities, 

Montane forests 

Nine forest classes 

(species, terrain 

derived) 

Nine natural 

resource cateeories 

Species and age 

groups (pine 

plantations) 

Landscape classes, 

high relief 

Canopy closure and 

forest understory 

Three forest types 

and eight land-cover 

classes 

Species, size class 

(structure, crown 

closure) 

Six lores! and five 

non forest classes 

(canopy change) 

TM band ratios. TM transformations combined with landscape 

NDVI, LDA variables were able to discriminate alpine and 

subalpine vegetation types; forest types in the 

Montane zone were not distinguishable. 

SC, MLC TM provided superior forest-type mapping and 

condition assessment information than MSS; aver 

age accuracy for nine forest classes was 69 percent; 

improved when forest categories were merged, 

SC, MLC Tested a variety of TM band combinations and 

found that six TM bands provided the highest 

overall classification accuracy (92.4 percent). 

TM imagery was inadequate for separating species; 

age classes were separable. 

LDA 

UC 

Classification accuracy increased from 55.8 percent 

to 77.6 percent when geomorphomelric variables 

were included with TM data. 

The data were stratified into three categories of 

canopy closure; presence or absence of undcrstory 

in each category was then evaluated using spectral 

response pattern analysis; understory presence or 

absence (55-69 percent accurate). 

PCA. LDA. TM data were transformed using PCA and com-

MLC bined with geomorphomctric variables to provide 

mapping accuracies of 76 percent. 

Successional stages UC. MLC A wetness index and a TM 4/5 ratio and TM 4 

were the best features for distinguishing between 

old-growth and mature forests; accuracy 

(71.7 percent}. 

Frank 1988 

SC. UC In-depth spectral analysis was performed to dcter-

ancillary mine the strength of the correlation between the 

variables spectral data and vegetation; SC and UC were per 

formed and similarities between the spectral statis 

tics for each classilication were compared using a 

clustering algorithm (accuracies > 80 percent). 

Vegetation "Guided" clustering of Landsat TM bands and 

indices various vegetation indices provided classification 

"guided" accuracies of 75 percent for six forest classes and 

clustering five nonforest classes; misclassification resulted 

from stands being a mix of two or more species that 

also differ in size, density, crown closure, and age. 

Hopkins et al. 

1988 

Karleris 1990 

Coleman ct al. 

1990 

Franklin and 

Moulton 1990 

Stcnhack and 

Conealton 1990 

Franklin 1992 

Fiorellaand 

Ripple 1993 

Congalton ct al. 

1993 

Bauer et al. 1994 

SC - supervised classification; UC = unsupervised classification; MLC = maximum likelihood classification; 

LDA = linear discriminant analysis; PCA = principal component analysis. 
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(iv) second-order statistics (Hareilick el at. 1973. Gallo 

way 1975. Sun and Wee 1982); (v) texture spectrum 

(Wang and He 1990, Gongetal 1992b); and (vi) special 

texlure pattern matching (Lee and Philpot 1991]. Useful 

summaries of methodological approaches to measuring 

texture are provided by Haralick (1979) and Marccau 

(1989). 

In studies comparing various texture measures, second-

order statistical techniques are generally identified as 

superior ioothermethods(Weszkaeial. 1976). In particu 

lar, llic grey-level cooccurrence matrix (GLCM) tech 

nique has proven to be optimal for capturing the lextural 

content of an image (Conners and Harlow 1980. Gong etal. 

1992a, Treit/. et al. 1993). Statistical approaches, such as 

those developed by Haralick et al. (1973) and Sun and 

Wee (1982), make use of grey-level probability density 

functions that are generally computed as the conditional 

joint probability of pairs of pixel grey levels in a local area 

of the image. 

A number of siudies incorporating texture analysis inlo 

classification of land cover and land use are outlined in 

Table 14. It is evident that texture data provide additional 

information that can be used for the classification of cer 

tain forest structural attributes. For instance, stand struc 

tural characteristics (e.g.. diameter at breast height (DBIlt. 

crown diameter, density, basal area, age) have been found 

to be highly correlated with texture images generated from 

SPOT panchromatic data (Cohen and Spies 1992). Te\-

ture also appears to be more evident at higher spatial 

resolutions (e.g., 10 m) because at these levels stand 

structural characteristics tend to dominate the scene (Yuan 

et al. 1991. Franklin and McDermid 1993). 

Research inlo the classification of remotely sensed data 

has been pursued for approximately three decades and has 

involved many different strategies (e.g.. supervise d/unsu-

pervised. per-pixcl/per-field, lextural. contextual). Pixels 

are grouped inlo various classes using a suitable classifier 

(e.g., minimum distance, maximum likelihood) or mulli-

variale analysis (e.g.. discriminant, principal components) 

or both. No single strategy has proven best for all situa 

tions; the most suitable approach is dependent upon the 

nature of the data collected, the availability of additional 

or collaborative terrain data, the characteristics of the 

surface being "sensed", and the ultimate objectives and/or 

products desired from ihc classifier. The analyst is respon 

sible for devising suitable strategies for collecting remote 

sensing and ground information, and for applying suitable 

analysis techniques to the data for a particular environ 

ment. To analyse the data correctly, the analyst requires a 

good understanding of the physical nature of the remote 

sensing data, as well as the statistical tools used to group 

such daia into relevant classes. 

The analysi frequently does not have a large choice of 

classification algorithms in which pixels or comparable 

spatial neighborhoods are assigned lo a particular class. 

Traditionally, classification algorithms have relied on 

spectral data alone for pixel assignment. As discussed by 

Robinove (1981), the philosophical basis for multi-

spectral classification implies that the multispectral data 

represeni an acceptable surrogate for the attributes of the 

ground features that are of interest and that spectral classes 

separated within the data correspond to a distribulion of 

ground-cover classes, in fact, information classes are gen 

erally subsets of a continuum of reflectances and in 

classification are applied against the geometric character 

of the classifier (Richards and Kelly 1984). 

Given the relatively small range of classification algo 

rithms available, analysts may be forced to select classifi 

ers that may not be appropriate for the data they are 

analyzing. This situation is becoming more problematic, 

particularly as new data types with increased spatial, 

spectral, and radiometric resolutions become available. 

Sonic of the classifiers commonly used are statistical in 

nature and include nonparametricclassifiers such as mini-

nium-distanee-lo-means, parallelepiped, and linear dis 

criminant analysis (LDA](Duda and Hart 1973, Tom and 

Miller 1984. Campbell 1987, Kershaw 1987). Parametric 

classifiers are also used, such as the maximum-likelihood 

dassifier(iViLC)and iis sophisticated extension, the Baye-

sian classifier (Campbell 1987). 

Parametric classifiers, such as the MLC. have become 

widely used in operational remote sensing. These classi 

fiers calculate the statisiieal probability of each pixel 

value belonging to each class or category, as defined by 

the analyst; they are then assigned lo the class with the 

highest probability. This sequence of events is performed 

by first taking inlo account ihe mean vector and covari-

ance matrix of the spectral categories and then calculating 

probability density functions (PDF). However, the MLC 

model assumes normality, whereby the pixels sampled to 

define the decision rules of the classifier possess a normal 

or Gaus.sian distribution. This assumption has been rea 

sonable for common spectral response patterns, which are 

encountered when using medium to low1 spaiial resolution 

data (e.g.. Landsat MSS - 80 m) (Lillesand and Kiefer 

1994). The Bayesian classifier is similar to the MLC. but 

allows forthc input of «/>/7oti probabilities lor each class. 

These are then multiplied by the PDF determined from 

training data so as lo quantify the posierior probability 

(Campbell 1987). The use of a priori probabilities in MLC 

has been shown to improve classification accuracies 

(Sirahler 1980). but the approach is ofien not implemented 

since appropriate information is rarely known. 
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Table 14. Some applications of lexiure analysis lor kind-cover classification. 

'lexlure method(s) Synopsis 
Rcferenci 

Grey-Level 

Cooccurrence 

Matrix (GLCM) 

GLCM 

Teillet elal. 1981 

Franklin and Puddle 

1989 

GI.CM 

GLCM 

Demonstrated improved classification accuracy through the inte 

gration of texture features with 20-m airborne MSS data; improve 

ment was more pronounced with a detailed classification scheme 

separating damaged and undamaged forest species. 

Incorporating texture features into a linear discriminant analysis of 

Landsat MSS data improved accuracies up to 7.1 percent; using four 

orientations of the cooccurrence provided higher accuracies than 

using average textures; this could be related to topographic orientation 

(e.g., slope/aspect). 

Classes containing either mixed vegetation patterns or possessing a 

strong relationship to structural features (e.g., topography) showed 

improved classification accuracy using tone and texture information. 

The authors found significant improvement in classification accuracy Marceau et al. 1990 

for some Innd-cover classes when incorporating texture measures; 

window size is a dominant factor affecting accuracies. 

Franklin and Peddle 

1989 

First-order statistics; Texture processing was compared to per-ficld sampling and low-

Standard deviation pass filtering to improve land-cover classification accuracy; texture 

improved accuracy 2.4 percent for single-date and 3.9 percent for 

a two-date analysis. 

GLCM Texture measures forTM data were greater than for MSS data; by 

adding texture features to a multilcmporal data set. classification 

improved 1.6 percent io 4.7 percent. 

GLCM When texture features were incorporated into classifications of land 

cover in a moderate/high relief environment using synthetic aperture 

radar and SPOT inultispectral data, accuracies increased 11 percent 

and }5 percent, respectively. 

First-order statistics; Texture of the SPOT 10-m data was strongly correlated with stand 

Standard deviation structural characteristics, whereas TM texture was weakly correlated; 

Absolute difference the spatial resolution ol TM data is too coarse to detect the spatial 

variability within the forest stands studied. 

First-order statistics: The range of variability derived from image semivariograms, cal-

Viiriancc culated over lodgepole pine stands, were used to identify optimal 

window sizes and were most useful for estimating canopy coverage. 

Currau and Pedley 

1990 

Arai 1991 

Peddle and Franklin 

1991 

Cohen and Spies 1991 

Franklin and 

McDermid 1993 

When using the MLC, certain preprocessing procedures 

can be applied to the data to render them more amenable 

to the statistical assumptions of the classifier. These pro 

cedures are intended to reduce variance within the spectral 

classes, which can he considered cither as noise or in 

herent heterogeneities within the land-cover class. These 

procedures include multivariate transformations of fea 

ture space, such as principal components analysis (PCA), 

which is used to examine the interrelationships between a 

large numher of spectral vectors. PCA is also used to 

reduce the dimensionality of the original data with mini 

mal information loss. 
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Spatial filtering7 has been used as a preprocessing and/or 

postprocessing technique 10 improve classification accu 

racy (Cushnie and Atkinson 1985. Toll 1985). These 

context-dependent operators come in a variety of forms 

(e.g.. mean, median) and are used to alter Lf pixel value 

according to its relationship with pixel values within a 

specified neighborhood or window. For example, a mean 

filter will smooth an image to greater degrees as the 

window si^c or array of pixels upon which the filter is 

applied is made progressively larger. A median filler, on 

the other hand, will smooth noise and also retain edges or 

boundaries. Both approaches effectively reduce the spa 

tial resolution of the data and. logically, one must question 

the degree of information lost in such a process. Similar 

techniques can be applied after the data have been classi 

fied. To improve the accuracy ofper-point classifications. 

a postclassification smoothing filter can be applied to the 

classified data, whereby an isolated class (noise) is as 

signed to the class category representative of the majority 

of pixels surrounding it (Thomas 1980). This technique, 

however, does not incorporate the true spatial characteris 

tics of the class; it is only concerned with context as it 

relates to classified data and will only be effective for 

isolated pixels or groups of pixels (Lee and Philpot 1991). 

Improvements in per-pixel classification have been ob 

served with the use of linear discriminant analysis (LDA) 

(Tom and Miller 1984). This method relaxes the restric 

tion of the data meeting a specified distribution (i.e., 

normal) and results in decisions for assigning pixels to a 

particular Class that are more flexible, although perhaps 

less certain. As a result, the data play a much more 

prominent role in the creation of decision rules. LDA uses 

the pooled covariance matrix and reduces a multivariate 

problem to a univariate one by defining the weighted 

combination of input variables that best descrihe the 

separation among the groups (Tom and Miller 19H4, 

Franklin 1992). As a result, LDA is less sensitive to the 

number of input variables than is MLC (Peddle 1993). 

Efforts are currently being placed on the use of contextual 

classifiers to extract spatial information (Wharton 1982. 

Gurney and Townshend 1983, Gong and Howarth 1992. 

Gong 1994). Whereas texture refers to the spatial varia 

tion within a contiguous group of pixels that contribute 

to the overall appearance of the image, context refers to 

the spatial relationships of a pixel (or group of pixels) to 

pixels in the remainder of the image (Gurney and Towns-

bend 1983. Campbell 1987). The basis of contextual 

classification lies with the premise that pixels of a given 

class are likely to be surrounded by pixels of the same 

class. This premise is likely to hold true for classes that arc 

larger than the pixel size. However, at high spatial resolu 

tions individual spectral components of land-cover classes 

become distinguishable. This spatial/spectral variability 

may compromise contextual classification in certain en 

vironments. Treil/.et a!. (1992) used SPOT data and a con 

textual classiiierto improve land-useclassifieation accuracy 

in a rural-urban fringe environment, which contained 

numerous land-use classes (discrete variables). In a forest 

and certain other environments, continuous variables may 

dominate and. under such circumstances, the premise lor 

contextual classification may not be valid. 

New developments in image classification include non-

parametric classifiers (Skidmore and Turner 1988); ad 

vanced iterative clustering techniques (Guo and Haigh 

1994); the use of fuzzy sets for information representation 

(Wang 1990a. 1990b; Foody and Cox 1994); evidential 

approaches for multisource data analysis (Lee et al. 1987. 

Wilkinson and Mcgier 1990. Veronese and Mather 1992, 

Peddle 1993); and neural networks (Bentdiklsson el al. 

1990. Ersoy and Hong 1990. Bischofet al. 1992. Fernandez 

1992, Foody el al. 1992, Henediktsson el al. 1993). Evi 

dential and neural-network classifiers have a number ol 

advantages when compared to many statistical classifiers; 

(i) they are not restricted by underlying statistical models 

(e.g., normal distribution); (ii| they arc not sensitive to 

variance thresholds; (iii) they are able to adequately handle 

increased numbers of input variables; and (iv) they are 

capable of processing data of different variable types 

(e.g., nominal, ordinal, interval, and ratio) (Benediktsson 

ctal. 1993.Peddle 1993). 

Neural-network and evidential-reasoning classifiers have 

demonstrated superior classification capabilities when 

compared to traditional statistical classifiers (e.g., LDA. 

MLC)(e.g..Downeyetal. l992,Koodyetal. 1992.Peddle 

1993). particularly for nonnormally distributed training 

data (Benedikisson ct al., 1993). The neural-network 

classifier performs a segmentation of the original data to 

different spatial resolutions (scales). Spectral signatures 

and spatial frequency textural information are used to 

guide an anisolropic dif fusion process that smooths wi thm-

cover-dass segments at different scales (Fernandez 1992). 

Although these classifiers show promising classification 

results, they are generally slower to train than traditional 

statistical classifiers. For most neural-network classifiers. 

7 Spatial filtering is a localized enhancement process by which pixel values from an original image are modified on the basis of the 
grey levels of neighboring pixels. Spatial filtering is performed on image data u> emphasize or ikemphasize inwc datj of certain 

spatial frequencies (i.e., the roughness of the tonal variations occurring in an imaye|. Low-pass fillers are useii to emphasize low-

frequency features (e.g., agricultural crops) whereas high-pass filters are used to emphasi/.e high-frequency features [e y.. ro:id 

networks, Geologic lineaments). 
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the training process is computationally very complex and 

requires a large number of Braining samples; such require 

ments may translate into a long implementation phase. 

Franklin and Wilson (1992) used a three-stage approach lo 

Classification; it was initiated with a quadtree-based seg 

mentation operator, followed by a Gaussian minimuni-

distanee-io-means test, and then a test incorporating 

ancillary geomorpliometric data and a spectral curve mea 

sure. Knowledge-based and expert systems promise to 

improve remote sensing image classification through the 

integration of knowledge and reasoning (Schowengerdl 

andWang 1989, Srinivusan and Richards 1990, Ton el al. 

1991). However, these attributes are often site and appli 

cation specific (Wang and Newkirk 1988, Skidmore 1989), 

a situation thai renders difficult the widespread u.se of such 

techniques. 

Summary 

The current role of remote sensing for forestry and eco 

logical land classification has been described earlier in 

this report. An examination of the relevant literature has 

revealed that ihe results ofdigital image classification for 

forestry studies using remote sensing dala are, at best, 

varied. This can be largely attributed 10 an incorrect 

matching ofFernofesensing data to the variables (informa 

tion classes) being sought and/or use of inappropriate 

classification algorithms for the distribution of the data. 

However, when suitable information requirements are 

applied to the appropriate remote sensing data set. along 

with the appropriate analysis techniques, results can be 

positive (Peltinger 1982, Hame 1984, Franklin 1987. 

franklin and Peddle 1989, Congalton et al. 1993). In such 

studies, the value of satellite data for forest classification 

has been clearly demonstrated. 

In response lo concerns regarding environmental change 

as a function of changing climatic conditions, substantial 

remote sensing research is being directed toward the bio 

physical modeling of forest-stand parameters. Some suc 

cess has been observed in the form of strong correlations 

between forest-siand parameters (e.g., leaf-area index) 

and spectral reflectance or spectral indices (Curran el al. 

1992). These relationships may prove useful for monitor 

ing subtle changes in primary productivity and other eco 

logical processes as ecosystems respond to changing 

climatic conditions. 

Airborne sensors thai generate high spatial and spectral 

resolution data are now available for remote sensing 

applications. The dala generated from these sensors are 

not .suited to traditional image analysis techniques devel 

oped for use with LandsatMSS data. Research is currently 

underway on image analysis techniques that attempt to 

incorporate textural and contextual information into 

decision rules. Also, classifiers that arc not limited by 

data-distribution rules (i.e.. Gaussian) are being devel 

oped lo operate with a variety of data types, including 

nominal dala sets. Such classifiers should prove useful for 

the analysis of high spatial resolution remote sensing dala 

in conjunction with other lypcs of spatial data. 

THE FACTOR OF SPATIAL RESOLUTION 

(SCALE) IN REMOTE SENSING FOR 

FORESTRY 

Spatial resolution is a fundamental concept in remote 

sensing and plays a significant role in the planning of any 

remote sensing investigation. Townshend (1981) and 

Forshawct al. (1983) provide insightful backgrounds on 

the concept of spatial resolution and its various meanings. 

Here, we consider spatial resolution as the instantaneous 

field of view (IFOV) of the sensing system, which is the 

area on ihe ground vie wed at any particular insiani in lime. 

With this definition, spatial resolution is analogous to the 

scale of the observations (Woodcock and Strahler 1987). 

For the purpose of this discussion, the term spatial resolu 

tion will be used not only in the Iradilional sense, but also 

as a surrogate for scale (Csillag 1991. Lam and Quattrachi 

1992). 

Spatial Resolution (Scale) and Multispectral 

Classification 

One of the major considerations in any remote sensing 

forestry application is to determine the spatial resolution 

of the data that best meets the objectives of the project. 

Thus, it is important to understand how spatial resolution 

affects the spectral and spalial expression of forest at 

tributes. For example, increased spalial detail may not 

necessarily improve classification performance (Markham 

and Townshend 1981, Buiset al. 1983). Such conditions 

have been observed for forest environments as spatial 

resolution becomes finer than 60—80m (Sadowski ci al. 

1977, Laity and Hoffer 1981. Nelson el al. 1984), Re 

searchers investigating the effects of spatial resolution on 

classification accuracy have generally found that classifi 

cation performance improves at lower spatial resolutions 

for various classification hierarchies (Latty and Hoffer 

1981,Markham and Townshend 1981, Brass et al. 1983, 

Townshend 1983. Irons et al. 1985. Cushnie 1987). 

Wiersma and Landgrebe (1979) identified two counter 

acting forces that affect classification accuracy as a func 

tion of spalial resolution. These are: (i) heterogeneous 

largets and (ii) ihc percentage of boundary pixels within a 

scene. As spatial resolution increases, the proportion of 

pixels falling on. or near, boundaries of objects in the 

scene decreases, thereby reducing the number of mixed 

pixels and hence improving classification accuracy. How 

ever, higher spatial resolution also increases ihe spectral 



variance for cover types which, in turn, adversely affects 

ihc spectral separability of classes. Changes in classifica 

tion accuracy thai accompany changes in spatial resolu 

tion are thus a function of the relative importance of 'scene 

noise' and boundary pixels (Markliam and Townshend 

1981). It is also notable that scene noise may vary consid 

erably among land-cover categories and across spectral 

hands for the same cover class. 

Closely associated with the high spectral variability oi" 

high-resolution imagery is the large amount of spatial 

information inherent in the data. Over the past 10 years, as 

higher spatial resolution satellite and airborne remote 

sensing data became available, it was discovered that 

conventional analysis techniques did not provide satis 

factory' results (Townshend 1983, Hodgson and Jensen 

1987. Jensen and Hodgson 1987). As a result, the research 

focus has shifted toward developing new techniques for 

exploiting spatial information (Sun and Wee 1982; Wood 

cock etal. 1988a. 1988b: Ut: and Philpot 1991; Yuan etal. 

1991; Franklin and McDermid 1993). Woodcock and 

Slrahler (1987) examined various cover types at SPOT 

and Landsat TM resolutions (Table 5) and found the local 

image variance to be high for forested and urban/suburban 

cover types. They suggested that texture, context, and 

mixture modeling be incorporated into information ex 

traction techniques for these data. Of particular focus has 

been the development of new classification algorithms 

that incorporate textural and contextual measures, as 

discussed in the previous section. However, to date, the 

development of more sophisticated sensors and more 

complex classification techniques, be they supervised or 

unsupeivised. parametric or nonparamclrie. spectral, tex 

tural, contextual or knowledge-based, has not led to satis 

factory results on a repetitive basis (Marceau 19921. 

Terrestrial and photognimmetric measurements remain 

the standard for the majority of scientific and operational 

mapping projects. For this reason, a more detailed exami 

nation of surface features and ihcir relationship to remote 

sensing spatial resolution is required. 

The Modifiable Areal Unit Problem (MAUP) 

Remote sensing images represent comprehensive spatial 

samples of terrain or other surfaces, and each pixel con 

tains the integrated radiant flux for the surface features 

(e.g.. trees, shrubs, ground cover, soil, and shadows in a 

forested environment) over an area corresponding to the 

spatial resolution of the sensor. Based on traditional 

remote sensing methods, it is implied that there is a strong 

and predictable correlation between the measured radi 

ance and the surface features of interest. However, surface 

features possess different sizes, shapes, and spatial distri 

bution, as well as spectral characteristics, which would 

indicate that for an arbitrary sampling grid such as that 

imposed by remote sensing systems, there is really no 

intrinsic geographic meaning to the spectral measure 

ments recorded (Marceau et al. 1994b). Arbitrary sam 

pling does not necessarily provide a suitable model for 

nature. In nature, scales of phenomena are dictated by the 

physical laws that dominate at each level and, rather than 

being arbitrary, lend to concentrate around discrete le\ els 

that may be far apart (Klemes 1983}. ll has also proven 

difficult to apply statistical image analysis techniques to 

spectral data acquired in this manner (i.e.. using an arbi 

trary sampling grid) in order to extract meaningful infor 

mation with a high degree of accuracy and repeatability. 

This observation is embodied in the modifiable areal unit 

problem (MAUPl. as described by Openshaw (198-1). 

flie MAUP is actually comprised of two sets of interact 

ing problems, the first associated with spatial scale and the 

second with spatial aggregation (Openshaw 1984). For 

example, a variety of different analysis results may be 

obtained as the same areal data are iteratively grouped into 

larger areal units for analysis. Hence, analysis results are 

dependent on scale. Second, at any given spatial scale, 

data may be aggregated in a variety of ways. In essence, 

the scale problem indicates a failure to understand the 

processes or phenomena that occur at different scales and 

the aggregation problem indicates a failure to discriminate 

the ohjects of geographical enquiry (Dudley 1992). In 

studies of spatial data, including remote sensing studies, 

interpretation of those data is a scale- and aggregation-

dependent phenomenon. Upon examination ol the scale 

and spatial aggregation problems in remote sensing. 

Marceau (1992) found that there is a scale and aggregation 

level that is specific to the discrimination and analysis of 

each ground feature of interest in the scene. It is therelore 

necessary to identify an optimal spatial resolution for 

analysis. As defined by Marceau et al. (1994a, p. 106). 

optimal resolution is, "The spatial sampling grid corre 

sponding to the scale and aggregation level characteristic 

of the geographical entity of interest.'' This approach will 

require a multiscale sampling design for data acquisition, 

analysis, and interpretation 

Selecting an Appropriate Spatial Resolution 

(Scale) 

Two assumptions identified by Duggin and Robinove 

(1990) as being implicit in remote sensing data acquisition 

and analysis are that data be (i) collected and (ii) analysed 

at an appropriate scale to detect and quantify the features 

of interest in the image. These are requirements for an 

adequate exploration oi the spatial character of the surface 

features and are intended to ensure that spectral character 

istics or classes in the image correspond to information 

classes required by the user. To select an appropriate scale 

for data acquisition and analysis, the spatial structures of 
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Ihe ground surface features and of the images musi be 

understood. Specifically, ii is import am to understand [he 

manner in which images of a scene change as a function of 

spaiial resolution (Woodcock and Strahler ] 987). A suit 

able scale for observations is a function of (i) the type of 

environment being studied and (ii) the type of information 

required (Woodcock and Strahlcr 1987), although suit-

able consideration must also be given to the techniques 

used to extract information from the remotely sensed data. 

Spaiial structure of an image is determined by the relation 

ship between the size of ihe objects in the scene and spatial 

resolution. There are two approaches that can be taken to 

examine ihe spaiial structure of a scene (Marceau 1992). 

First, detailed field information characterizing ihe spatial 

structure of ihe surface features can be collected and 

compared to the information content of remote sensing 

data collected at a variety of spatial resolutions in order lo 

determine the influence of surface features on information 

extraction. It has been shown thai when spatial resolution 

is considerably smallcrorlargenhan the surface feature of 

interest, it is likely that sample pixels for these features 

will exhibit high spectral variance: if the spatial resolution 

samples the appropriate mixture of feature attributes, 

spectral variance will be at a minimum (Woodcock and 

Strahler 1987, Marceau el al. 1994a). A reciprocal ap 

proach consisis of modeling scenes of a known structure 

(discrete elements distributed over a continuous surface) 

lo derive the spatial structure they portray in digital 

images acquired from them (Jupp et al. 1988). Models 

have been used to simulate a forest scene in order to 

determine optimal resolution (Li and Sirahler 1985, Wood 

cock and Sirahler 1987]; however, these arc generally 

oversimplified, as they usually assume that scenes are 

composed of objects arranged in a mosaic that completely 

covers the area or objects that are distributed on a continu 

ous background. 

Various tools have been developed to measure ihe spatial 

Structure of digital images. For example, ihe spatial struc 

ture of images has been investigated using spaiial auto 

correlation (Craig and Labovitz 1980, Campbell 1981, 

Labovitz and Masuoka 1984). using one- and two-

dimensional variograms (Woodcock and Strahler 1985). 

by plotting local variance as a function of spaiial resolu 

tion (Woodcock and Strahler 1987), by determining the 

minimal spectral variance of a class (Marceau et al. 

1994a], and by overlaying grids on aerial photographs and 

counting the number of land-use categories that occur in 

each grid cell (Simonetl and Coiner 1971). Using grids of 

different sizes, Simoneil and Coiner (197 I) demonstrated 

that the complexity of the scene and spatial resolution 

determines the number of pixels that contain multiple 

land-covertypes. Woodcock and Strahlcr (1987) assessed 

spatial structure by graphing the local variance in images 

asa function ofspatial resolution. The peak of the variance 

generally occurs at a slightly smaller spatial resolution 

than the size of the element in the scene. It was noted by 

Woodcock and Sirahler (1987) that local variance for a 

forest stand decreased below spatial resolutions of 3-4 m. 

This indicated that assumptions of spectral per-pixel clas 

sifiers were once again valid, but only on a per-tree basis 

rather than on a stand basis. Marceau et al- (1994a) used 

minimum spectral variance to define the optimal spaiial 

resolution for each class and found that stand spatial and 

structural characteristics were the dominant features con 

tributing to the optimal spatial resolution. 

An alternate approach utiliz.es the semivariogram. which 

originates from the theory of regionalized variables 

developed by Matheron (1963)- The semivariogram is 

used to measure the spatial dependence of neighboring 

observations for any continuously varying phenomenon. 

Hence, it is a technique that can be applied to spectral data 

(radiance I. a phenomenon for which position in time and 

space is known (Woodcock and Strahler 1983). In this 

manner, spatial variation in images can be examined in 

relation to ground scene and sensor parameters (Wood 

cock etal. 1988a). 

The semivariogram plots scmivarianee against spaiial 

separation along a given relative orientation (Fig. 4, 

Table 15), and provides a concise and unbiased depiction 

of the scale and paitcrn of spaiial variability (Cumin 

1988). In essence, it measures the correlation between 

pixels at successively greater distances and will demon 

strate apeak in variance when pixels become independent 

of one another. This peak in variance is known as the 

'range of influence' of the semivariogram. The semi 

variogram has proven useful in remote sensing because it 

enables researchers to relate some of ihe descriptors of the 

semivariogram to the spatial characteristics of the scene. 

Figure -I. The shape ami description of a typical variogram. 
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Table 15. Terms and symbols used in the description of tlic semivariogram. 

Term Definition 

Lag 

Sill 

Range 

Nugget variance 

Distance (and direction in two or more directions) between sampling 

pairs. 

Maximum level of semivarian.ee. 

Point on lag axis where semivariance reaches a maximum. 

Places closer than the range are related; places further apart are not. 

Point where the extrapolated relationship between the two vari 

ables intercepts the semivariance axis. Represents spatially 

independent variance. 

Spatially dependent structural variance Sill minus nugget variance. 

(Adapted from Cumin 1988.) 

For example, the range, which defines the distance at 

which pixels are not spatially related, provides a measure 

of the size {if the elements in the scene and has been 

suggested as a useful indicator in selecting the optimal 

spatial resolution for discriminating the features embed 

ded in the image semivariogram (Curran 1988; Woodcock 

ci al. 1988a. 1988b)- Woodcock el al. (1988b) calculated 

variograms from real digital images and found: (1) the 

density ol" coverage of objects in the scene affects the 

height of the variogram; (2) object size affects the range of 

influence of the variogram; and (3) the variance in ihe 

distribution of the sizes of objects affects the shape of ihe 

variogram (i.e.. as variance increases ihc shape oi ihe 

variogram curve becomes more rounded). 

Atkinson and Danson (T98K) used scmivariograms lo 

measure Spatial dependence in coniferous and oak 

(Quercus spp.) plantations. They found the range of the 

variogram was related lo stand age and species, and were 

able lodctermine the optimal spalial resolutions foreven-

aged stands. Cohen el al.( 1990) found ihe ranges for I-m 

spalial resolution dala were related to the mean Irec 

canopy sizes of the stands. In contrast, semi variograms 

based on 10-m and 30-m pixels contained significantly 

less useful information, However, Bowers el al. (1994) 

were able to measure differences in semivariogram char 

acteristics for thinned, unlhinned. damaged, and undam 

aged balsam fir (Abies balsamea (L.| Mill.) slands using 

SPOT panchromatic data. These spalial characteristics 

were superior to spectra! measures for examining damage 

incidence and forest struclurc (stems/hectare). Lalhrop 

and Pierce (1991) used semivariogram analysis of forest 

canopy transmittanec measurements and Landsat TM 

near-infrared/red ratio data to examine the scale of 

variation in canopy structure and to determine the most 

appropriate scale al which to sample transmitlance. This 

analysis depicted the similarity between ihc two sets of 

data with respect lo spaiia! auto-correlation structure. The 

range of the semivariogram was used to aggregate the 

LandsaiTM and ailenuation dala sets for regression analy 

sis by averaging segments of ihe transect (where segment 

length equals semivariogram range). It was discovered 

that by averaging within an appropriate landscape unit 

(e.g.. hillslopes). large scale variability of measurements 

(due to small forest gaps] was reduced. 

Remote Sensing at Multiple Spatial Resolutions 

(Scales) 

An important question surrounding the selection ol an 

appropriate spalial resolution was suitably phrased by 

Openshaw and Taylor (1979, p.143). "What objects al 

what scales do we want to investigate" Information is a 

scale-dependent phenomenon. Often it is assumed that 

jusl one scale will provide the desired results lo a complex 

problem. This assumption requires examination and must 

be used with caution .since the data in a remote sensing 

image are nonhierarehical in a classification sense (Evcreil 

and Simoneli 1976). For example. Mareeauetal. (1994b) 

examined a natural forest environment at a variely of 

scales and concluded that there is no unique spatial reso 

lution at which all geographic entities could be discrimi 

nated. Everetl and Simonett (1976) described ihe 

environmental modulation iransfer function to formalize 

the notion thai applying a single resolution to many 

environments wi I! not produce a uniform class of informa 

tion for all environments. Environments are loo complex 

over space and time to be reduced to a single spalial 

resolution (scale). Spalial resolutions (scales) are fre 

quently imposed on nature, often without necessarily 

knowing if those scales reflect natural patterns/Iorms/ 
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functions. However, as researchers into the character of 

nature, we must search for those scales of nature that exist 

and try to understand their interrelationships and patterns 

(Klemes 1983). 

In many remote sensing studies, it has been observed thai 

ihere arc dramatic inconsistencies in the classification 

results between one class and another, thereby leading [0 

poor overall accuracies. Intuitively, classes that demon 

strate poor accuracies have not been sampled at an appro 

priate resolution or they are not separable at any particular 

resolution (i.e.. ihc class label docs not represent the 

spatial structure of the class). It has been observed that the 

ulili/.ation of a single scale of remotely sensed data lends 

to cause the image to operate as a spatial-frequency filter 

(Clark 1990). Patterns higher in frequency than the spatial 

resolution of the data and lower in frequency than the size 

of the scene arc inherently tillered out. In this case, only a 

subset of the natural variation of the surface is captured. 

Remote sensing spatial resolutions (scales) must be 

matched lo the Ircquency of variation in nature, variations 

which do not occur at a single spatial resolution. Clark 

(1990) used multiple scales to map ice-flow landform 

features thai resulted in radically new interpretations of 

the dynamics and behavior of the Laurcntide Ice Sheet. 

Analysis of multiple scales (a geographer's strength ac 

cording to Stone [1972]) may be a more appropriate 

approach for identifying forest classes from remote sens 

ing data. 

Summary 

From the preceding discussion on spatial resolution (scale). 

it is evident thai more attention must be paid to the attri 

butes of surface features and how these attributes are 

characterized in image data. Duggin and Robinovc( 1990) 

expressed concern that although remote sensing analysis 

are generally very analytical with regard to the interpreta 

tion procedures applied to quantitative analysis of digital 

image data, [here is less attention paid to image data selec 

tion, sensor design and calibration, and optimal environ 

mental conditions for data acquisition. In fact, there is 

generally a poor understanding of the assumptions in 

volved in linking ground-level attributes with the spatial 

and spectral measurements recorded by the sensor. This 

must he done at a detailed level to isolate and understand 

the major components contributing to spectral reflectance 

at smaller scales. With this knowledge, sampling systems 

can he designed lo optimize the segregation of various 

levels of features in a scene. This approach identifies a re 

quirement for characterization of surface features at vari 

ous spatial resolutions (scales) in order to determine the 

cflcct ot speciral and spatial aggregation on surface fea 

ture extraction. Analysis of high spalial and spectral reso 

lution data will improve our understanding of the spalial 

and spectral components of a forest canopy and their 

relative effects. 

CONCLUSIONS 

Currently, aerial photographs, dated map products, and 

iniensivc field surveys provide the majority of informa 

tion for forest mapping and monitoring and. in iiirn. for 

management and planning. However, remote sensing of 

forest resources offers potential for assisting these tradi 

tional methods for a variety of mapping scales. As sensor 

technologies and data-analysis techniques improve, the 

potential for remote sensing data to provide information 

on forest ecosystems and ecosystem processes from local 

to global scales will improve. Currently, dala from satel 

lite sensors, such as Landsat TM and SPOT, are used 

operationally lo provide generalized forest-cover map 

ping. However, this technology is used only by a few 

select government agencies and consulting firms. For 

remote sensing potential to be fully rcali/.cd, this type of 

technology must become more accessihie to forest man 

agers. 

In ihis review, the requirement for detailed forest ecologi 

cal daia in support of integrated forest resource manage 

ment has been identified. Traditional forest inventories 

for timber management are nolonger sufficient as increas 

ing demands are placed on forest resources. An integrated 

forest site management approach that incorporates the 

biotic and abiotic components of the ecosystem and their 

ecological relationships is required. This detail is neces 

sary for multiuse planning for ecological sustainahility 

and the maintenance of biodiversity, and for the derivation 

of more transparent site factors, particularly those related 

to growth and yield modeling and current ibresi manage 

ment practices. 

To simplify the myriad of forest and site parameters, as 

well as the energy processes flowing between them, a 

method of classifying forest ecosystems was developed. 

A forest ecosystem classification (FEC) (Jones etal. I9S3, 

Sims et al. 1989) is a hierarchical classification scheme 

that is well developed for field evaluation of forest sites at 

the stand level, but is not practical for classifying forest 

ecosystems over large areas. A remote sensing method for 

classifying forest ecosystems for large areas, with a mini 

mal amounl of ground information, is required lo extrapo 

late the FEC lo large portions of Ontario's forests. 

To evaluate the effectiveness of remote sensing data for 

forest ecosystem classification, a number of issues must 

be addressed. First is ihc suitability of the information 

classes for spectral classification. This requires an under-

Standing by the analyst of all the different types of resolu 

tion—spatial, spectral, temporal, and radiomctric. In 

particular, the information content of remote sensing 
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images is a direct function of measurement scale, as 

determined by the spatial resolution of the sensor. Condi 

tions must be selected thai maximize the spectral separa 

bility between classes. However, as first emphasized by 

Townshend (1981). there continues 10 be a substantial 

need for basic research on the spatial, spectral, and tempo 

ral properties of many types of vegetation. Until these 

properties are better understood, it is difficult Lo determine 

optimal conditions for remote sensing data collection and 

subsequent analysis. Likewise, there is a need for in 

creased understanding of the spcciral properties of differ 

ent ecosystem types at various spatial, and temporal 

scales. This will lead to the collection of remote sensing 

data at the appropriate spectral, spalial. and temporal 

resolutions for optimal ecosystem analysis and interpreta 

tion. 

If it is determined that the information classes of particular 

interest are not spectrally (or tcxturally) separable, then 

they musi be modified to more closely approximate the 

character of the data. However, FEC classes are based on 

ecological principles so it may be possible 10 assume lhal 

ihey represent distinct levels in nalure. As an iniegrated 

unit of physiography, soils, climate, and vegetation, they 

may be unique at a particular level in a hierarchy that 

corresponds to a given spatial resolution. Also, the FF.C is 

hierarchical, and presents greater opportunities for corre 

lating remote sensing data at various scales with particular 

levels in the hierarchy. 

Closely associated with this issue is the selection of 

remote sensing data with appropriate resoluiions. particu 

larly spatial resolution, for the extraction of forest ecosys 

tem information. It has been argued in this paper thai 

single spatial resolution (scale) remote sensing data are 

not sufficient to appropriately sample the scales that are 

encountered in nature. Although it is dependent on the 

variable being measured, surface parameters often exhibit 

mill I iple scales of variations and thereby portray different 

environmental controls and processes at different scales 

(McGwire etal. 1993). Therefore, the scale at which re 

mote sensing data are collected and analysed is a signifi 

cant controller on the relevance of the results. One cannot 

presume that a single arbitrary spatial resolution can 

satisfactorily sample the information categories lhal have 

been imposed on nature. As Paul Kopper wrote: "It is 

important always to keep in mind that we are students of 

nature, of forms noi created by us. hence not subject to our 

control. To project human notions...on nature is not sci 

ence" (from Klemes 1983. p. I). Klcmes (1983. p. 1) weni 

on lo argue that: "Levels of scale at which meaningful 

conceptualization of physical processes is possible are not 

arbitrary and their range is not continuous." Hence, sur 

face features and aggregations of surface features may be 

recognized at different scales. However, it is logical thai 

objects within a scene (or agglomerations of objects) can 

be discriminated ai an appropriate spatial resolution lhal 

corresponds to their intrinsic spatial and spectral character 

(Marceau etal, 1994b). Il is therefore more appropriate lo 

operate under the assumption that multiple scales of 

remoie sensing data are required, first to under.sland the 

nalure of the scene, and second to extract useful informa 

tion. The structural characteristics of the objects on the 

surface must first be modeled using high spatial resolution 

data. This will provide baseline information, through 

geostaiistical analysis, for selecting the most appropriate 

resolutions for separaling the objects and aggregations of 

objects in the scene. 

A second consideration falls under the category of data 

improvements. This involves modifying the raw spectral 

dala so thai they are more suited to information cxlraclion. 

An example of ibis lypc of dala improvement is the gen 

eration of lexturc features from spectral data. This form of 

feature processing attempts lo quantify the textural infor 

mation within the spectral data, and may become more 

prevalent ai higher spatial resolutions as stand Structural 

characteristics begin to dominate the scene. Texture fea 

tures provide additional information layers for classifica 

tion. Another form of dala improvement is the incorporation 

of ancillary data into the analysis process. Combining 

elevation dala and its derivatives (e.g., slope, incidence 

angle) with speclral data in a classification is an example 

of ihis type of data improvement. Since these variables 

tend to be highly correlated with vegetation types (particu 

larly in high-relief environments) they may prove useful 

for the discrimination of certain cover classes. These tech 

niques often improve classification accuracy when com 

pared to using speclral data alone. 

Third, the testing of new classification algorithms, which 

incorporate lextural and contextual information, may 

provide more accurate classification results than do tradi 

tional approaches. Also, classifiers that are not restricted 

by statistical assumptions are now available. These clas 

sifiers allow the analysl to incorporate a variety of data 

types (e.g.. nominal, ordinal, interval, and ratio). This 

allows data integration from a variety of sources. 

Based on ihis review, it is recommended that a systematic 

approach lo forest ecosystem classification with remote 

sensing data be initiated. This should siari with a detailed 

analysis of stand structural characteristics recorded al 

various levels of spalial aggregation. Second, dala im 

provements in the form of feature processing (e.g.. tcx-

lure, principal components) and addition of ancillary 

variables is required to optimize class discrimination. 

Third, evaluation of nonlraditional classification algo 

rithms thai incorporate speclral and spalial characteristics 

are expected to improve classification accuracies. It is 
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anticipated lhal careful examination, testing, and evalua 

tion of these three issues will provide reliable methodolo 

gies and approaches to forest ecosystem mapping at several 

levels or scales. 
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